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Nonyeriyheral effects in medium energy yroton scattering on collective nuclear states
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The Glauber approximation is combined with the interacting boson model of nuclei to describe

medium energy proton scattering to collective states. Channel coupling e8ects are included to all

orders. Nonperipheral contributions are found to be nonnegligible, especially for small angles. As

an illustration, cross sections for the excitation of the low lying J =0+, 2+ states in ' Gd are

presented.

I. INTRODUCE:liON

Multiple excitation is conventionally described in
terms of a coupled channel approach, in which only a few
selected channels are treated, which are thought to be
dominant. An alternative approach is possible in the in-
teracting boson model, which provides an algebraic
description of low lying collective states in open shell nu-
clei. Within the ISA-model space, a nonperturbative
treatment of multiple excitation up to all orders is possi-
ble. In a series of papers' it was shown that this model
can be used to conveniently describe the excitation of
low-lying collective states in rotation-vibrational nuclei
by means of medium-energy proton scattering
(F. -500—800 MeV) in terms of the eikonal approxima-
tion.

In the past experimental studies of the (p, p'} reaction
on deformed nuclei focused on the excitation of the
ground state band. While the angular distributions in
these cases are largely determined by the geometry' the
importance of effects arising from multiple excitation was
clearly established. More recently data became available
on the excitation of states in side bands. These indicate
that the angular distributions are sensitive to both the de-
tails of the transition densities and the coupling to other
states.

The transition amplitudes as a function of the impact
parameter b can be expressed as an integral of the matrix
elements of the exponentiated U(6) group elements
( p& ~ exp[f (r)G'"' Y' '(r)]

~
lit, ).' Here the 6„' ' are the

infinitesimal generators of U(6) (in the coupled angular
momentum representation) and the radial functions

f[(b +z )' ] are proportional to the collective quadru-
pole transitions densities a(r}, P(r); the latter can be ob-
tained most directly in reactions in which the one-step
excitation dominates, e.g., electron scattering. Also a
microscopic calcu1ation in a shell model basis is possible.

As to the reaction formalism, up to now in the eikonal
approximation one simplifying assumption has been
made, namely that of the peripheral approximation. In
that case it appears suScient to evaluate only the matrix
elements (exp(aG„'"') ) for p=O. ' However, the validity

of this approximation has not yet been investigated quan-
titatively, especially for the excitation of weaker states.
For example, if we restrict ourselves to collective quadru-
pole vibrations, 6nal states with odd angular momentum
values can only be excited via the @+0components.

In this paper we present a more general formalism for
the calculation of representation matrices of the quadru-
pole operator and angular distributions, which allows us
to go beyond the @=0 approximation. In Sec. II the
Glauber scattering formalism and the peripheral approxi-
mation are discussed. Section III is divided into a brief
overview of the interacting boson model and the calcula-
tion of representation matrices in the U(5} limit. The va-

lidity of the peripheral approximation is discussed in Sec.
IV, and the angular distributions for the U(5) and SU(3)
limits are presented. In Sec. V our predictions are com-
pared with recent (p, p') data for ' Gd.

II. FORMALISM

To describe the excitation of collective states of a nu-

cleus in proton scattering we consider the Hamiltonian

H= +HT+ V;„,(r, Q), (2.1)

V;„,(r, Q)= V„(r)+Y,», (r, Q),
where

(2.2)

V os(r Q)=ggzWz(")Q (2.3)

Here Q
' ' is the collective multipole operator, Wz(r) its

radial form factor, g& its strength, and C'"'(8, $) are the
unit spherical tensors of rank A,.

where r is the projectile coordinate, Q denotes the set of
collective operators acting in the collective Hilbert space;
HT is the target Hamiltonian, and V,„,(r, Q) the coupling
of the projectile to the target. It is convenient to decom-
pose the latter in a spherical optical potential, that de-
scribes the elastic scattering on the target (in Born ap-
proximation), and a coupling of the projectile to the col-
lective multipole degrees of freedom
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In the impact parameter representation, the scattering
amplitude can be expressed as

where po(r) describes the ground state density and the
p' '(r) are the multipole transition densities. This leads
to a decomposition of the profile operator in two parts,
%(b)=%'(b)+4(b), where%=(gs

I
4

I
gs)

db 'q'(JMfI ' ' —IIJMi),
27Tl

(b)= —,'eo f dz po(r) (2.8)

