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The features of the (N,N') reaction are examined at intermediate energies, i.e., for 300—-800 MeV
incident nucleon energies, when the continuum nucleon and pion are observed in coincidence. In
comparison with the (N,7) reaction, which has been studied in considerable detail both theoretically
and experimentally, there are some advantages in analyzing the (N,N'7) reaction. Both reactions
can deliver large momentum transfer to the nucleus; however, the (N,N’m) reaction can also occur
for relatively small momentum transfer (e.g., ¢ =200 MeV/c). Thus this reaction can be studied in
regions where nuclear single-particle wave functions and transition densities are large and well
known. In this paper we consider one particular reaction: the exclusive (p,p'm*) reaction. For this
process we focus on the amplitudes which are dominated by a A(1232) resonance in intermediate
states. A nonrelativistic formalism for the reaction amplitudes is derived and examined in detail.
The theoretical cross sections are shown to be quite sensitive to the pion self-energy, and relatively
insensitive to the isobar self-energy in the medium. Furthermore, the calculations suggest that cer-
tain amplitudes may dominate the cross sections in different kinematic regions. The differences be-
tween relativistic and nonrelativistic approximations for the pion self-energy are examined. Because
of the exploratory nature of this investigation, simple forms are used for the bound-state wave func-
tions and transition densities, and the continuum particles are approximated by plane waves; the
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effects of distorted waves are estimated.

I. INTRODUCTION

For several years, the study of pion production in
nucleon-induced reactions has been the subject of both
theoretical and experimental interest. There is now a
considerable body of experimental data on pion produc-
tion, for both 7+ and 7~ reactions.! 3 It includes both
exclusive and inclusive spectra. From the theoretical and
experimental studies of these processes*~® some progress
in understanding has been achieved, though theoretical
investigations of (N,7) reactions have encountered
difficulties in reproducing the quantitative features of the
data.

A characteristic feature of the (p,7) reaction is that it
is a high momentum transfer process. The process thus
samples nuclear wave functions in a region where they
are small and not well known from other experiments.
This is a desirable feature if one is trying to identify the
high-momentum components of nuclear wave functions;
however, such reactions have the intrinsic difficulty that
more than one target nucleon may participate actively in
the reaction, and the resulting cross sections can be quite
sensitive to a number of different processes.

In contrast, in the (N,N’'w) reaction where both the
outgoing nucleon and pion are observed in coincidence,
the momentum transfer can be relatively small. For ex-
ample, for a proton incident energy of 450 MeV and out-
going proton energy greater than 100 MeV, for forward
outgoing nucleons, the momentum transfer to the nucleus
does not vary greatly: the minimum momentum transfer
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is between 200-250 MeV/c for incident protons between
400 and 700 MeV. Thus, this reaction can reach lower
momentum transfers than are possible with (p,7), while
for other kinetic configurations it can also probe very
high momentum transfers. It may be possible to fit the
(N,N’7) reaction in a regime where the momentum
transfer is small, and then extrapolate into a regime
where the theoretical situation is much less certain. Ex-
perimentally, the situation for the (N,N’w) reaction is
somewhat more complicated than for the (N,7) reaction,
as it requires observation of two energetic final particles
in coincidence; however, with current medium-energy
machines this should not be too difficult. For example, in
the Indiana University Cyclotron Facility (IUCF) cooler
now under construction, it would be possible to observe
the outgoing nucleon in coincidence with the pion.’

We assume that the (N,N’7) reaction proceeds through
a quasifree NN— NN amplitude, modified in the nu-
clear environment. Since the final nucleon is unbound,
this assumption about the reaction mechanism for
A (N,N'7)B should be more valid than for the (p,7) reac-
tion. Furthermore, in pp collisions at the National Labo-
ratory for High Energy Physics (KEK), Shimizu
et al.'®!!" showed that, for proton lab energies from
360-1300 MeV, the pp— NN process proceeds dom-
inantly through an intermediate real A isobar.!° There-
fore, we assume that the A (N,N’w)B reaction also
proceeds through a A in the intermediate state. This may
particularly be true for the (p,p’7 ™) reaction, as 80% of
the free pp—npm*t cross section has been found to
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proceed through pp—nA™** for proton incident energies
from 550 to 1300 MeV.!! This paper thus focuses on the
(p,p'mt) reaction, leading to exclusive final nuclear
states. It is assumed that such a process is dominated by
the production, propagation, and decay of a A isobar.

Previous theoretical calculations of (N,N’7) reactions
have been carried out for elastic (p,n7 ™) reactions on iso-
scalar closed-shell targets. The motivation for these stud-
ies was very different from ours. The aim of these earlier
calculations was to minimize the role of the isobar in or-
der to examine the dependence of theoretical calcula-
tions, on the form of the NN vertex, or on the nonrela-
tivistic (NR) reduction of the relativistic vertex. These
calculations were carried out in the ‘“one-nucleon-
mechanism” framework for pion production in nucleon-
induced reactions. Sherif et al.'? examined the depen-
dence of the cross sections for 4He(p,n1r+ Y*He on the
form of the nonrelativistic reduction of the NN7 vertex;
Greben and Woloshyn'® have compared results for the
same reaction using pseudoscalar (PS) or pseudovector
(PV) NN7 couplings, and they have compared various
nonrelativistic reductions with the relativistic results.
These authors find very large differences depending on
the type of vertex and the form of the nonrelativistic
reduction.

In our calculation, we have chosen a reaction which
should emphasize the role of the intermediate isobar, and
we work in the “two-nucleon” framework, where the
pion is created through the NN— NN reaction in the
nuclear medium. Our amplitudes are very similar in
principle with those of the isobar-hole model;'® such am-
plitudes have been widely used in pion-nucleus elastic and
inelastic reactions in this energy region. Therefore, it is
unlikely that the uncertainties in our amplitudes should
be nearly as large as those suggested in Refs. 12 and 13.
A recent relativistic distorted-wave impulse approxima-
tion (DWIA) calculation of the elastic (p,n7*) reaction
has been carried out on %0 by Cooper et al.;'* they use
relativistic distorted waves for the nucleons and pion, and
a PV NN~ vertex. These authors find roughly a factor of
2 difference between their results, using a PS or PV NN#
vertex.

In Sec. II the particular amplitudes for the (p,p'7m ™) re-
action are presented in detail. As the aim is to examine
the features of this reaction, we are interested in simple
estimates of the relative size of the various reaction am-
plitudes, and in order-of-magnitude estimates of medium
effects on intermediate mesons and isobars. Therefore,
the first calculations are done with simple forms for the
nuclear wave functions and transition densities, and with
very simple approximations for the nucleon and pion
wave functions. Due to these simplifying assumptions,
the results should be considered exploratory. These as-
sumptions will be removed in a subsequent calculation of
this process. With these approximations, all reaction am-
plitudes can either be calculated analytically, or they can
be written in terms of simple one-dimensional integrals.
The resulting amplitudes and integrals are listed in Ap-
pendix A.

In Sec. III, the results of the calculations are presented
and discussed. For the (p,p’m™) exclusive reaction, the
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initial results are sensitive to several of the amplitudes.
However, if the pion angle is fixed and the outgoing pro-
ton energy is varied, it appears possible to separate the
different amplitudes. In Secs. IIIB-D the medium
modifications to the cross sections are discussed. In Sec.
III B, we discuss medium effects on the virtual meson.
Such corrections lead to a considerable enhancement of
the theoretical cross sections. In addition, one amplitude
[the “projectile excitation” amplitude of Fig. 1(a)] tends
to dominate the calculated cross sections when medium
effects are included. Detailed equations for pion medium
corrections are presented in Appendix B. In Appendix
C, an alternative relativistic formalism is derived for the
pion medium corrections. Results are derived for this
case and compared with the NR results derived previous-
ly.

In Sec. III C, we discuss the dependence of the cross
sections on the modification of the A in the medium.
These modifications include the effects of the medium on
the position and width of the isobar, through Pauli block-
ing and a complex spreading potential. The estimates of
these quantities are based on quantitative calculations of
the scattering and propagation of isobars in medium-
energy reactions. It is shown that the medium effects on
the intermediate isobars are considerably smaller than
the medium effects estimated for the virtual mesons.

Section III concludes with a discussion of the effects of
proton and pion distortions on the theoretical cross sec-
tions. We expect the major effects to be absorptive. An
estimate is made for the absorption of the protons and
the pion. It is found that these effects result in a decrease
in the cross sections by a factor of 10-50, relative to the
plane-wave calculations. In Sec. IV, the conclusions and
further outlook for the (p,p’m*) reaction are presented.

II. QUALITATIVE FEATURES
OF THE (N,N'w) REACTION

The (p,p'm) reaction contains an outgoing proton, a
pion and the recoil nucleus in the final state. Conse-
quently, the final state of the system constitutes an intrin-
sic three-body problem. It therefore requires the treat-
ment of the interactions of the initial and final-state pro-
tons with the nucleus, the final pion with the nucleus, and
the mutual interaction between the final proton and pion.
For this process, incident proton kinetic energies T, from
300-800 MeV will be studied. At intermediate energies
the most important term, which dominates the 7*p in-
teraction, is the resonant interaction between the pion
and the nucleon, producing the A (1232).

This work will consider those processes which involve
explicit creation and propagation of the A, and its decay
to a nucleon and a pion. In a subsequent work, the con-
tribution of nonresonant amplitudes to this reaction will
be investigated. The effects of the nuclear medium on the
intermediate meson and isobar will be estimated. The
first results will be presented in a plane-wave (PW) ap-
proximation for the continuum protons and pion. For
most of the energies considered, the main effects of final-
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state interactions will be absorptive. In a later section we
estimate in an eikonal formalism the attenuation due to
absorption of the initial and final particles. This explora-
tory work will determine the order of magnitude of the
cross sections to be expected for this reaction, it will pro-
vide estimates of the medium effects on the meson and
isobar, and it will discuss how energy and angular spectra
can be used to gain information on the nuclear transition
densities and the reaction amplitudes, respectively.

The particular reaction amplitudes which are studied
in this paper are shown in Fig. 1. The incident proton is
denoted by its momentum k, the final proton by k’. The
wavy line preceding the formation of the A represents a
meson, e.g., 7, p or a heavy meson. Figures 1(b)-(d) are
obtained from Fig. 1(a) by interchanging either the initial
or final nucleons. The amplitudes shown in Fig. 1 are
just those which have been calculated for the (p,m) reac-
tion previously.s’7 However, there are several differences
between the two reactions. The first, as mentioned previ-
ously, is the momentum transfer to the nucleus. In the
(N,N'm) reaction, the lowest momentum transfer is about
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FIG. 1. Amplitudes considered for the (p,p'm*) reaction. (a)
“Projectile excitation” amplitude, incident proton with momen-
tum k interacts with target proton (wavy line), exciting proton
to a A** isobar, which then decays to proton with momentum
k' and 77; (b) “target excitation” amplitude, target proton is ex-
cited to isobar. This amplitude is identical to (a) except that
projectile and target protons in the initial state are inter-
changed; (c) projectile is excited to a A* isobar. This amplitude
is similar to (a) except that the final-state neutron and proton
are interchanged; (d) target nucleon is excited to a A™, which
decays to pion plus neutron. This amplitude is identical with (c)
if the projectile and target protons in the initial state are inter-
changed.
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1 fm~'. This is much smaller than the corresponding
value for the (N,7) reaction, and it is in a region where
the nuclear wave functions and transition densities are
large and are well known from other experiments.

