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The isospin structure of the quadrupole strength in "sSn is examined by a variety of means in an

attempt to understand the surprisingly large amount of isovector strength extracted from some re-

cent m /m+ experiments in the excitation-energy region (below 2~) expected for the isoscalar
giant-quadrupole resonance. The ratio of the giant-quadrupole resonance neutron and proton mul-

tipole matrix elements for '"Sn determined from n. /m+ data is M„/Mp =1.9+0.4 compared to
calculations which range from 1.1 to about N/Z (1.36). It is demonstrated that this large ratio has
unrealistic consequences in random-phase approximation mixing of the giant states into the first 2+

state transition (core polarization), which has been independently studied by other probes and is i&i

rather good agreement with quasiparticle random-phase approximation calculations, which have

M„/M~ & N/Z for the isoscalar giant-quadrupole resonance. Quasiparticle random-phase approxi-
mation transition densities are used to calculate pion, proton, and neutron cross sections to the iso-
scalar giant-quadrupole resonance and the first 2 state using microscopic reaction models. A com-

parison of 8 (E2) from the same structure model is made to the various data for the first 2+ transi-

tion and to the " Sn(e,e') data on the isoscalar giant-quadrupole resonance. Although not complete-

ly conclusive because of the lack of reliable (e,e') data, the evidence from all these comparisons is

that the m /n. + results are at odds with the results of other probes and with nuclear structure
theory and that the problem seems to be with the m+ scattering results.

I. INTRODUCTION

Over the past ten years it has been well established'
that there can be a measurable difference between the
neutron and proton deformation parameters for the first
2+ vibrational states of even nuclei. Although both types
of nucleons participate in the vibration, a shell closure in
neutrons (protons) inhibits the collective vibration of neu-
trons (protons). The type of nucleon involved in the shell
closure will therefore tend to have a smaller vibrational
deformation parameter than the other type. The mul-
tipole matrix elements,

thus have ratios of M„/M~ which may diS'er from the
value N/Z for the collective model of a homogeneous nu-
clear Quid, and this deviation has been shown to be in the
direction of the dominant shell effects. Differences be-
tween M„and M are also, in principle, expected for the
lowest 2+ states in open-shell nuclei, but these are gen-
erally much smaller than for single-closed-shell (SCS) nu-
clei. It has been shown that there is a sudden jump in

the direction of equality between M„/M~ and N/Z when
only one pair of nucleons (or holes) is added to a magic
number of nucleons.

Although these ratios for low-lying 2+ states are very
dependent on the details of the valence configurations,
this should not be true of giant resonances since they are
shell-breaking excitations. Schematic-model results give

~
M„/Mp

~

(N/Z for the isoscalar and isovector giant
resonances over a wide range of nuclei. The fact that
M„/M~ can be more isoscalar than the hydrodynamical
model is consistent with the collective-model for the
giant-quadrupole isoscalar resonance (GQR) of Bohr and
Mottelson and is a result of the stronger coupling of the
protons to the neutron excess. It is true that the mixing
of the low-lying 2+ collective strength and the GQR is
substantial, but we will show in this paper that it is the
mixing of the GQR into the low-lying region (core polar-
ization) that produces the main effect in transitions. Mix-
ing of the low-lying strength into the GQR also occurs;
however, because of the energy-weighted sum rule in the
random-phase approximation (RPA), this upward mixing
or "reverse" core polarization into the GQR is
insignificant. Furthermore, it produces an effect in the
transition matrix elements that is in the wrong direction
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to explain some surprising recent pion-scattering results
for neutron SCS nuclei such as " Sn.

The pion work in question consists of experiments
comparing m. + and m inelastic excitation of giant reso-
nances in " Sn. This work yields a surprisingly small ra-
tio of M„/M =1.27+0.26 for the first 2+ state and a
surprisingly large ratio of M„/M~=1. 9+0.4 for the
GQR. The Sn isotopes are neutron-valence nuclei, so it is
expected that the 2+& state should have a value of
M„/Mz &N/Z. This is, in fact, the case, with the mean
ratio from previously available data equal to 1.72%0.21.
As mentioned above and discussed further below, the
GQR, on the other hand, is expected to be both more iso-
scalar than the 2+, and little affected by the isospin com-
position of the 2, transition. However, the pion results
for the GQR yield M„/M not just greater than N/Z but
greater even than the established 2+& ratio. Another pion
experiment on Pb has also reported a very large value
of M„/Mz ——3.8+1.2 for the GQR. We will also make
some mention of theoretical results for Pb below.