(2.4)
is the elastic profile function, and %' describes the nuclear
excitations. In the present paper we restrict ourselves to
the dominant A, =2 multipole

where q=k' —k is the momentum transfer. In the eikon-
al approximation the profile operator %(b} takes on the
form

'P(b)=a(b) Q'"=g( —)"e „(b)Q„'" . (2.9a)

%(b)= g f V(r —r )dz,
Ak

(2.5)
Here a(b) is the transition profile function for quadrupole
transitions

which in the I tpj approximation can be written as e (b)= —'n f dzp' '(r)C' '(8 P) . (2.9b)

2nif0
4'(b) = — f dz p(r),

k

where

ik . ikf0 cr(1 ——iP) =— o—o4n 4e

(2.6a)

(2.6b)

For the matrix element in Eq. (2.4) we can write

(JfMf I
e ' ' —1

I
J;M; )

p(r)=pa(r)+gp' '(r)Q' 'C' '(8, $), (2.7)

is the forward proton-nucleon scattering amplitude, e is
the isospin averaged proton-nucleon cross section, and P
its ratio of real and imaginary part. It is then convenient
to make a multipole decomposition of the nuclear density
in terms of collective operators, analogous to Eqs. (2.2)
and (2.3)

Here (e ' ') describes the excitation to all orders. In
practice we have J;=M; =0; as a result all the factors
e'"~ from the C„' '(8, $) in s„can be combined in a phase
exp(iMfg) Ther.efore, one can use the integral represen-
tation of the Bessel function J~ to perform the azimuthal
angle integration in Eq. (2.4). After inclusion of the
Coulomb interaction for a spherically symmetric charge
distribution p,h(r), the scattering amplitude can be ex-
pressed as

Mf k'I I'I J;=M, =o, l )

=F„(8)5 ;f—+. f bdb J~M (qb)e " (e '"'e ' (JfMI I
e '"'I J;=M;=0)—5f;), (2.11)

0 iM i

where '

—ig1n[sin (1/2)8]+2ioF„(8}=— e
2k sin —9

(2.12a)

X,(b) =2g ln(kb), (2.12b)

b 2/i2 i/2
X,(b)=gmq f dr r'p, „(r) ln

b b t
(2.12c)
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In the above equations the charge distribution, p,h(r}, is

normalized to unity, g the Sommerfeld parameter

and

Ze
AU

(2.12d}

(7,
=argI'(1+iran)

. (2.12e)

00 (2) & 3 Z
2

e2(b}=—,'oc f dz p' '(r),'~ 1—

(2.13)

only the z=0 term is kept. In this case the )u=O and 2
components of e( b ) become proportional
e2(b)= —~23so(b), and the matrix elements, Eq. (2.10),
are easily calculated using a three dimensional rotation to
a frame, where only the @=0term of 4(b) survives. '

To get an idea about the validity of the peripheral ap-
proximation we compare in Fig. 1 the fuB result of
e„(b)/ao as a function of b, with that for the peripherial

1.0

We note that now in (p(b): ez(b) =e z(b), not dependent
on P. Furthermore, we rotate to a frame where
a~i(b) =0.

In most applications until now, one has calculated the
matrix elements in Eq. (2.10) in the so-called peripheral,
or small z/b, approximation, which is motivated by the
presence of the attenuation factor e ' ', that is effective
for b ~R, and the surface peaked behavior of e(b). In
practice, this means that in the expansion of the
C„' '(8,$) around 8=n /2

Z2
eo(b)= ,'oo—J) dz p' '(r) —,

' —1+3
00 b2

a~proximation. For p' '(r) we took the Tassie form

p '(r)-r(d/dr)pc(r}, with po(r) of Woods-Saxon form.
In order to emphasize the effect on the scattering ampli-
tude (which is an integral over b) we multiplied e(b) with
the attenuation factor

~
e ' '

~
. One sees that the

corrections to the z =0 approximation lead to a reduc-
tion of e„(both for JM =0 and @=2), as could already be
expected from Eq. (2.13). Compared to the z=O case the
peak values of eo(b} (

e ' '
(

and e2(b) (
e ' '

(
are re-

duced by 35% and 12%, respectively. As a consequence,
for small q values, the scattering amplitude, Eq. (2.11}is
approximately reduced by the same amount. On the oth-
er hand, it can be shown by expanding the spherical ten-
sors C„'2' in terms of powers of z /b [see Eq. (2.13)] and
the use of the stationary phase approximation that with
increasing q the corrections to the z =0 approximation
decrease as (boq) ' . This effect can also be seen by
comparing Figs. 2 and 3. We also note that in the full
calculation eo and e2 no longer have the same dependence
on b, which will break the proportionality of the M =0
and M =2 transition matrix elements (see Sec. III B).