We can see by inspection that the four amplitudes of
Fig. 1 have quite different behavior for the (N,N’7) reac-
tion. One way to see this is to examine the energy carried
by the virtual meson and by the isobar in the four ampli-
tudes of Fig. 1. In Fig. 1(a), the energy of the intermedi-
ate meson is given by the difference between the initial
and final binding energies. The present work focuses on
the excitation of low-lying nuclear states, for which this
energy is quite small, and can be approximated by zero.
The energy of the isobar in this amplitude is given by
T,+M,, where T, is the kinetic energy of the incident
nucleon. This is a large energy, and it is independent of
the kinematics of the final particles. In Fig. 1(b), the en-
ergy of the intermediate meson is T ,; the energy of the
isobar is Tp +M p the same as in Fig. 1(a).

In Fig. 1(c), the energy of the intermediate meson is
T, the kinetic energy of the final proton. The energy of
the isobar is E,+M,, where E, is the total energy of the
final pion. This energy is considerably smaller than the
energy of the isobar corresponding to the amplitudes of
Figs. 1(a) and (b); also, both the meson and isobar ener-
gies vary as we change the kinematics of the outgoing
proton and pion. In Fig. 1(d), the energy of the inter-
mediate meson is T,-T; the energy of the isobar is
E,,+Mp, the same as for Fig. 1(c).

In the four amplitudes of Fig. 1, there is a tremendous
variation in the energy of the virtual meson, from zero to
the incident kinetic energy. As a consequence, the behav-
ior of the four amplitudes could be quite different, and
this might be exploited to separate the various amplitudes
by varying the final-state kinematics. In the language of
Oset et al.,'%!" the amplitude of Fig. 1(a) represents the
“acoustic mode” for pions, i.e., the regime where the en-
ergy of the pion is roughly zero and the momentum is of
the order 1-3 fm~!. Of the remaining amplitudes, Fig.
1(b) represents the “isobar mode,” i.e., where the typical
intermediate pion carries much of the energy necessary to
excite the A(1232) resonance. Depending upon the final-
state kinematics, Figs. 1(c) and (d) may also be in this re-
gion. The different amplitudes thus allow us to explore
very different regions of the virtual meson propagator.
However, estimating the self-energy contributions re-
quires that one know the medium effects over a very wide
range of energy and momenta.

In this work the angle of the outgoing proton is fixed at
10° relative to the incident proton direction. The peak
cross sections are then found to occur for forward pions.
These pion angles correspond to the minimum possible
nuclear momentum transfer, about 200-250 MeV/c; this
is roughly independent of incident proton energy from
300-800 MeV. The most important amplitudes for the
(p,p’m™) reaction in this kinematic region are the ampli-
tudes of Figs. 1(a) and (d).

The various amplitudes can also be separated by spin
and isospin considerations. For example, most previous
theoretical calculations have been done for elastic scatter-
ing on a T=0 target. In this case, it is straightforward to



show that Figs. 1(a) and (b) give no contribution. We will
discuss this in more detail in Sec. IV.

A. Formalism

The relativistic interaction Lagrangian for the coupling
of a meson to a nucleon or a A(1232) isobar is given by

fre fa
‘Lint=i;\yNy Y 1r¥N, @+ m

(U {TW\3, ®+H.c.) .

T

(1)

For most of this paper, however, we will use the nonrela-
tivistic reduction of this Lagrangian, i.e.,

"CNR= fﬂ YNO"qTXN'¢+ ILYAS'QTXN'Q . (2)
mﬂ mﬂ'

In Eq. (1), Wy represent the nucleon Dirac four-
component spinors and W} represents the A spinor with
covariant index v. In Eq. (2), T and S are the isospin and

_spin transition matrices from J =1 to 2, analogous to 7
and o, respectively, and q is the pion momentum. In
these interactions, the coupling constants have the form
of a “bare” coupling times a form factor, f =f[F(q)]'/%,
where the form factor F(q) is assumed to be of monopole
form

2

2 2
A—m:

Al—w?+q?

In Eq. (3), the cutoff A is taken to be 1.2 GeV. We use
the same cutoff for both NN7 and NA#. This is similar
to, for example, the latest Bonn NN potential.!®* The
“bare” coupling constants are taken as f2 /47 =0.08 and
f3/4m=0.37. The AN~ coupling constant reproduces
the experimental A decay width (115 MeV) at reso-
nance.'®!® For the remainder of this paper, when f(q) is
used for a form factor, it includes the form factor F;
when written as f, it represents the “bare” coupling con-
stant.

The couplings outlined here are only those of a pion to
nucleons and isobars. We could also include couplings of
p mesons or other heavy mesons. However, for such con-
tributions the contributions of the direct and exchange
terms tend to cancel almost completely. This will be dis-
cussed in more detail in Sec. III C, where it will be shown
that short-ranged contributions are extremely important
in estimating pion self-energy contributions, but that the
direct couplings of p or other heavy mesons should be
quite small.

The amplitudes for the (p,p’m™*) reaction proceeding
via an intermediate A state give rise to four terms, shown
diagrammatically in Figs. 1(a)-(d). Note that diagrams
of the form of Fig. 1(a) are included, but the “crossed” di-
agrams, of the type shown in Fig. 2, are not considered.
The crossed diagrams should be considerably smaller
than the “direct” diagrams; estimates of the size of the
crossed diagrams in (p,7) reactions suggests that they are
of the order of 10% or smaller relative to the direct dia-
grams.?’ In addition, the isospin coupling coefficients for
the (p,p’m™) reaction suppress the contribution of Fig. 2
by a factor of 3 relative to the contribution from Fig. 1(a).

F(q)= (3)
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FIG. 2. The analog of Fig. 1(a) if the pion is emitted at the
first isobar vertex. In this “crossed’ graph the intermediate iso-
bar is a A,

As will be shown later, the amplitude of Fig. 1(a) gives
the dominant contribution to the calculated cross sec-
tions; therefore, terms such as those in Fig. 2 have been
neglected in this work.

The amplitude of Fig. 1(a) corresponds to emission of a
virtual meson from a target nucleon, excitation of the in-
cident proton to a A(1232), with subsequent decay to a
continuum proton and pion; thus, we refer to this ampli-
tude as the “projectile excitation” term. For “amplitude
A” [referring to the diagram of Fig. 1(a)], the expression
has the form

_ i (k'|S"k,S-q, k)
T, =V2p5(a,) "5 Flg ) ——5 5 :
mz D\(q4,0%)D (g 4,0 4)

4)
where
q,=k,+k'—k, o, =€,—¢=0
Q4 =k, +k', o=E'+E, .

The subscript A refers to the amplitude in question.

In Eq. 4), D, represents the propagator for the inter-
mediate A, and D, is the propagator for the meson ex-
changed between the projectile and target nucleons (for
the time being, we will take this as a pion). The incident
and final proton states are denoted by k and k’, and the
initial bound proton and final bound neutron are denoted
by i and f, respectively. As mentioned in the last section,
the fourth component of the virtual meson momentum,
w 4, is given by the difference in binding energy of the ini-
tial proton and the final neutron. In comparison with the
three-momentum ¢ 4, 4, can be set to zero.

The spin-isospin transition matrix p°” in Eq. (4) is
given by

p?,-’(q)=<f’ o a7 |z> , ©

where the initial and final nuclear states are denoted by i
and f, respectively, and the sum is over all target nu-
cleons. For this paper we will consider cases where the
final state is a single neutron particle-proton hole state
relative to the initial state, and we assume that the core is
inert, in which case Eq. (6) can be written

pi(Q)=(¢, lo-q|d,;) . @)

In Eq. (7), only a single “active” nucleon contributes to
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the transition density.

In this paper, the aim is to explore the general features
of the (p,p’m ") reaction. Therefore, we have used simple
Gaussian forms for the single-particle transition densities
and wave functions,

4 3/4

$(p)= | -5 | exp(—p2/2p}), (8)
Po

p(p)=exp(—p?/4p}) . 9)

The model wave functions thus depend upon a single
momentum scale, p,. This parameter has been fixed by
requiring that it reproduce the same mean squared
single-particle momentum seen in electron scattering
data. In terms of the Fermi momentum, p, then obeys
the relation

pi=2(p?) =1k . (10)

These nuclear wave functions are oversimplified and
lack the dependence on orbital and spin degrees of free-
dom. They reproduce single-particle momentum distri-
butions for the nucleus as a whole, rather than being typi-
cal of a particular shell. Also, they fall off too fast for
large momentum. Therefore, our resulting cross sections
will decrease too rapidly away from the peak cross sec-
tions. These wave functions are also structureless; they
have no minima, for example. As a result, effects due to
minima in the nuclear wave functions will not be present
in our calculations. However, we have deliberately
chosen featureless wave functions for this initial survey,
as it is well known that PW approximations can overesti-
mate the effects of structure (and, particularly minima) in
single-particle wave functions: for example, a PW ap-
proximation involving a bound-state wave function with
a zero will frequently produce a deep minimum in a cross
section, whereas the minimum may be completely “filled
in” when distortions are included.

The effects of distortions will be estimated in Sec.
IIID. For the protons, distortion effects should mainly
involve absorption; this will be the case except when the
outgoing proton kinetic energy is very small, in which
case dispersive effects should become important. Overall
effects of proton distortions should be reasonably small.
For example, Cooper et al.!* calculate such effects and
find that the proton and (in their case) neutron distortions
each produce roughly a factor of 2 decrease in the cross
sections. For the pion, the effects of final-state interac-
tions will be more drastic. Again, the pion-nucleus dis-
tortion effects will be primarily absorptive, and mainly
due to “nucleon knock-out” by the final pion, and “real
absorption” of the pion. These distortion effects should
have two qualitative effects on the calculated cross sec-
tions: first, they should produce a rather large decrease
in the cross sections. By comparing plane-wave and
distorted-wave calculations of (p,7) reactions, the final-
state interactions will be seen to decrease our cross sec-
tions by about an order of magnitude relative to the PW
results. Secondly, the strong absorption of the outgoing
pion will make these reactions surface peaked: the pion
is preferentially produced at the surface of the nucleus
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(otherwise, it gets absorbed on the way out), where the
nuclear density is only a fraction of the central density.
Detailed estimates of these effects will be presented in
Sec. ITII D.

The pion and A propagators are given by

D (q0)=[0*—q*—m?’ —Tl(q,0)+i€e]"", (11)

for the pion, where II is the self-energy of the pion with
momentum q and energy o; similarly, the A propagator is
given by

D,(qo)=[o—Ty—M,—V,(q,0)+iT/2+ie]™",
(12)

where V represents the real part of the nuclear potential
for a A with energy @ and momentum g, T, is the kinetic
energy and I' the width of the isobar. In this form the
(nonlocal) isobar-nucleus interaction has been approxi-
mated by a local effective potential.