The purpose of this paper is to discuss the ratios of
M„/M for the giant-quadrupole resonances determined
from several points of view, starting with the schematic-
model Tamm-Dancoff approximation (TDA) and RPA
results and working up to full nondegenerate quasiparti-
cle RPA calculations. We emphasize the connection be-
tween the M„/M for the giant resonances and that al-
ready observed by a variety of probes for the 2+& state
transition. The quasiparticle RPA transition densities
are used to calculate inelastic nucleon and pion scattering
cross sections to the low-lying 2+& state and pion scatter-
ing to the isoscalar GQR region in " Sn. Section II con-
tains a discussion of giant resonances within the schemat-
ic model, including the effects of mixing between the
high-lying and low-lying 2 states. Section III contains a
discussion of a degenerate RPA model which does not
use perturbation theory for the core polarization. This
model illustrates the features of mixing of the dominant
collective states. Section IV contains a study of the
effects on M„and M from using a more realistic nonde-
generate RPA model. Section V presents the results of
cross section calculations for inelastic pion, nucleon, and
electron scattering based on the neutron and proton RPA
transition densities described in Sec. IV. Section VI con-
tains a discussion of these results including a comparison
of our results with other calculations of giant resonances.
Also included in Sec. VI is a calculation of the effects of
core polarization on the 2+, using M„/M for the GQR
as determined from vr /~+. Section VII contains our
conclusions.

II. THE SCHEMATIC MODEL
OF QUADRUPOLE GIANT RESONANCES

In our earlier work' on low-lying 2+ states we used
the schematic model for giant resonances and then cou-
pled these giant resonances via perturbation theory to the
first 2+ vibrational state. The core polarization on the 2+&

transition was then expressed in terms of either the ma-
trix

oo oi

&io
(2a)

in the isospin representation or

gnn gnp
5=

Qpn

happ

(2b)

in the neutron-proton representation. The M„/Mp ob-
tained from these parameters are appropriate for the 2+&

transition and not the GQR transitions. The mixing of
the giant resonance into the 2+& state has a very large
effect on the multipole matrix elements, increasing Mn by
a factor of 2 or more and driving M„/M from infinity
(valence neutrons) towards N/Z.

The giant-resonance transition amplitude, an in-
gredient in the core-polarization parameters, is also avail-
able from the schematic model. Using Eq. (16) of Ref. 4
we may write, for giant-resonance t, the ratio

M„/M, =(S,'+S', )/(S,' —S', )

(y„—y~) a+p
(y. +y, ) p

(3)

where a and p are the like- and unlike-nucleon interac-
tion strengths, and

(N, Z)

y(„)—g ~

(mi
~

r I'g(r)
~

0) (4)
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where A, is the multipolarity, 5 is the 2)&2 matrix given in
Eq. (2b), At is a 2 X 1 matrix containing M„and M~,

are sums over individual particle-hole (p-h) transition
strengths for neutrons or protons, which are calculated
using 2Am harmonic-oscillator quadrupole sum rules. Us-
ing Eq. (33) of Ref. 4 with the assumptions that the neu-
tron and proton rms radii are equal and that p/a =3, the
TDA result of Eq. (3) for " Sn is that M„/Mz ——1.14.
For a realistic neutron skin with the ratio of the neutron
and proton rrns radii r„/rz 1.04, it is 1.——24. An RPA
version of the same degenerate model of the giant reso-
nances gives M„/M = 1.27 using r„/rz ——1.04. All three
of these results are lower than N/Z =1.36 and much
lower than the reported ratio of 1.9. The reason that the
GQR ratio is between unity and N/Z is that the interac-
tion couples the neutrons and protons to make the transi-
tion more isoscalar by lowering the neutron strength and
raising the proton strength. This same effect was men-
tioned earlier in a collective-model context.