From Eq. (2.11}it is clear that the nuclear structure in-
formation is contained in the matrix elements
(JfMf ~

e
~
J, =M, =0). In the next section we evalu-

ate these matrix elements for the interaction boson ap-
proximation (IBA) model.

10'.

10

101

I

E
CV

I

0.5-

rrr
0 0-----

c„/a, e-' ~ 1O4

E

C10

O

10

IB.
I

CU

o-0.5-

Ld

-1.0-
full----- z=p approx.

10-'

10-'-

-1.5
0

I

5
b (fm)

10

10-'
0.5 1.0 1.5 2.0

q(fm ')
2.5 3.0

FIG. 1. The functions c„(b)/pro (@=0,2) multiplied with the
attenuation factor

~
e +'~'

~

are plotted as a function of b. The
full result is given by the solid line and the z =0 approximation
by the dashed line.

FIG. 2. The angular distributions for the excitation of the 2&+

and 22+ states in the U(5) limit for the full calculation (solid
curves). The contribution of the M=O and 2 substates are
represented by the dashed-dotted and the dashed curves, respec-
tively.
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representation matrices for U(5) basis states of the IBA
model will be evaluated in Sec. IIIB. This is done by
decomposing the initial and final states in Eq. (2.11) in
the M scheme, and for the N =1 or single-boson repre-
sentation matrices using the results of the Appendix. We
will also discuss the validity of the peripheral approxima-
tion in the transition matrix elements.
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FIG. 3. Same as in Fig. 2, for the peripheral approximation.

III. NUCLEAR STRUCTURE INFORMATION

In this section we concentrate on the nuclear structure
aspects. This degree of freedom is described in the
framework of the IBA model discussed in Sec. III A, The

A. The ISA model

In this paper we will make use of the IBA model' to
describe the collective excitations of the target nucleus in
terms of s (L =0) and d (L =2) bosons. In the frame-
work of this model, the excitation spectrum and the ac-
cording wave functions are determined by the Hamiltoni-
an

H=edRd+K{7'' 'g ' '+K'L "'L "', (3.1)

where fi'd ——g„d„d„ is the d-boson number operator and

Q
' ' is the quadrupole operator

g (2)=(std +dts )(2)+y(dt's)(2)
P P

The first term in the Hamiltonian Eq. (3.1}represents the
single-boson energies (ed is the energy difference between
d and s bosons), whereas the second describes the quadru-

pole interaction (with strength z). In the following the
E L term can be dropped, because it does not affect the
wave functions. By appropriate choice of the parameters
Kd K and X, the IBA model is able to describe vibrational
and rotational nuclei, as well as nuclei in the transitional
region.

In general, the nuclear eigenstates are obtained by di-
agonalization of H in the U(5) basis, which means that
the states are labeled by the quantum numbers of the U(5)
group chain

U(6) Z U(5) Z 0(5) o 0(3) z 0(2),
tÃ] n& v (n&) L M

i N, nd, r, na, L,M) =gN „,(st) (d d ) i
N=nd r, na, L,M—) .

(3.3)

(3.4}

For the calculation of the representation matrices, we al-
low for the (s Z+ dts) and the (dtd } term in the quad-
rupole operator in Eq. (2.9) two different radial form fac-
tors a(r) and p(r}, resulting in two different transition
profile functions e„(b) and ri„(b )

(3.6a)

'p(b)=e(b). (d s+s d)' '+g(b) (d d)' ', (3.5)

&&(b)= —,'o'o f dz a(r)C„')(g, (()),

g„(b)=—,'oo f dz P(r)C„' '(8,$) . (3.6b)

The form factors a(r) and p(r) can be determined from
electron scattering. For hadron scattering, these form
factors have to be multiplied with a hadronic factor, dis-
cussed in Sec. V. After determination of 4, the transition
matrix, Eq. (2.10), can, in principle, be calculated in
closed form, as is discussed below.