The second amplitude considered in this model corre-
sponds to emission of a meson by the projectile proton, as
shown in Fig. 1(b). This meson excites a target nucleon
to a A, which then decays to the final continuum proton
and pion. We refer to this amplitude as the “target exci-
tation” term (or “amplitude B”’). This amplitude has the
form

~f SR ¢ dq F(@¢}(k—q), (K +k,—q)
Tp=V2— f 3 A_A
m (2m) D,(g5,05)D ,(q,0p)
x{f |o-q|k){k'|STk,S-q|i),
(13)
where
wB=Tp+eszp,
a =k +k,=a4 , 14

03=E'+E, =0 .

This amplitude is proportional to the product of two
single-particle wave functions, integrated over the
momentum q. As this term is nonlocal, it cannot be writ-
ten in terms of a local spin-isospin transition density, but
it requires a nonlocal density matrix. In this term, we
have neglected the contribution of the single-particle
binding energy to the energy wjy carried by the virtual
meson. The ‘“‘target excitation” amplitude is obtained
from the “projectile excitation” term by interchanging
the projectile and target nucleon lines in Fig. 1(a). All of
the additional terms in our amplitude are obtained from
the amplitude of Fig. 1(a) by interchanging either the ini-
tial or final-state nucleon lines.

The third amplitude, given in Fig. 1(c), is obtained
from “amplitude 4” by exchanging the continuum and
bound nucleon lines in the final state. We refer to this
term as “amplitude C;” it has the form
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dq F(@phk—k,~q)¢,(k'—q)
(27  D,(gé,02)D (q0c)

V2 [f}
Te=——3~ 3Af

3 m
x(k'|a-q|i){f|S"k,S-q|k),

(15)
where
wc=—€—Ty=-T,,
qé=k,, (16)
wézE,T+Mp .

In Eq. (15), several approximations in kinematics have
been made. Small bound-state energies and momenta
have been dropped in Eq. (16). This simplification allows
us to take the isobar propagator outside the integral over
q. Like amplitude B, this amplitude is also proportional
to a transition density matrix operator.

The final amplitude is obtained by exchanging the
bound and continuum nucleon lines in the final state of
the “target excitation” amplitude. This term is shown in
Fig. 1(d). We refer to this term as “amplitude D,” and it
has the form

V32 _ fofA
TD=_3—Pfi(qA)—_;r;§_
(k'|o-qp | k)
X F(qp) ) (17)
92 Da(aB,03)D (ap,0p)
where
ap=k'-k,
wp=Ty—T, ,
O~k (18)
D~ Bg >
w%zE,T+Mp .

In Eq. (18), the same approximations were made, as in
Eq. (16). This amplitude, like the “projectile excitation”
amplitude, is proportional to a nuclear transition density;
the transition density p;(q) which appears in Eq. (17) is a
combination of spin-isospin and isospin densities

ﬁfi<q)=%kﬂ-q<f| ?Tf ")
_§<k,,><q>-<f|20ﬂf |1> : 19
J

In general, the transition densities and transition density
matrix operators will have considerable dependence upon
the spin and angular momentum of the active nucleons.
With the simple forms which were chosen for the nuclear
wave functions, this sensitivity and selectivity has been
lost, so that we may gain a qualitative understanding of
these matrix elements. The spin and orbital dependence
of this reaction will be explored in a subsequent work.

The c.m. differential cross section is given in terms of
the above amplitudes as
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do 100 k'K, E'E
dQ'dQ.dE'  2(27)’ k(1+E/E,)

In Eq. (20), the units are ub/sr’/MeV, and | T | * is ob-
tained by squaring the sum of the amplitudes of Egs. (4),
(13), (15), and (17), averaging over initial spins and sum-
ming over final spins. With our approximations for the
momentum dependence of the A propagator, and with
the simple Gaussian wave functions and transition densi-
ties which we have employed, then the PW cross sections
can be reduced to a sum of terms requiring no more than
a single integral. The form of the final equations, and the
expressions which were integrated, are listed for com-
pleteness in Appendix A.

| Ty 2. (20

III. RESULTS AND DISCUSSION

A. General features of reaction amplitudes

We have calculated the cross sections in coplanar
geometry; i.e., where the incident and outgoing particles
all lie in a plane in the c.m. system. As the spin depen-
dence of this interaction is not investigated, there is little
additional information obtained by going out of plane. In
the calculated cross sections, the c.m. angle between the
incident and outgoing protons is kept fixed at — 10° rela-
tive to the incident direction. The geometry chosen for
this paper is shown schematically in Fig. 3, where the in-
cident and scattered proton directions are shown in the
c.m. system. Looking down on the reaction plane, angles
are defined as negative if they occur to the right of the in-
cident beam direction, and positive if they occur to the
left of the incident proton direction. Thus a negative
pion angle means that the pion and proton come out on
the same side, and a positive pion angle means that the
pion and proton come out on opposite sides in the reac-
tion plane. The kinematics are appropriate for a target
with mass 4=16.

In Fig. 4 the differential cross section is shown for

A, .
P" outgoing

' proton

l-l Oo/

8 <0°

m

o
v
o
~
~

[}
— — g ————-

©

incident
proton

FIG. 3. Geometry for reaction cross sections. Calculations
are done in coplanar geometry. Angles are defined as negative if
they are to the right of the incident direction, and positive if
they are to the left. The outgoing proton direction is fixed at a
c.m. angle of — 10° in this notation.



1570 B. K. JAIN, J. T. LONDERGAN, AND G. E. WALKER 37
450 MeV =0 —:?0' — .?. — 15[01 ——loo
7, 10.0} (a) 350 MeV
(pb/sr/Mev) 5.0 ——— (60 MeV) |
o I /%7 NN ]
w Lo 7 """" AN N\ ]
k 05y /. N 1
. / o ‘e § \‘_
y A B SR B
2 450 Mev ]
101 (b) (100 MeV) A

FIG. 4. Cross section for the reaction (p,p’r™) leading to a
neutron particle-proton hole relative to an inert core. The cross
section, in ub/sr’/MeV, for proton incident kinetic energy 450
MeV vs pion c.m. angle in degrees, and outgoing proton kinetic
energy in MeV. No self-energy effects are included for either
the intermediate pion or isobar, and cross sections are calculat-
ed using plane waves for the continuum protons and the pion.

(p,p'r™) for incident proton kinetic energy 450 MeV.
The three-dimensional plot shows the cross section as a
function of the kinetic energy of the outgoing proton, and
the c.m. scattering angle of the pion. The cross section
has been calculated in the plane-wave (PW) approxima-
tion, using free propagators for both the intermediate
pion and isobar. It can be seen that there is a broad peak
in the calculated cross section, corresponding to
6,~ +10— +20°. The magnitude of the peak cross sec-
tion varies slowly as the proton kinetic energy changes.
The cross section falls off monotonically as the pion angle
is varied away from the peak.

In Fig. 5, the cross sections are shown as a function of
the outgoing pion angle, for fixed outgoing proton kinetic
energy. Figure 5(a) shows the cross section for an in-
cident energy of 350 MeV and outgoing energy 60 MeV,
Fig. 5(b) is for incident energy 450 MeV and outgoing en-
ergy 100 MeV, and Fig. 5(c) is for incident energy 800
MeV and outgoing energy 200 MeV. For each incident
energy, the outgoing proton energies are chosen to corre-
spond to the overall peak in the cross section.

The solid curve gives the full cross section; the other
curves show the cross section for each amplitude sepa-
rately. While the contribution from amplitude “C” is
smaller than the others, the remaining amplitudes con-
tribute about equally to the cross section. The cross sec-
tion has a broad peak for a small positive value of 6, cor-
responding to the minimum momentum transfer available
in the reaction, and the cross section decreases monotoni-
cally as the angle is varied with respect to the maximum.
The width and shape of the cross section peak are deter-
mined by the nuclear wave functions and transition densi-
ties. The maximum cross section increases somewhat as
the proton energy increases. At 350 MeV, the peak cross
section is about 10 pb/srz/MeV, whereas at 800 MeV,
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FIG. 5. Differential cross sections, in ub/sr>/MeV, vs c.m.
angle for the outgoing pion. (a) Incident proton energy 350
MeV, and outgoing proton energy 60 MeV; (b) incident energy
450 MeV and outgoing energy 100 MeV; (c) incident energy 800
MeV and outgoing energy 200 MeV. Solid curve, full
differential cross section; dashed curve, result using only ampli-
tude A of Fig. 1; dot-dot-dashed curve, result using amplitude
B; dotted curve, result using only amplitude C; dot-dashed
curve, result using only amplitude D of Fig. 1. Results are
shown in PW approximation with no self-energy effects includ-
ed.

the peak cross section is roughly 60 ub/sr’/MeV.

Figure 6 shows the outgoing proton energy spectrum
for fixed pion angle of + 10°, and incident proton ener-
gies 350, 450, and 800 MeV. We find that, as a function
of T, the energy distributions for amplitudes 4 and B
differ from those of C and D; compared to C and D, the
former pair peaks at a considerably smaller value of Tp-,
and the separation between peaks increases with incident
energy T,. This feature helps to separate contributions
from two classes of diagrams.

Figure 6 is plotted for a pion angle very near the peak
of the cross sections; for such an angle, the nuclear
momentum transfer does not change very much as the
outgoing proton energy is varied. As a result, the nuclear
transition densities are relatively constant, hence the
quantity which varies most rapidly with outgoing proton
energy is the A propagator. For amplitudes C and D, the
A propagator has the form

1
T 8M +Ty—(T,—Ty)+il /2’

where SM =M, —My. The maximum in this term
occurs when the real part of the denominator has a
minimum, i.e., for T, = Tp —8M. In Fig. 6, amplitudes C
and D peak at this value of Tp,. For the terms A4 and B,
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FIG. 6. Differential cross sections vs outgoing proton kinetic
energy, with c.m. pion angle fixed at + 10°. (a) Incident proton
kinetic energy 350 MeV; (b) incident energy 450 MeV; (c) in-
cident energy 800 MeV. All other conditions are the same as
for Fig. S.

the A propagator is

1
T 8M (K +k,)2/2My—T,+iT/2

D, (22)

Again, the maximum in this term occurs when the real
part of the denominator is smallest. In contrast to Eq.
(21), this occurs at a smaller value of Tp.. For proton in-
cident energies of 350, 450, and 800 MeV, the real part of
Eq. (22) has a minimum at T, =40, 50, and 100 MeV, re-
spectively. From Fig. 5, this is just where amplitudes A4
and B reach their maximum values. This analysis also
explains the increased separation in the two peaks as the
incident energy increases.

The two ways we have chosen to view the cross sec-
tions give us quite different information about the reac-
tion. Fixing the outgoing kinetic energy and varying the
pion angle gives direct information regarding the shape
of the nuclear transition densities. On the other hand, if
the pion angle is fixed around the maximum of the cross
sections, the resulting proton energy spectrum allows a
separation of the cross section into different reaction am-
plitudes.