In the case of" Sn there is a large neutron excess, so
one might wonder whether there should not be some
valence space (Otic') mixing into the giant resonances, i.e.,
"reverse" core polarization. In the RPA schematic-
model perturbation treatment' of configuration mixing,
the core polarization and "reverse" core polarization pa-
rameters are given by
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(5b)

and V is a 2 X 2 matrix of separable multipole interaction
strengths

a (5c)

with diagonal elements equal to like-particle and nondi-
agonal elements equal to the unlike-particle interaction
strengths. The index a represents the state in the space
being polarized, while b represents the states in the core
space, and A, =(2A, + I )'/2.

The mixing of the high- and low-lying 2 excitations
represented by Eq. (5a} is not symmetric. The most im-
portant difference arises from the fact that for "reverse"
core polarization the energy in the numerator represents
the (Piro two-quasiparticle energies, which combine with
the low-lying multipole matrix elements to give very little
effect on the high-lying GQR because of the reduced en-
ergy weighting. In addition, the energy denominator in-
volved in the mixing coefFicient is equal in magnitude but
opposite in sign to the usual core polarization. The sign
is positive (constructive) for mixing of the high state into
the low state but negative (destructive) for the mixing of
the low state into the high state. Therefore, what mixing
there is, in the case of a neutron-valence nucleus like Sn,
lowers the giant-resonance neutron strength, making the
ratio M„/Mp even smaller than the results of the
schematic models without "reverse" core polarization
given above.

III. DEGENERATE RPA MODEL

A degenerate RPA model has been developed to illus-
trate how the quadrupole isospin strength is distributed
by the mixing of the dominant collective states. The
RPA equations with a separable particle-hole interaction
can be written' '" in a matrix form as

HF =E2F, (6)

where E is the energy of the state in the presence of the
interaction,

Hint gl/2~TI/~ gl/2
ij (7)

and g is the unperturbed energy of the two-quasiparticle
state i In Eq. (7.) JKJ is now an NX2 matrix, which con-
tains unperturbed single-particle matrix elements M„and
Mp of the state j, and V is the 2 )& 2 matrix of the interac-
tion strength described in connection with Eq. (5}. F is
an N X 1 matrix of the RPA amplitude solutions. In the
nondegenerate case the dimension N corresponds to the
number of independent two-quasiparticle states which all
occur at different energies.

If we apply Eqs. (6) and (7) to the degenerate model,
the noncollective states in each space are devoid of mul-
tipole strength and are each uncoupled from all other
states both inside and outside of their spaces. We are,
therefore, able to work on a reduced eigenvalue problem

which includes only the collective states in each space,
(Hie@, 2~, etc., treated separately. The eigenvalue prob-
lem, when we consider coupling among these spaces,
looks the same as given in Eqs. (6) and (7), except now the
matrix to be diagonalized is simply dimensioned accord-
ing to the number of collective states to be considered.
The g are the energies of these unperturbed collective
states, and At is the matrix of the collective multipole
matrix elements. In the degenerate model the particle-
hole energies are all taken as equal for the various spaces
included in the calculation. Because of the degeneracy,
the sum-rule strength for a given isospin and multipolari-
ty is concentrated entirely in the collective states and not
spread out over an extended energy range as is the case
when nondegeneracy, two-particle two-hole, and continu-
um effects are considered.

For the neutron-valence SCS nucleus " Sn, the dom-
inant quadrupole collective states could be taken as the
lowest-lying collective state and the isoscalar and isovec-
tor giant states. The particle-hole structure of these
states involves the (Hico and 2fico spaces. In a recent pa-
per' we described another low-lying (somewhat collec-
tive) transition that involves lfico even-parity particle-
hole partners, with the hole in the spin-orbit intruder lev-
el of the closed-shell-type nucleon. We have called these
states "reversal states" because their isospin properties
are opposite to those of the 2+, transition. The systematic
existence of such states is yet to be demonstrated empiri-
cally. Nevertheless, for illustrative purposes we include
these states, making our degenerate RPA model calcula-
tion for " Sn a four-state diagonalization problem.