B. Representation matrices for U(5) basis states

For N=1 the representation matrices to be calculated
are of the form

&sd„. ie ~lsd„) . (3.7)

& d„ i
0

i
s ) = —"sinhk, =P„,

(s
i
0

i
s ) =cosh'. =a,

where we have de6ned

&=exp( —)p},

(3.8a)

(3.8b)

(3.8c)

In the Appendix they are evaluated in closed form by di-
agonalizing the operator )p in the basis [ i d„), i

s ) I.
In the special case that X=O (hence q„=O) the repre-

sentation matrices for N= 1 reduce to
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A. = ( so+ 2c,z )
' (3.8d) from which it follows

With these results the representation matrices for gen-
eral N in the U(5) basis (for 1=0) can easily be evaluated.
First, the decomposition of the U(5) many-boson ground
state is given by

OIs &= (th'0-')"
I
0&

N!
1 (as +pd ) IO&.
N!

(3.9)

Is"&= ' (s')" IO&,&N!
With this result the many-boson transition matrix from
the ground state to an excited state can be written as

The normalization coefficient rIN„, (Ref. 11) is given by
d T

1/2
(2r+ 3)!I

(N nd —)!(r+nd +3 )!!(nd—r)!!INnd T

([N],nd, r, n&, JM
I
0

I [N], nd r=——n&
——J=M=O&

, ri~„,a ([r],rrn~, JM
I
(8 1) (P dt) d

I
0& .

ndI
(3.10)

(3.11)

After some algebra we find for the transition matrix

([N), nd, r, na, J M
I
~

I [N],nd r=na ————J=M =0& =&N r)N„~ "(P P) B,„IM(Po P2),

where the function B,„JM(po, p2) is given by

(3.12a)

,J,M(po p2}
([r] rzr, n, J,M

I
(P.d

(3.12b)

The functions 8 are given in Table I for the lowest values of v.
To illustrate the influence of the peripheral approximation we evaluate expression (3.10) for some special cases.
(a) Elastic scattering:

(0& I
0

I 0& & = ( [N], nd r=na =——J=M =0
I
0

I [N], nd r=na =——J=M =0 & =(cosh' ) (3.13)

Since to lowest order 4 does not contribute to the elastic scattering matrix element, the influence of the z =0 approxi-
mation is negligible.

(b) First L =2+ state:

(2+,M
I
0 I0,+&=([N]nd r=l, nz ——0 —J—=2M

I
0

I [N]nd r na————J——=M=0&=&N(cosh') ' sinhA, .

(3.14)

The result (3.14}shows that the matrix elements for M =0 and 2 are independent, whereas in the peripheral approxima-
tion the M =0 and 2 components of the matrix element are related by

( 2+ M =2
I
0

I 0,+ & = —Q —,
' ( 2i+, M =0

I
0

I
Oi+ & .

(c) Second L =2+ state:

(2z, M
I
0

I
0& & =([N],nd r=2, n&——O, J=2,M

I

——0
I [N], nd r=nz ——J=M=O&——

(3.15}

&N (N —1)a 2Q —,'PoPM (M =+2),
&N(N —1)a Q —,'(pO —2p2p 2) (M =0) . (3.16)

In this case the z =0 approximation is less adequate than above, since because of the second order character of the tran-
sitions, the corrections are now quadratic. In particular, we see that the absolute value of the M =0 transition element
can easily be larger than the one for M=2, in contrast to the peripheral approximation, where the relation (3.15) holds.

(d) First L =3+ state:

0, & =([N],nd r 3, n~ =O,——J =——2 M
I
~

I [N] nd =r=na =J=M=O&

N —3=&N(N —1)(N —2)a —(3pOpM 2pMp M). 5
~

M~2
. —

&30
(3.17)
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TABLE I. The function B,„J~(Po,P2) [see Eq. (3.12b)] for

the lowest values of ~.

B(Po P2)

1

Po

2Q 7pop2

V' —,', (3po+P2P 2)

V' ,'Pl-
0

V,() (3popz 2P2P —z)

IV. CROSS SECTIONS FOR LIMITING CASES

In order to illustrate the sensitivity of the nonperi-
pheral effects to details of the nuclear structure, we

present cross sections for proton scattering on nuclei in
two ISA limits: U(5) and SU(3).