B. Medium effects on the pion

In the previous section, the (p,p’m*) cross sections
were calculated using free meson and isobar propagators.
In this section, we calculate the effects arising from
modification of the pion propagation due to the nuclear
medium. We will estimate the effects of particle-hole and
A-hole excitations produced by a propagating pion.
These contributions to first order are shown in Fig. 7(a)
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FIG. 7. Contributions to meson self-energy. (a) Direct and
exchange particle-hole contributions to self-energy; (b) direct
and exchange isobar-hole contributions to self-energy; (c) renor-
malization of direct particle-hole self-energy by including
short-ranged repulsion in particle-hole interaction. Short-
ranged term is shown as the shaded line, and is summed to all
orders in the “ring approximation.”

(the particle-hole contribution) and Fig. 7(b) (the A-hole
contribution). The full meson propagator is then given
by

Golg,0)
G(g,0)= o ’ (23)
1-Gylq,0)IT"(q,0)
where the free propagator G, has the form
Go(q,co)=(c02—q2—m2+i17)_1 . (24)

In Eq. (23), I is the self-energy of the pion. For a real
pion II° is related to the optical potential through
°=20V,,.

To calculate the self-energies, we approximate the nu-
clear density distribution by a Fermi gas, for which the
expressions are well known.!>"?%25 They are summarized
in Appendix B. The self-energy from the particle-hole
amplitudes of Fig. 7(a) is given in Eq. (B3), while Eq. (B7)
gives the contribution from the isobar-hole amplitudes of
Fig. 7(b). The Fermi momentum has been chosen as
krp=210 MeV/c, and the nucleon effective mass is taken
as M*=0.7My. Inserting the self-energies I1° into the
propagator of Eq. (23) sums the ring diagrams for pion
propagation in the nuclear medium.

Figure 8 shows a three-dimensional view of the cross
section versus the outgoing proton kinetic energy and the
pion angle. This can be compared with Fig. 4, in which
the pion self-energy is not included. The “spikes” in Fig.
8 represent poles in the cross section. The self-energy
effects are so large that they produce zeroes in the
denominator of the pion propagator at certain momen-
tum transfers; in PW approximation, this produces a pole
in the cross section.

In general, the self-energies I1%g,w) are complex.
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FIG. 8. Differential cross section for incident proton kinetic
energy 450 MeV. Conditions are the same as for Fig. 4, except
that the intermediate pion self-energy is included, with Migdal
parameter g’=0. In PW approximation, the spikes in this dia-
gram correspond to poles in the differential cross section.

However, for w=0, as is the case for amplitude A4, the
self-energy is real, as can be seen from Eq. (B6). As a re-
sult, the self-energy can produce a pole in the pion propa-
gator for amplitude A, while for all other amplitudes it
produces both a real and an imaginary part. In Fig. 9(a),
the cross section at 450 MeV is plotted for pion c.m. an-
gle + 10°. The cross section from each amplitude is plot-
ted separately; it is clear that the pole arises from ampli-
tude A4, which completely dominates the contribution
from all other amplitudes.

While the self-energy effects will give a considerable in-
crease in the calculated cross sections, the poles in ampli-
tude A4 are unphysical. These poles are just the “pion
condensate” seen in early calculations of the pion polar-
ization potential in nuclei.'®17?¢ As is well known, this
condensate occurs because the particle-hole and isobar-
hole interactions in this approximation are strongly at-
tractive at short distances. In reality, we should also in-
clude the strong short-ranged repulsion which arises from
exchange of heavier mesons and other many-body effects;
when this is done, the spurious poles in the full Green
function disappear. The distortion of the continuum par-
ticles, which has been neglected here, would also “soften”
the poles which appear in the PW limit.

In order to estimate the effects of the short-ranged
repulsion, we introduce the Migdal parameters, which
are supposed to mock up the complicated density-
dependent effective interaction between particles and
holes in the nuclear medium. The additional short-range
piece has the form

2 f2
’ A ’
Won = m'g 8§010,7'T+ ml g S{'SZTI'Tz
m m

fafa
+.m—2AgNA[Sl.02TI.T2+H‘C'] . (25)
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FIG. 9. Differential cross section vs outgoing proton kinetic
energy, with pion c.m. angle fixed at + 10°. (a) Incident proton
kinetic energy 450 MeV and Migdal parameter g'=0; (b) in-
cident energy 450 MeV and g’'=0.7; (c) incident energy 800
MeV and g'=0.7. Description of the curves is the same as in
Fig. 5.

When all rings with short-ranged correlations in inter-
mediate states are summed, as shown diagrammatically
in Fig. 7(c), the self-energies are renormalized. If the
self-energies are written in terms of the “susceptibilities”
as

HNE_qZXN ’
(26)
HAE —QZXA s
then the susceptibilities get renormalized to
1+XA(gna—8")
Xn— , A. - T2 Xn(g,®) ,
(14g XA)(1+g XN)—(gNA) XnX a
27
1+Xn(gna —8")
XA NoNA XA(q,co) .

=
(148'X3)(1+g"Xn) —(gna XX a

For our calculations, we have chosen gy, =g’, in which
case the renormalization equations become

Yol ) XN(q,CO)
y)—> ————(———— ,
N'¢ 148" (Xn+Xa)
(28)
Xalg, @)
XA(q,a))—> ah®

148" (Xn+Xa)

Most estimates of these quantities give a Migdal parame-
ter between 0.5<g’'<1 for the 7NN coupling. For the
7NA case, there is much less certainty;16 for example,
Arima et al.?’ obtain a value gy, ~0.3, which value is



also preferred in an analysis of the 6Li(p,A++ )®He reac-
tion by Jain.?® However, gna =g’ is a common choice,
given the uncertainty in this quantity.

Figure 9 shows the effects of the short-range repulsion
in the particle-hole and isobar-hole terms. The cross sec-
tions are plotted for pion angle + 10°, versus the outgo-
ing proton kinetic energy. Figures 9(a) and (b) show the
cross section for incident energy 450 MeV and Migdal
parameters g'=0 and g'=0.7, respectively. For g'=0.7,
it is clear that the pole in the cross section which dom-
inates Fig. 9(a) has completely disappeared. However, in-
clusion of the renormalized self-energy increases ampli-
tude A relative to the other amplitudes, and it also in-
creases the overall cross sections relative to the calcula-
tion without the pion self-energy. In our calculation, the
self-energy I1%gq,w) is enhanced considerably in the re-
gion w=0, and for g=1-3 fm~'; thus inclusion of the
self-energy produces a much larger effect on amplitude A
than on any other amplitude.

From Fig. 9(b), for low values of the outgoing kinetic
energy T, <150 MeV, the contribution from amplitude
A (the dashed curve in Fig. 9) dominates the cross sec-
tions. Figure 9(c) shows the cross sections for incident
energy 800 MeV and g’ =0.7; for outgoing kinetic energy
T,» <350 MeV, the cross sections are dominated by am-
plitude A; above this energy, the amplitudes are dominat-
ed by amplitude D (the dot-dashed curve).

Figure 10 shows the effects of the renormalized pion
self-energy on the proton energy spectrum. Figure 10(a)
shows the energy spectrum for proton incident energy
450 MeV and pion angle + 10°. The dot-dashed curve is
the result with no self-energy, the dashed and solid curves
are the results with Migdal parameters g'=0.7 and
g'=0.5, respectively. In Fig. 10(b) the same results are
shown for proton incident energy 800 MeV. First, the
cross section is enhanced by a large amount relative to
the case with no self-energy; there is an increase of a fac-
tor of five at 450 MeV and about eight at 800 MeV (for
proton kinetic energy below 400 MeV). Second, the self-
energy effect primarily enhances the “projectile excita-
tion” amplitude: for large outgoing proton kinetic ener-
gy, where the contribution from Fig. 1(d) is important,
the self-energy produces only a slight increase in the
cross section; this is especially noticeable for the 800
MeV results. The two curves in Fig. 9 corresponding to
different values of g’ differ by about 60% at the peak
cross sections, and they differ by about 20% at the
highest values of T ;. This gives a measure of the varia-
tion in the cross-sections arising from the uncertainty in
the precise value for g’.

The present calculation is a nonrelativistic treatment of
the (p,p'7m ™) reaction. For one aspect of this model—the
pion self-energy—a direct comparison could be made be-
tween relativistic and NR calculations. Dmitriev and
Suzuki®® have carried out a relativistic calculation of the
pion self-energy. In Appendix C, this calculation is re-
viewed and compared with the NR result. As can be seen
from Fig. 14 in Appendix C, there are no substantial
differences between the relativistic and nonrelativistic
treatments of the pion self-energy, for a proton incident
energy of 450 MeV.
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FIG. 10. Dependence of the cross sections on the pion self-
energy, and on the choice of the Migdal paranieter. Dot-dashed
curve, self-energy zero; solid curve, g'=0.5; dashed curve,
g'=0.7. Cross sections vs outgoing proton energy for pion an-
gle + 10°. (a) Incident energy 450 MeV; (b) incident energy 800
MeV.

The zero-ranged “contact term” of Eq. (25) mocked up
the short-ranged repulsion in the particle-hole interac-
tion; this term produced a significant effect on the pion
self-energy. This term could also be included directly at
the isobar-production vertex; i.e., in addition to the one-
meson-exchange amplitude of Fig. 1(a) we could also in-
clude a contact term of the form

Sfaf
Hzp=""""gna(80, T my+Hoc.) . 29)
mTf

Such a term is shown schematically in Fig. 11(a), where
the circle labeled g’ represents the zero-ranged force of
Eq. (29). It is straightforward to show that, due to the
antisymmetrization between continuum and bound nu-
cleons, addition of such a term would have no effect upon
our calculated cross sections. The reason for this is
straightforward. Indistinguishability between nucleons

FIG. 11. Contribution of short-ranged force in the NN—NA
interaction, for the (p,p’m™) reaction. (a) This amplitude corre-
sponds to the term in Fig. 1(a); (b) this term corresponds to the
term in Fig. 1(b). For a zero-ranged force such as the Migdal
interaction, these two terms cancel completely.
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requires that, in addition to the zero-ranged term of Fig.
11(a), we should also include an exchange term, shown
schematically in Fig. 11(b). For zero-ranged interactions,
the two terms of Fig. 11 give equal and opposite contri-
butions and thus cancel completely. The zero-range
terms corresponding to Figs. 1(c) and (d) also cancel com-
pletely.

Alons et al.,” and Igbal and Walker,> have found a
similar result for (p,7) reactions. They find that includ-
ing a zero-ranged term (which gives a four-point function
for the NN—NA amplitude) gives no contribution to
their overall reaction amplitudes. They also find that in-
cluding a p meson instead of a pion gives a very small
contribution. For the p there is a large, but not complete,
cancellation between direct and exchange terms. Similar
results have been found by Santra and Jain for the
(p,A**) reaction.’® We also expect a large cancellation
between terms if the p-meson contribution were included
in our amplitudes. For this reason, contributions from p
mesons or other heavy mesons have not been included in
our calculation.

C. Medium effects on the A

In the previous section, nuclear medium effects were
found to produce a significant change in the pion propa-
gator. It is likely that isobar propagation will also be al-
tered considerably by the nuclear medium. There have
been many estimates of nuclear effects on intermediate
isobars. The most prominent of these has been the
isobar-hole approach,'> which has been applied extensive-
ly to production and propagation of isobars in pion elas-
tic and inelastic scattering, and pion-induced total cross
sections. In addition, several groups have calculated nu-
clear effects on intermediate isobars in (p,7) reactions and
other processes.” 3! The estimates presented in this pa-
per are considerably less rigorous, as we wish to get only
a rough idea of the size of the effects in the (p,p’7 ™) reac-
tion. The qualitative results from more detailed calcula-
tions will be used to estimate the isobar medium effects.

The qualitative modifications of the A are expected to
be of two types: first, we expect a shift in the position of
the A peak. Second, we expect a modification of the iso-
bar width in the medium. Changes in the isobar width
arises from two competing mechanisms. First, Pauli
effects in intermediate transitions inhibit the process
A—N + 7 as some of the nucleon states are occupied;
this is shown schematically in Fig. 12(a). Such effects
tend to decrease the isobar width in the medium relative
to the free width I'j=116 MeV. The other contribution
to the width arises from nuclear interactions of the iso-
bar; a typical transition is shown to first order in Fig.
12(b). Such “spreading” transitions'> produce both a
shift in the position of the A peak, and a change in the
isobar width in the medium. In the vicinity of the isobar
resonance, a reasonable local estimate for the real ?art of
the “spreading potential” is a 35-MeV attraction.’? The
imaginary part of the spreading potential tends to in-
crease the width of the isobar, at least in the vicinity of
the isobar resonance. The two effects on the width differ
somewhat, as the Pauli effect goes roughly as the nuclear
density and the “spreading” effects go crudely as the
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FIG. 12. Contributions to the isobar self-energy, and to the
distortions in pion final-state interactions. (a) Pauli-blocked
terms in isobar-nucleus interactions. The index ““j ”” means that
the particular nucleon state is already filled. (b) One contribu-
tion to the isobar spreading width: virtual transitions into
high-lying nucleon-only states. In this figure, circles refer to
bound nuclear states, and rectangles denote either bound or
continuum states. (c) One contribution to absorption from
scattering of final-state pion. Pion produces an isobar on a tar-
get nucleon, and then a transition occurs to nucleonic inter-
mediate states. Note that the intermediate state in (c) is identi-
cal to the state produced in (b). (d) Contributions of final-state
pion scattering in the “¢p” approximation. Intermediate states
contribute through both elastic scattering and single-nucleon
knockout.

square of the density; nevertheless, there is considerable
cancellation between the two effects.

For the Pauli effects, a distinction has been made be-
tween the amplitudes 4 and B, and the amplitudes C and
D. In the former case, the isobar carries considerably
more energy (the sum of the final proton and pion total
energies) than in the latter case, when the isobar carries
the pion energy and proton rest mass. Changes in the
isobar width in the medium have been parametrized by
replacing the free width in the isobar denominator by

where P represents the suppression of isobar decays in
the medium due to Pauli effects, and I" ; gives the “ab-
sorption width” due to isobar-nucleus collisions. The
Pauli suppression should be considerably larger for am-
plitudes C and D, relative to amplitudes 4 and B. We
have chosen P=1 for amplitudes 4 and B (i.e., Pauli
effects are neglected for these two amplitudes), and
P=0.7 for amplitudes C and D.

The absorption width has been calculated through the
spreading width I' , =gT'g, where the spreading width is
chosen as I'y=70 MeV. This value is somewhat higher



than the values deduced from pionic atoms,** and slightly
lower than the spreading width deduced from pion
scattering.!® The factor g is added to account for the fact
that in our calculations the isobar is produced preferen-
tially near the nuclear surface. This factor represents the
fraction of the central nuclear density, in the region
where the isobar is formed. We have chosen g=0.7 for
our calculations.

Figure 13 shows the results obtained when the isobar
propagator is modified. The curves correspond to a pro-
ton incident energy of 450 MeV. The pion self-energy
has been included with Migdal parameter g'=0.7. The
solid curve corresponds to Pauli effects only, i.e., both the
real and imaginary spreading potential zero. The dashed
curve includes in addition a real spreading potential of
—35 MeV, and the dot-dashed curve includes a further
absorption width gT'¢=49 MeV. Relative to the case
with Pauli effects only, inclusion of the real spreading po-
tential produces roughly a factor of two increase in the
cross section, while including the spreading width results
in a decrease of approximately 60% in the cross section.
These effects are smaller than the estimated pion self-
energy corrections, and the net result from both Pauli
corrections and the spreading potential is less than a fac-
tor of two change in the overall cross sections. These are
qualitative estimates of the size and energy dependence of
the isobar effects, which could be expected from a more
quantitative calculation of the propagation of a A in the
nuclear environment. Nevertheless, it is clear that the
net result of all isobar medium effects is only a small
change, and much smaller than the medium polarization
effects which have been estimated for the intermediate
pion.

D. Final-state interaction effects

Thus far we have calculated the (p,p’m) cross sections
in a plane-wave approximation, which neglects the
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FIG. 13. Effects of isobar self-energy on cross sections. In-
cident energy 450 MeV and pion angle + 10° vs outgoing pro-
ton energy. Pion self-energy is included with g’=0.7. Solid
curve, ¥, =0 and gI'; =0 (i.e., only Pauli blocking is included
for the A); dashed curve, V,=—35 MeV and gI';=0; dot-
dashed curve, ¥V, = —35MeV and gI'; =49 MeV.
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proton-nucleus and pion-nucleus interactions. The nu-
clear interactions generally produce both absorptive and
dispersive effects, and both can be expected to be impor-
tant. However, for the large incident energies treated in
this calculation, the most important effects are likely to
be the absorption effects, and qualitative estimates of
these effects are provided in this section.

We use the eikonal approximation to estimate the at-
tenuation factor for a particle travelling through a medi-
um. First, we associate a refractive index n(r,E) with
the nuclear medium, and we factorize the energy and ra-
dial dependence as

n(r,E)=n(E)M , (31)
Po
where p is the nuclear density distribution, and
_ k(E)
n(E)—k(E) . (32)

Here k is the external wave number, and k is the wave
number in the medium. The imaginary part of this re-
fractive index is defined as n,. In terms of n,, the at-
tenuation factor can be written as

p(b,z)exp[ —kno(E)L (b)]
J dbdzp(b,2)

nE)= [dbdz . (33)

where L (b) is the length of path travelled by the particle
in the medium. This length is given by

Lib)= [* f’;—’)dz . (34)
0

The integration can be done analytically if the nucleon
density is approximated by a Gaussian p(7)
=poexp( —r2/a?), in which case the attenuation factor
has the form

1—exp[ —V makny(E)]

Vrakny(E)

nE)= (35)

Once the value of ng is known, the attenuation due to
the medium can be calculated. For protons, n,(E) is ob-

tained from the imaginary part of the optical potential
Wo,

no(E)=—I§W0(E) . (36)

For pions n; is calculated using the method of Ericson
and Hiifner.** «, the pion wave number in the medium, is
determined from the dispersion relation

K=k +4npf (K, E) (37

where f,n is the #-N scattering amplitude for the
effective pion-nucleon interaction.

For the (N,7) reaction treated in the isobar-hole mod-
el, Hirata® has argued that the effective pion-nucleon in-
teraction f,y should be the nonresonant interaction, the
resonant piece having been included in the isobar-nucleus
interaction. Calculations have been carried out on “He
(Ref. 36) and 'O (Ref. 37) using this approach. Our
model differs from those since, for two of the amplitudes
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considered ( 4 and B), the isobar decays to a free proton
and free pion. This produces a spectrum of final pion en-
ergies, so that the pion-nucleus energy varies over a wide
range. Also for two amplitudes ( 4 and C) the intermedi-
ate isobar is produced by exciting the projectile and not
one of the target nucleons. As a result, some of the reso-
nant pion-nucleon amplitude should be included in con-
structing the final pion-nucleus interaction.

In this calculation, the pion-nucleon amplitude used to
construct the pion-nucleus final-state interaction is the
resonant amplitude f;3. For the projectile excitation am-
plitude A4, this will not involve significant double count-
ing. However, for some of the other amplitudes, includ-
ing both the isobar-nucleus interaction and the resonant
term in the pion-nucleus interaction would involve con-
siderable multiple counting. For this reason, the attenua-
tion effects calculated here will be applied only to the
peak cross sections. For the specific kinematics at which
the attenuation is estimated, the dominant term in these
calculations comes from amplitude A; the approxima-
tions used here should be valid for this term.®

Since the pion-nucleon interaction is being approximat-
ed by the (3,3) amplitude, an accurate expression for 7+
scattering from a symmetric nucleus is

f1r+N=%(f7r+n +f‘rr+p)z%f33 .

Using a Breit-Wigner resonant form for the amplitude
f33 gives

(38)

CK2

f7T+NzE_ER+%il—\ »

58a3
1+ (ka)?’

where a=1.24 fm is the interaction radius. The effective
width of the isobar is given by I'=PTI;, where I is the
free width, and P=0.7 estimates the effect of Pauli block-
ing on the width of the isobar in the nucleus. Using these
expressions, the refractive index ny(E) for pions is given
by

(39)

c=—(3)

AT /4
(E—Eg+3A)7+1ir?’

no(E)=

(40)
A=47mpyc .
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The dispersion relation (37) is equivalent to an optical
potential approach, if the optical potential is defined
through the folding of the 7—N ¢ matrix with the nuclear
density. Tandy et al.*® have shown that such optical po-
tentials contain nucleon knock-out as the primary reac-
tive content. Therefore, the main contribution to ny(E)
in Eq. (40) is the nucleon knock-out channel (7%,7*tN).
Furthermore, since the 7—N ¢ matrix has been approxi-
mated by the (3,3) amplitude, dynamically the nucleon
knock-out is mediated by a A(1232) in the intermediate
state. The pion absorption for this n, occurs through the
process

7t +[N+(4 —D]>A+(A4 —1)* 7t +N+(4 —1)
41)

which is shown schematically in Fig. 12(d).

In addition to nucleon knock-out, pion flux is also lost
through real absorption in the medium. One term which
contributes to real absorption in the final-state interac-
tion is shown in Fig. 12(c). In this model, real absorption
is estimated by adding to n, of Eq. (40) an additional
term, n 4, due to real absorption. It is assumed that the
main contribution to n , arises from the virtual process
AN -—NN; n 4 is estimated from the spreading width dis-
cussed in the previous section; we used

nA=2k127ng ’ (42)

where the value of the absorption width was taken as
g, =49 MeV.

The same questions of double counting arise for real
absorption as for the pion scattering term described ear-
lier. In the final-state interaction, real absorption arises
from production of an isobar on one of the target nu-
cleons and the intermediate process AN—NN, as shown
schematically in Fig. 12(c). However, the isobar spread-
ing width, discussed in the previous section, arises from
the same process as shown in Fig. 12(b). In treating the
contribution due to real absorption, either the spreading
width has been included in the isobar propagator, or real
absorption has been included in the attenuation of the
final pion, but it has not been included in both places.
The real absorption has thus been underestimated. How-

TABLE 1. Pion attenuation.