As parameters we used the following: the nuclear den-

sity is parametrized by a Fermi distribution with radius
R=1.07A' (fm) and thickness a=0.68 fm. For the
structure functions in Eq. (3.6) we use a( r )

=A 2r(d /dr )po( r ) (the Tassie form) and P( r)
=A,zr (d Idr )po(r). They are normalized such that

a(r)r"dr=e~ (the boson effective charge) and

f dr r P(r) =x.
f dr r a(r)

This yields A,z
————,'A, 2+. Furthermore, Ek;„——800 MeV,

and for the elementary proton-nucleon cross section, we
took the isospin average of the Amdt data': o =41 mb,
P= —0.17.

(4.1)

Clearly, this element vanishes in the peripheral approxi-
mation, where P2

——~Po. The reason for this as well

as for the vanishing population of the M =0 substate in
the full calculation is that a symmetric L=3 state of
three identical phonons (d bosons) cannot be constructed
out of do bosons only. In the next section we will discuss
how the differences in the transition matrix elements due
to the z =0 approximation affect the cross section.

strates. The effect is larger for the M =0 substrate than
for the M=2 substate, since the correction to eo(b) is
larger than to s2(b). Also, the correction causes a shift in
the location of the minima and maxima of the cross sec-
tions to smaller values. This shift is larger for M =0 than
for M=2, and due to interference effects, this leads to
slightly deeper minima of the total cross sections.

The calculated cross sections for the excitation to the
second 2+ state, shown in Figs. 2 and 3, show that the
correction to the peripheral approximation is much
larger than for the 2&+ state. The reason is that now at
least two step processes have to take place, whereas the
excitation of the 2&+ state proceeds to a large extent via a
one step process. Furthermore, we note that the cross
sections are dominated by the M=O part, in contrast to
the situation in the z=O approximation. This can be ex-
plained by the fact that in the matrix element Eq. (3.16),
P2- —1.7Po (see Fig. 1) compared to P2 ———Q —,'Po for the
peripheral approximation.

Of special interest is the excitation of the first 3+ state,
shown in Fig. 4. In the peripheral approximation, the
cross section to states with odd L vanishes and therefore
its excitation strength is a direct measure of the impor-
tance of nonperipheral effects.

B. The SU(3) limit

To investigate this limit, we added a small symmetry
breaking term to the Hamiltonian of the pure SU(3) limit
to split the degeneracy of the second and third 2+ states.
We take g= ——,'&7, and A,2 such as to reproduce the
B(E2,0&+ —+2&+) in ' Sm. Although multistep contribu-
tions are larger than in the U(5) limit, the cross sections
for the first 2+ state (Fig. 5) are similar to the ones for the
U(5) limit. For the 2&+ and 2~+ states, there is not only an

10-3

U(5), 0' =3;

104

A. The U(5) limit

To illustrate the U(5) limit, we take 7=0, N= 8, and k2
in such a way as to reproduce 8 (E2,0~+ ~2~+ ) in ' Sm.

In Fig. 2 we plot for the first 2+ state the total
differential cross section as well as the contribution of the
angular momentum projections M& ——0 and M&

——2 sepa-
rately. Also drawn are the cross sections in the peri-
pheral approximation (Fig. 3). It is seen that the correc-
tion to the peripheral approximation leads to a reduction
of the cross sections for both the M=O and M=2 sub-

10
0.5 1.0 1.5 2.0

q(fm ")
2.5 3.0

FIG. 4. The differential cross section for the excitation of the
31+ state in the U(5) limit.
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overall reduction of the cross sections compared to the
z =0 approximation, but also a shift in the position of the
minima and maxima. Furthermore, it is found that the
2+ state is dominated by the M=2 contribution, in con-
trast to the 2&+ state in U(5). This is caused by the
(d d )' ' term in the quadrupole operator, which gives rise
to one-step contributions.