Knock-out Knock-out + real absorption
T, MeV) T, MeV) no  [q ]2 |nal™? no [nc|? [7a] 2

50 244 0.073 1.2 1.4 0.355 2.7 4.8
100 56.5 0.243 2.8 5.0 0.398 49 10.6
150 87.6 0.516 11.1 28.1 0.626 15.7 41.2
200 116.0 0.260 5.2 11.4 0.347 8.0 19.2
250 116.0 0.094 2.2 34 0.166 3.6 7.1
300 116.0 0.037 1.4 1.8 0.100 2.5 4.2
350 116.0 0.018 1.2 14 0.072 2.2 3.3
400 116.0 0.009 1.1 1.2 0.058 2.0 3.0
500 116.0 0.004 1.0 1.1 0.044 1.9 2.7
600 116.0 0.002 1.0 1.0 0.036 1.8 2.6
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TABLE II. Total attenuation.
Knock-out Knock-out

no real absorption + real absorption

T, MeV) T, MeV) T, (MeV)  nglp)  no(p’) | ] 2 | 1a | 72 || 2 |4 | 2
350 50 160 0.050 0.082 244 65.2 314 84.7
450 100 210 0.046 0.063 15.2 39.7 20.5 54.5
800 250 410 0.049 0.027 6.7 15.6 9.8 24.3

ever, in Tables I and II, the two methods for including
real absorption can be compared with one another.

Table I lists the pion-nucleus attenuation factor |7 | ~2
for various pion energies. For each pion energy, the pion
refractive index ng of Eq. (40) is listed, and representative
values of the attenuation are tabulated (these numbers
give the amount by which the cross section is decreased
relative to a PW calculation). 7, gives the attenuation
expected for a pion of this kinetic energy traversing a
light nucleus [@=2.73 fm in Eq. (35), the charge radius of
160)], and 7, gives the attenuation for a heavy nucleus
(a=4.5 fm). In the columns labeled “knock-out,” only
the nucleon knock-out is included in calculating the re-
fractive index; in the columns labeled ‘“knock-out plus
real absorption,” both knock-out and real pion absorp-
tion are included. Depending on the target nucleus and
the energy, attenuation can range from a factor of 10-40.

In order to determine the total reduction factor for the
(p,p'm ™) reaction, the total attenuation due to both the
protons and the pion has been estimated by replacing the
factor kn in Eq. (35) with

kn—k.no(E ) +k,ng(Ey)+kyng(Ey) . (43)
Table II lists the total reduction factors for three values
of the incident proton kinetic energy: 350, 450, and 800
MeV. The kinetic energies for the outgoing protons are
taken to coincide with the peak cross sections at each in-
cident energy; the resulting outgoing energies are 50, 100,
and 250 MeV, respectively. The values of the outgoing
pion energy are then fixed by the kinematics. For proton
energies below 300 MeV, the imaginary part of the
proton-nucleus optical potential is taken from proton
scattering data. Above 300 MeV the imaginary optical
potential is obtained from the high-energy relation

ko rpo
2E

Wo(E)= (44)

TABLE III. Effects of final-state interactions on calculated
cross sections.

O peax(tb/sr’/MeV)

T, (MeV) Ty (MeV) a b X
350 50 50.3 1.6 1.4
450 100 116 5.7 5.7
800 250 331 34.1 40.6

“No pion-attenuation, no I" , in A.
®Knock-out + real pion absorption, no I' , in A.
“Knock out in pion and T 4 in A.

where o is the total NN cross section.*! Again, the re-

sults are given for knock-out effects alone and knock-out
plus real absorption, for both light and heavy nuclei.

From Tables I and II, inclusion of real absorption of
the final-state pion reduces the cross sections by about
40%. In the previous section, it was found that inclusion
of the imaginary spreading potential in the isobar propa-
gator decreased the peak cross sections by about 60%
(compare the dashed and dot-dashed curves in Fig. 13).
The two methods of estimating the effects of real pion ab-
sorption thus produce similar reductions in the calculated
cross sections.

Table III shows the calculated peak cross sections with
and without the attenuation factor, for the three energies
listed in Table II. The first column gives the peak cross
sections calculated in PW approximation, including pion
self-energies, and isobar medium effects (this is similar to
the solid curve in Fig. 13). The second column gives the
cross section with the total attenuation estimated from
the eikonal calculation, including real pion absorption in
the attenuation. In the third column, the spreading
width has been included in the isobar self-energy, but real
pion absorption was not included in the eikonal calcula-
tion. The overall distortion effects thus decrease the peak
cross sections relative to the PW calculations by a factor
10-30. The reasonable agreement between the second
and third columns shows consistency in the two methods
for including the spreading width effect.*? Similar reduc-
tions in the cross sections can be expected over the entire
kinematic range for the experiment. Thus, from Table
IIT these calculations predict peak cross sections of the
order of 1-50 ub per steradian squared per MeV for this
reaction.

IV. CONCLUSIONS AND FUTURE OUTLOOK

The results in the preceding section suggest that the
coincidence cross sections for the reaction (p,p'w™)
should be measurable with present detectors and beam in-
tensities. Preliminary results indicate that if the outgoing
proton energy is fixed and the pion angle varied, the re-
sulting angular distribution is sensitive primarily to nu-
clear transition densities. If the pion angle is fixed (near
the peak of the cross section), then the shape of the pro-
ton energy spectrum is determined by the isobar propaga-
tor. For example, if one considers low values of the out-
going proton energy, the ‘“projectile excitation” ampli-
tude dominates the cross sections; for higher proton ener-
gies, the spectrum is dominated by amplitude “D.” The
separation between these two peaks increases with in-
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cident proton energy.

Nuclear medium effects on the intermediate pion are
found to be large, particularly for the “projectile excita-
tion” term. In fact, if the pion self-energy is calculated
without including the short-ranged repulsion in the
particle-hole interaction, the PW calculations produce
poles in the theoretical cross sections. Inclusion of
short-ranged repulsion via a Migdal parameter with a
reasonable strength renormalizes the self-energy; howev-
er, the net effect of the pion self-energy is still a consider-
able enhancement of the “projectile excitation” term, and
a corresponding increase in the calculated cross sections.
Medium effects on the isobar are found to be relatively
small. There is considerable cancellation between the in-
crease in the cross sections due to the combined disper-
sive and Pauli effects, and the decrease due to spreading-
width effects.

The (w-q) domain, in which the pion self-energy
enhancements are largest, is the same region where “pre-
cursive” effects have been predicted in the past.!®43—47
Many large effects predicted from such calculations have
not been observed; thus there is considerable uncertainty
regarding the magnitude of the pion self-energy in this re-
gion. It is therefore desirable to determine this quantity
from experiment. The (p,p'mt) reaction, due to its
strong sensitivity to the self-energy, may help to deter-
mine this quantity. Since different amplitudes from Fig.
1 are affected differently by the medium effects on the
pion propagator, even the shape of the proton energy
spectrum may provide a measure of the pion self-energy
enhancement.

The present results have been obtained using the PW
approximation. Effects of distortions were estimated
from an eikonal approximation for the nuclear elastic
scattering interactions of the protons and the pion. The
predicted cross sections are reduced by at least an order
of magnitude from the PW estimates, with the major
reduction arising from the final-state pion-nucleus in-
teraction. Care must be taken to avoid over-counting
effects in the isobar propagator, and also in the pion-
nucleus final-state interaction. In the present treatment,
effects of final-state distortions have been applied only to
the peak cross sections, where these ambiguities are less
important than in other kinematic regions. Consistent
results were obtained if the effects of true pion absorption
were included either through the medium modification of
the isobar, or in the pion-nucleus distortions.

The amplitudes for (p,p’w") are proportional to spin-
isospin and isospin nuclear transition densities and transi-
tion density matrices. With the simple wave functions
used in this paper, we have not considered effects associ-
ated with (a) spin and isospin selectivity of reactions to
particular nuclear states; (b) modification of the angular
distributions due to more realistic bound nucleon orbit-
als; (c) out-of-plane measurements. It may be useful to
make some qualitative remarks regarding this first point.
To illustrate the effects of isospin selectivity, consider for
example the reactions (p,p’7*), (p,n7*), and (p,n7T~) on
a closed-shell T=0 nucleus. For the reaction (p,p’7™)
one trivially obtains the result that only T=1 final nu-
clear particle-hole states can be excited. For the (p,n7r™)
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reaction, on the other hand, transitions to T=0 states are
possible. But these transitions receive contributions only
from the amplitudes C and D of Fig. 1. The “projectile-
excitation” and ‘“‘target-excitation” amplitudes of Figs.
1(a) and 1(b) do not contribute as the total spin of the
neutron and pion for these diagrams is required to be 3;
consequently they contribute only to T=1 nuclear excita-
tions. Furthermore, since in our model the transition
density p?” in amplitudes 4 and D represents an excita-
tion mediated by an intermediate pion, such amplitudes
permit only transitions to abnormal-parity nuclear states,
viz., (0~,1F,27,...).

Finally, the present model does not contribute to the
(p,n7 ™) reaction, which requires a change of two units in
the nuclear charge. Such a change requires the participa-
tion of more than one target nucleon. The above selec-
tion rules can be of great utility in enhancing or suppress-
ing the four amplitudes considered thus far. They can
thus be used to study the reaction mechanism we have
postulated.

An alternative approach might be to parametrize the
NN—-NN7 amplitude, to extrapolate this to the kine-
matic region appropriate for these reactions, and fold it
with the nuclear single-particle wave functions. This
method is similar to that previously employed by Fear-
ing,*® and Sternheim and Silbar,** among others, for the
(p,m) reaction. For the (N,N’w) reaction, such an ap-
proach could be quite promising. First, it normalizes the
results to the basic amplitude, pion production in two-
nucleon interactions, for this reaction. The physical am-
plitudes for this process naturally incorporate the effects
from resonant (isobar) and nonresonant intermediate
states. Second, embedding the elementary amplitude in
the nuclear medium is likely to give reasonable estimates
for spin-dependent effects. Several groups*® have noted
the similarities between spin effects in (p,7) reactions and
spin effects in the production of pions in two-nucleon in-
teractions. Third, comparison of our results with those
obtained by folding the elementary amplitude with nu-
clear wave functions would provide a benchmark for the
importance of medium effects in this reaction.

In conclusion, our calculation has provided quantita-
tive estimates of the size and shape of the spectra for this
reaction, and gives encouraging predictions both for the
size of the expected cross sections and the physics which
can be extracted from such measurements. The (N,N’7)
reaction is potentially a powerful tool for investigating
the dynamics of pions and isobars in nuclei, as it can in-
vestigate the nuclear response over a wide range of ener-
gy and momentum transfers. The spin-isospin selectivity
of the reaction can be utilized to focus on individual am-
plitudes in the reaction mechanism. Once understood,
this reaction could be exploited to test our knowledge of
spin-isospin nuclear transition densities in the region of
moderate to very large momentum transfer.

It is now essential to make more quantitative calcula-
tions in which the simplifying assumptions and approxi-
mations of this work are removed. Subsequent calcula-
tions should utilize proper distorted waves and realistic
nuclear wave functions; useful comparisons can be made
by embedding the “elementary” NN—NN7 amplitude



in the nuclear medium. We are presently undertaking
calculations which address these questions.
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APPENDIX A: EVALUATION OF CROSS SECTIONS

The amplitudes for the (p,p’m*) reaction proceeding
via an intermediate A state give rise to four terms, shown
diagrammatically in Figs. 1(a)-1(d). The first amplitude
corresponds to emission of a virtual pion from a target
nucleon, excitation of the incident proton of momentum
k to a A(1232), with subsequent decay to a continuum
proton and pion, with momenta k' and k,, respectively.
This amplitude is referred to either as the “projectile ex-
citation” term, or alternatively as “amplitude A4” [refer-
ring to the diagram of Fig. 1(a)]. This amplitude has the
form

2
T, =‘/Epfl‘(qA )%AF(‘IA)

BRALLY |i)(k'|S"k,S-q | k)

DA(‘Iﬁ’wéq D (g 4,0 4)

(A1)

where

q,=k,+k'—k, 0o 4=¢,—€,=0,
(A2)
q4 =k, +k', 0o4=E'+E,_ .
The second term corresponds to emission of a pion by the
projectile proton, as shown in Fig. 1(b). This pion excites
a target nucleon to a A, which then decays to the final
continuum proton and pion. This amplitude is called ei-

ther the ‘“target excitation” term, or ‘“amplitude B.”
This amplitude has the form

_f.f2 F(q)$}(k—q)¢; (k' +k,—q)
TB:‘/fo;;Af dq3 9¢s - qu’ q
(27) DA(qB,CL)B)D,T(q,(l)B)

X{f|o-q|k){k'|S"k,Sql|i),

m

(A3)
where
Wp =Tp+eszp ,
95 =k’ +k,=q% , (A4)

03=E'+E,=0" .

The third amplitude, given in Fig. 1(c), referred to as
“amplitude C,” is obtained from ‘“amplitude A4” by ex-
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changing the continuum and bound nucleon lines in the
final state. It has the form

V3 SSE dg F@8kk—qb K —q)
3
m‘ﬂ'

T-=
¢ 3 (2m)  D,(gé,02)D (g0c)

x(k'|o-q|i){f|S"k,Sq|k),

(AS)
where
oc=—€—-Ty=—-T,,
qc~k, , (A6)
A=E +M b
The final amplitude is obtained by exchanging the bound
and continuum nucleon lines in the final state of the “tar-

get excitation” amplitude. This term, shown in Fig. 1(d)
and called “amplitude D,” has the form

-2 fof s
Tp="73"Pula4) "5 Flgp)

m

(k'|o-qp | k)(f|S"k,Sqp]|i)

D,(gh,0d)D (gp,0p) ’ (A7
where
ap=k'—k,
op=T,—-T, ,
quk:, P (A8)
op=E . +M, .

In Egs. (A1), (A3), (A5), and (A7), the form factor is tak-
en to be of monopole form,
2

Al—m?
F@)= |55 (A9)
9 Aoy g

where the range is taken to be A=1200 MeV/c. The
same cutoff is used for both NN#7 and NA#. In the latest
Bonn NN potential,'® the coupling constants are
A =1200 MeV/c for the NN# form factor, and A=1300
MeV/c for the AN7 form factor. The NN7 and NAxw
coupling constants are chosen to be

/3
- =0.08,
2
%:0.37 : (A10)

The NN7 coupling constant is very well known from N-
N scattering. The NA7 coupling constant reproduces the
experimental A decay width on resonance.'® In Egs. (A6)
and (A8), the bound nucleon momentum has been
neglected in the A propagator; with this approximation,
the propagator is independent of the pion momentum g,
and can be taken out of the integrals in Eqs. (A5) and
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(A7).
For the single-particle transition densities and wave
functions, simple Gaussian forms have been adopted,

4 3/4

$(p)= |=3 | exp(—p2/2p}), (A1)
Po

p(p)=exp(—p?/4p}) . (A12)

The single-particle momentum scale p, has been fixed by
requiring that it satisfy the relation pj=2(p?) =2k},
appropriate for quasifree electron scattering from a Fer-
mi gas.

The pion and A propagators we take to have the form

D (q0)=[w’—q*—m2 —Il(q0)+i€]"!, (Al3)

where II is the self-energy of the pion with momentum ¢
and energy w. The calculation of the self-energy II is out-
lined in detail in Appendix B. Similarly, the A propaga-
tor is given by the relation

) —1
D,(q0)= w—?;nq——MA—‘VA(q,w)+il"/2+ie ,
A

(Al14)

where V represents the real part of the A-nucleus poten-
tial for a particle with energy ® and momentum g, T is
the isobar width, and the isobar-nucleus interaction has
been approximated with a local effective potential.’!

The c.m. differential cross section is given in terms of
the amplitudes as

dc 10* k'k,E'E

- 12
dQVdQ.dE' 2(2r) k(1+E/E ) 1Tl

(A15)

In Eq. (A15), the units are ub/sr’/MeV, and | T; | is
obtained by squaring the amplitudes of Egs. (A1), (A3),
(AS), and (A7), averaging over initial spins and summing
over final spins. The cross sections are calculated for an
unpolarized incident proton, neglecting the distortion of
the incident and outgoing hadrons. The reaction is as-
sumed to take place between the projectile proton and a
single “active” proton in the nucleus, producing a contin-
uum proton and a bound neutron. With the simple
Gaussian wave functions of Egs. (A11) and (A12), the PW
cross sections in this model can be reduced to a sum of
terms requiring no more than a single integral. These
terms are listed in the following equations.

The square of the transition amplitude can be written
as a sum of nine terms:

| Ty |2= | T4 |2+ | T | >+ | Tc |*+ | Tp | >+ T4

+Tyc+Tap+Tsc+Tep - (A16)

The interference term T ,; can be shown to vanish identi-
cally.

The first two amplitudes require no integration; they
can be written as
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2

| T4 | *=cF(q,)%xp a;
0
[4(k,-q )+ (k,Xq,)%]
|D§-DF |? ’

(A17)

where the coefficient ¢ is common to every term, defined
as
2

2
Lds ), (a19

c=2
3m?

2

| Tp | *=cF(qp)%exp

Po
4(k,-qp)?+(k,Xqp)?
quz)[ Pt F)) . 1T2qD ] (A19)
9|Dp-Dp |

The amplitude Tp can be evaluated most easily by
defining the vector R,

R=k+k'+k,, (A20)

and calculating angles of vectors relative to R. For ex-
ample, we define

,=6,—6p . (A21)

An angle with a tilde represents the angle between that
vector and the vector R. With this convention,

| Ty |?=c |ag | *[(1+3cos?d,) | I, |*

+(2+3sin%d,) | 1, | %], (A22)
where
ap= #Mexp{ (k24 (k' +k,)?]/2p2)
(A23)
and

. fq, dq q’exp(—q%/p3)F(q)
1= Jy D _(q,0p)

X [sinh(u)—2cosh(u)/u +2sinh(u)/u?],

3 2, 2 (A24)
I.— fco dq g exp(—q~/pj)F(q)
2 0 D.n.(q,(DB)
X [cosh(u)/u —sinh(u)/u?],
where
¥= If . (A25)
Po

| T | 2 is identical in form to the term | T | %; it has the
form



| Tc |2=c |ac | (1+3cos?8,,) | I, |2
+(2+3sin%8,) | T, |?] . (A26)

In Eq. (A26), I, and I, are obtained from I, and I, of
Eq. (A24) by the substitutions

wg—c ,
R—-R’,
0,—0,,

where R’ is defined by
R'=k+k'—k,,

(A27)

(A28)
and where

0,=60,—06 . (A29)

Any angle defined with both a tilde and a prime
represents the angle between that vector and R’. The
overall coefficient a. in Eq. (A26) is defined by

4k .
- 3VapoR'Dy(0d)

ac exp{ —[k"*+(k—k,)?)/2pk} .

(A30)
The interference term T 5 can be defined as
T,,=2cReal[c 5(u 51, +v451,)], (A31)
where
_ 4klgh exp{—l[g%/2+K’+(K'+Kk,))/2p})
~ VpoR [D{D 1D}

CaB

’

(A32)
u,p=—2cos%(8,—0,)—2cos¥(f,)

+7cos(8 4 —8,)cos(8 4)cos(8,)+cos*(F ) ,
AT - (A33)
vyp=—3cos¥(8 ,—0,)—2sin*d,)

+7cos(8 ,—8,)sin(8 4 )sin(8,) —cos*(8 ) ,
and I, and I, are given in Eq. (A24).

The interference term T, is given by

TCD =2c Re[CCD(uCDT1+UCDT2)] . (A34)

In this equation, I, and I, are defined from Egs. (A24)
and Eqgs. (A27)-(A29). The coefficients u, and vy are
obtained from u ,; and v 5 of Eq. (A33) by the replace-
ments

éA _-)é’A' ’

~ = (A35)

97—>9ﬂ/ .

Finally, the coefficient ¢, is given by

skg}

B exp{ —[g} /2+k*+ (k' +k,)*1/2p3}
~ 9V'mpoR’ '

(D2D21'D§

Ccp

(A36)
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The interference term T 4 is given by
TAC=2CRea1[CAc(UAci1+UAci2)] 5 (A37)
where I and I, are given by Eq. (A26), and
4k2q?
CACT T 3V apoR’
exp{ —[q% /2+k"+(k—k,)*1/2p})
x ApA1tpcC :
[DAD‘n' ] DA
(A38)
The coefficients u 4 and v 4 are defined by
u c=2c0s%8 4, —8,,)+2cos¥8,,)
—sin(8 ;. —8,,)cos(8 4.)sin(8,,) ,
(A39)

vAC=4cosz(§A/—§ﬂ,)+2Sinz(gﬂf)
+sin(8 ;. —6,,)cos(d 4.)sin(8 ) .