V. RESULTS FOR ' Gd

In this section we compare the calculated cross sec-
tions and data, ' for different 2+ states in ' Gd. The

I

1/2

eigenstates are calculated in program PHINT. ' The pa-
rameters used are %=7, c& ——0.35, ~= —0.44, 7= —1.3,
~'=0.002 [see Eqs. (3.1) and (3.2)). They were chosen in
such a way to reproduce the energies of the 2~+, 22+, 23+,

and 6&+ states.
The strength A,2 of the structure functions can be ob-

tained from the experimental B(E2) values of Gd. This
value should be multiplied with a hadronic factor, be-
cause hadronic probes also interact directly with neu-
trons. This factor is approximately equal to 2. The
quadrupole operator is given by

g~ (p) 47r
P

4m.

5

1/2

f"dr r [a(r)(s d+d s)„' '+P(r)(d d )„' ']

f dr r a(r) x[(s d+d s) +X(d d)]„'', (5.1)

where in the last step we used normalization condition
(4.1). The B(E2) for this quadrupole operator can be
calculated using program FBEM (Ref. 14) (parameter
X= —1.5). Normalization to experimental values yields
A, z

———0.022. Following the Amdt phase shift analysis'
for the experimental proton energy, Ek ——646 MeV, we
take 0 =39.8+ i(6.8) for the isospin average of the
proton-nucleon cross section. The other parameters used
have the same values as in Sec. IV.

The best fit for the GD data' for excitation to the 2g+,

state is obtained for A, 2
———0.02, which is about 10%%uo

lower in magnitude than the result of the B(E2) calcula-
tion.

As can be seen from Fig. 6, the agreement with the
data is good for the 2g+ state, and reasonable for the 2~+

state. A possible explanation for the discrepancies in the
2~+ cross section is that F-spin admixtures play a role in
the nonyrast states of ' Gd as suggested in Ref. 15. This
means that for these states the neutron and proton transi-
tion densities are not proportional as assumed in the
present work.

10'.

10

10'

10

10'

E 10

10'

&U (3): full calculation

OX.

VI. CONCLUSIONS

In this paper transition matrix elements and angular
distributions were calculated to all orders, using the
Glauber approximation. It was found that corrections to
the peripheral (or z=0) approximation can give rise to
large effects in the excitation of side bands, especially in
the angular momentum projections of the angular distri-
butions.

We compared our calculations with (p, p') data for the
2g+ and 2&+ states in ' Gd and obtained good results with
one and the same parameter set.
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d z), I s);
I
d ),

I
d

=I
I
even);

I
odd) J. First we note that in Eq. (3.5) the

@=+1terms are not present and therefore the d+, basis
states do not couple to the others; therefore, we can write
+=+,„,„X%'~d, where

'no n2

10

'92 '90

E2 E0 E2 0

92 90 92 ~0

even 0 (Ala)

10' ,'no —V—'', nz-
V 292 —2'Qo

(A lb)

C:

~~ 10-'

10'

We have absorbed a factor Q —', in all z) to simplify the
notation. For the 4X4 sector 4,„,„ the eigenvalue g0 is
readily found and the transformation

I diaz)~ —
I
dzkd z)

1

2

leads to a 3X3 matrix that can be diagonalized in closed
form. The solution of the eigenvalue equation

10o

10'

10

A3+az A, +a3 =0,
where

a, = —(sp'+2sz'+gp+2gz);

a 3
= —[4&p&plz+ (2~z ~p)'gp]

can be expressed in the form'

e (2/3)( k —1 )»'ip + ( —2/3)( k —( )»ip»'

(A2a)

(A2b)

10-' &

10 15
8 (deg)

I

20 25

FIG. 6. The calculated angular distributions for the excita-
tion of 2&+, 2~, and 2~ states in "Gd. The full calculation is
shown by the solid line, and the z=O approximation by the
dashed line. The data are taken from Ref. 13.
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(A3a)

where

I' = ——a3+i1

2

' 1/2 1/3
02 03
27 4

(A3b)

I
k & =(&z~k+e29p+ eo92) I

dz+d —2 &

+(&oh+2&v/z —Eogo) I do &+(~k go 2riz) I
s &,

Now also O,„,„=exp( —(p,„,„) is diagonal in the basis

I
k, 4), consisting of the eigenvectors of 'li,„,„,where (be-

fore normalization)

APPENDIX: REPRESENTATION MATRIX
FOR A SINGLE BOSON I4&= Id —d

(A4a)

(A4b)

In this appendix the matrix elements of the operator
e with (li from Eq. (3.5) are calculated. This will

The eigenvalues of O,„,„are exp( —A.k) and exp( —go),
respectively.
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