The interference term Tpp, is given by the equation

TBD =2c RC[CBD(uBDII+vBD12)] ) (A40)

where

4k2g3 exp{—[q%/2+k*+ (k' +k,)*]/2p}}
3V'mp,R [D2D21'D}

Cpp=

’

(A41)

and where ugp and vg, are obtained from u 4- and v 4,

respectively, of Eq. (A39), by replacing
6,—6p (A42)

in all angles. In Eq. (A42), 8, and 6, are the polar an-
gles of the vectors q, and q, defined in Eqgs. (A2) and
(A8), respectively. Remember that 8, in Eq. (A39) is

defined by
gA'=9A-_6R' . (A43)

The final interference term is given by

Tyc=2cReal{aga][2 cosd cosb ' I, }
+sin8,sind (I,T [+ 1,1 )1}
(A44)

where the angles 8, and 8, are defined in Egs. (A21) and
(A29), respectively.
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APPENDIX B: CALCULATION OF PION

Gylg,0)
SELF-ENERGY CONTRIBUTIONS G(q,0)= 9 0 s (B1)
1—-Gylg,0)1"(g,w)
For the pion self-energy contributions calculated in he £ L
Sec. IIIB, we first calculate the contributions from where the free propagator is given as
particle-hole states. fl‘hesg particle-hole amplitudes are Golgw)=[w?—q*—m?+ in]~!. (B2)
shown schematically in Fig. 7(a). The full meson propa-
gator is given by The self-energy IT° due to these terms is given by
J
2
-q) - —
Mg, ) =4 9/ +(q i dk3 n(k)(1—n(k+q)) n(k)1—n(k+q) | B3)
m, 2m)? | o—€elk+q)+elk)+in —w—elk+q)+elk)+in

Inserting the self-energy from Eq. (B3) into the equation for the propagator, Eq. (B1), sums the ring diagrams for the
self-energy contributions, as is well known.?* The nuclear density is approximated by a Fermi gas, for which the occu-
pation probability takes the form n (k)=0(kz —k). The particle (hole) kinetic energy is given by e(k)=k*/2M* + My,
where the effective mass M * is taken as M *=0.7My. The following dimensionless quantities are defined:

g=q/kg,

M*o
v= K2
oF (B4)
9. =4/24+v/7
q_=q/2—v/q .
In terms of these quantities, the real part of the self-energy takes the form
2
q) |"M*k +q_ 1+
Rell’(g,0)= —4 | 222 e —g2 | o= | L (1—g2 i | (BS)
m, (21) 2q l—q_ 2q l—q,
The imaginary part of the self-energy due to particle-hole terms has the form
2
A9 |"M*k
Img,0)= — | 224 Lli-q2 ), 352, 3°/2-3<v<q?/247
m, 27q
2
qaf (@) |"M*k
= | Ll1—421 7<2, §-7%/2<v<g?/2+7
m, 2mq
2
(@) |"M*kgv
__ | YAl f, §<2, 0<v<g—g?/2, (B6)
m,. 77‘@'

and ImHO(q,co) is O for all other values of g and w.

The A-hole contribution to the pion self-energy is given by the contributions of Fig. 7(b), and has been calculated in
Ref. 25. It has the form

agfa(q) |

dk 1 1
Mn%(q,0)= Okp—k - - (B7)
2lg,) 3m, f Q) F : w—ep(k+q)+e(k)+in + —w—e€p(k+q)+e(k)+in
In Eq. (B7), the A total energy for a particle of momentum p, arising from a pion of energy w, is given by
€A(p)=p2/2M +M,— ’F;“’) : (B8)

In Eq. (B8), I represents the A width in the medium. This represents the contributions of these diagrams to absorption
from a propagating meson. Clearly, this will depend on the energy o of the meson producing the A-hole pair. The fol-
lowing prescription has been chosen for I'. For the direct graphs, I' was taken as the free width ['j=116 MeV if the
meson energy was greater than the A—N mass difference; otherwise, I" was taken as a fraction of the free width. For the
crossed graphs of Fig. 7(b), the width was set to zero. Specifically

372
ro, O)SSMEMA—MN,

m,

Te) =\ Sp —m

=TIy 0>0M. (B9)
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Performing the integrations in Eq. (B7) gives
2
49f(q) |" M kg l+q, I+q_
0 =— — 1(1—q2 _— 1(1—q2 _—
(g, 0)= m. pye g+o_—a,+3(1—q% )n “1+4, ++(1—g< )n “12q. . (B10)
r
e 1+X(gna—8")
The quantities in Eq. (B10) are defined as Xn— e )(1+;XNA) " Xn(g:0) ,
g=q/kgp , A N ENAANAA
B14
M, +om 4 L) ) By
*e= gkrp @ 2 ’ 1+Xn(gNa—8")
(B11) Xy— , , ————XA(q,0) .
(1+g XA)(1+g XN)—(gNA) XNXA

q+ =q/2_a+ ’
q_=3/24+a_ .

When all the arguments in Eq. (B10) are real, the abso-
lute values of the arguments of the logarithms are used.
In the preceding equations, the short-ranged repulsion
between particle-hole and isobar-hole pairs has not been
included. As a result, the pion self-energy calculated
from Egs. (B3) and (B7) is so large that it produces zeroes
in the full Green function of Eq. (B1) and poles in the re-
sulting cross sections (see Fig. 8, and the discussion in
Sec. IIIB). As is well known,'®!® the poles result from
the improper treatment of the short-range behavior, and
a short-ranged repulsion must be included in order to re-
move the spurious poles from the full Green function.
This short-ranged repulsion is parametrized through the
Migdal parameters, which are supposed to mock up the
complicated density-dependent effective interaction be-
tween particles and holes in the nuclear medium. The ad-

ditional short-range piece has the form
: fRotat
T ’
= 2g 01‘0271‘72+ zgsl.SZT].TZ
ma m;,

Wp. h

fﬂ'fA
m?

+ g;\]A[Sl'ale'72+H.C.] . (B12)

We sum all rings with short-ranged correlations in in-
termediate states, as shown in Fig. 7(c). The resulting re-
normalization of the self-energies is well known. If the
self-energies are defined in terms of the “susceptibilities”
as

'.I‘he calculations in this paper were done using gy, =g’,
in which case one obtains the renormalizations

XN(q,(JJ)

Xnlgo)—>—n 2
N e X+ Xa)

(B15)
XA(q,(D)

Xag0)»>——F—— .
slg) 148" (XN+X,)

APPENDIX C: RELATIVISTIC CALCULATION
OF PION SELF-ENERGY

In Appendix B, a nonrelativistic calculation of the pion
self-energies, derived from NR NN# and AN7 vertices
and NR nucleon propagators, was outlined. One could
also attempt to calculate the self-energy effects from rela-
tivistic propagators and Dirac spinors for the nucleons
and isobar. In this procedure, a relativistic expression for
the self-energy is derived; at some stage, the baryon ki-
netic energies are replaced by nonrelativistic values, since
for the energies considered here the nucleon and isobar
motion is well described by a low-order expansion in
p/M. The resulting integrals are carried out using a rela-
tivistic Fermi gas model for the nuclear momentum dis-
tribution.

Such a calculation has been carried out by Dmitriev
and Suzuki;®® in this appendix, their derivations are re-
peated, and relativistic self-energy results compared with
the NR results discussed earlier in this paper. In the for-
malism of Dmitriev and Suzuki, the self-energy is ob-

o= —a%X tained by taking traces of Dirac matrices relevant to the
N="9AN> (B13) particle-hole propagation of positive-energy intermediate
M=—q%X,, states. They use pseudovector coupling for the NN ver-
tex; their expression for the particle-hole self-energy,
then the susceptibilities get renormalized to analogous to Eq. (B3), is
J
fo P a p+4+M +M
n%(¢q0)=2 |— L2 _Tr |4y 5 + -
R4 m, f 2n) 4y 2E,,, qv p%_E‘,2+inn(p +9)8(po+w—E, )
M M
+ay —LTLE 1 Y (p)6(po—E,)

(po+w)—E} ,+in

 n(pn(p+q)
T OEE

prpt+g

8(po—E,)8(po+&—Ey,  7°(B+4+MAgy>(#+M)

2E,

(C1n
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Taking the trace in Eq. (C1), and using the fact that the nucleon motion is nonrelativistic (and hence E,~M + p%/2M)
gives

3

2
f d 1 1
0 R 4
Mzlg0)=—417" ’f(zﬂp"(") {/2M +p-a/M —o | 1/2M —p-a/M +o
+2imn(p +9)8(w—p-q/M —q*/2M) | . (C2)
Performing the integral in Eq. (C2) with a Fermi gas nuclear momentum distribution gives

fa(q@? M*kgt 1 1+¢% | g%
Rell%(g,0)=— ——— 1+ —[1=(g® )*]In +—[1—(g® ) JIn|—— | |, (C3)
ImI1% (g,0)= 2 ImI%g,w) . (C4)

q

The imaginary part of the relativistic and nonrelativistic particle-hole self-energies are proportional, as seen in Eq. (C4);
the real parts have the same form, as seen by comparing Eq. (C3) with Eq. (BS). In the relativistic equation a new set of
dimensionless quantities are defined by

R T v
=——4+—,
=77
gR=_L_ ¥ (5
2 g
where
2 2
==l 6)
F

Thus, the relativistic and nonrelativistic particle-hole contributions to the pion self-energy differ only in the replace-
ment of — | q|2by t =w’— | q| 2 in certain places. From Eq. (C3), the self-energy contribution goes to zero when =0,
in agreement with requirements of chiral symmetry and PCAC. Note that the most important contribution to the cross
sections comes from “amplitude A4” (see the discussion in Sec. III B). In this amplitude, o ~0; for this special case, the
relativistic and nonrelativistic particle-hole self-energies are identical.

The relativistic A-hole contribution to the self-energy can be written as

fa I 4 2M,q"q*A,(p +9)
Hﬁ:% 24 fi%Trace AZ 9 2” P4 - p+Mn(p)8(p0—Ep)+q<—)—q , (C7
m, (2m) (po+@)V—Ef(p+9)+in 2E,
where A,,(p) is the relativistic spin-3 projection operator
P+M, 2puPy | Pu¥v—PyY
A —_ —l _ uiv vipu
uP) M, 8uv—3YuYv M2 + M, (C8)
Dmitriev and Suzuki evaluate this expression in the nonrelativistic limit, as (p-q)*—M?*t ~M?| q| % in this case,
A A (M +M,)*—t A
M (g,0)=Myp(g0)+ | ———— |1Ip(g,0) , (C9)
4M4

where the “nonpole” contribution to the A-hole amplitude is

4fA M M+MA
M, (q,0)= 7ig? nt |, 1
e e M2 T (C10)
and the “pole” contribution has the form
4afs |"Muke | 7 1+7, 1+7_
Na(q0)=— |—= ———a_ +a_+i1—(g, P)In | —— |+ 1—(g_)*In | ————— . (C11)
P q 3mﬂ (217-)22‘1' q + 2[ q+ ] _ q+ 2[ q ] —l+2‘]’_




In Eq. (C10), 7 represents some averaged nuclear density.
This has been chosen as 7=0.11 fm~>, in agreement with
the choice for the nuclear Fermi momentum, as discussed
in Sec. III B. In Eq. (C11), all terms have the same mean-
ing as in Eq. (B10), with the quantities 7, and §_ defined
by

(C12)

In Fig. 14, the cross sections with relativistic pion self-
energies are compared with the results obtained using the
nonrelativistic formalism of Appendix B. The results are
calculated for incident energy 450 MeV and Migdal pa-
rameter g'=0.7. The solid curve shows the results with
the nonrelativistic self-energy; the dashed curve gives the
results for the relativistic self-energy. The relativistic re-
sults are somewhat larger than the nonrelativistic results,
although the two methods never disagree by more than a
factor of two. The major difference between the two re-
sults is in the isobar-hole self-energy, due to the addition-
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FIG. 14. Comparison of relativistic and nonrelativistic calcu-
lations of pion self-energy. Incident proton energy 450 MeV
and pion angle + 10° vs outgoing proton energy. Migdal pa-
rameter g’ =0.7. Solid curve, nonrelativistic self-energy; dashed
curve, relativistic self-energy, calculated using the approxima-
tions of Dmitriev and Suzuki, Ref. 29.

al terms which arise because of the difference between the
NR and relativistic isobar propagator. The difference be-

tween the two calculations of the self-energy gives one
measure of the uncertainty in this quantity.
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