For our model problem, then, the unperturbed strength
is made up of four types of excitations: valence neutrons,
proton spin-orbit intruder p-h pairs, ' an isoscalar giant
resonance, and an isovector giant resonance. An RPA
schematic model is applied to each space separately be-
fore diagonalizing. The effective interaction is deter-
mined by placing the giant-quadrupole isoscalar state at
the empirical energy 642 ' and the isovector state at
an energy 1133 ', which for lack of empirical infor-
mation is made consistent with the nondegenerate RPA
calculation described in Sec. IV. In order to preserve the
unlike-to-like particle-hole interaction-strength ratio of
three-to-one, an effective mass ratio of 0.83 is used. ' As
discussed in Sec. II, a realistic neutron skin is included
in the calculation by taking a value of 1.04 for the ratio of
the neutron and proton rms radii.

The unperturbed values of M„and M and the starting
energies are given in the input columns of Table I. Be-
cause the collective states have all the sum-rule strength
concentrated at a given energy, the diagonalization in the
four-state model tends to push the low-lying 2+ states rel-
atively lower in energy than in the nondegenerate quasi-
particle RPA (QRPA}. To compensate for this it is
necessary to choose starting energies somewhat higher
than the mean degenerate energy of the QRPA. Our pro-
cedure for adjusting the starting energies preserves the
energy-weighted sum rule. The unperturbed proton re-
versal state is placed slightly above the appropriate p-h
energy for the spin-orbit intruder and its partner
(n4g —,'} '(m4d —,

' }at 5 MeV. The starting energy of the 2+&
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TABLE I. Neutron and proton multipole matrix elements M„and M„ in fm in a degenerate RPA
four-state model for '"Sn. The four states are the isoscalar and isovector giant-quadrupole resonances,
the reversal state, and the 2+& state. The unperturbed and perturbed energies are in MeV. The input in-

cludes the energy-weighted harmonic-oscillator sum-rule strengths with an effective mass of 0.83. The
2%co space has already been diagonalized. The output columns contain the results for the four transi-
tions after the four-state diagonalization.

State
Input

Mp M„/Mp
Output

M„ Mp M„/Mp

2+)

Reversal
Isoscalar GQR
Isovector GQR

2.61
5.00

13.05
23.0

31.7
0.0

76.7
54.4

0.0
18.9
60.3

—48.2

0.0
1.27

—1.13

1.23
4.85

13.3
23.0

82.1

8.3
72.7
54.6

46.3
24.6
57.1

—48.4

1.77
0.34
1.27

—1.13

Empirical (GQR): M~=63.0+13.0' and M„/M~=1. 9+0.4 with M~=31.0+1.3b

Empirical (2) ): M =45.5+0.4' and M„/M =1.72+0.21
= 1.27+0.25'

'Based on sum-rule estimate for " Sn from Ref. 13 (arbitrary 20% error).
See Ref. 7, where M~ has been determined assuming the proton sum-rule strength reported in Ref. 7 is

concentrated at 13.2 MeV.
'M~=[B(E2)t]'~~ from Ref. 2.
See Refs. 2 and 14.

'Calculated from data of Ref. 7 using formulas from Ref. 2.

state is obtained from a degenerate two-quasiparticle
model with pairing and then adjusted upward to 2.61
MeV, resulting in the solution energy at the experimental
position of 1.23 MeV.

The results after diagonalization are shown in the out-
put columns of Table I. The energy-weighted sum rule is
preserved but redistributed by the diagonalization as it is
in the full nondegenerate quasiparticle RPA calculation
described in Sec. IV. The results of the four-state diago-
nalization are quite consistent with the results of the
more realistic nondegenerate calculation of Sec. IV. One
can see from this simple model that the effect of mixing
from the giant states (core polarization) on the 2+& transi-
tion is substantial both in increasing the magnitude of M„
and M and in changing the ratio of M„/M from pure
neutron to a value just greater than N/Z =1.36. After
diagonalization both M„/M and M are completely
consistent with previous data. The reversal state
changes from pure proton to values of M„/M and M
consistent with the full nondegenerate RPA calculation. '2

This result has not been confirmed empirically.
The giant states have

~
M„/M~

~

&N/Z. The isosca-
lar GQR is of particular interest here in comparison to
the m /m+ scattering result of 1.9+0.4. The value of
M„/M =1.27 for the isoscalar GQR is much lower than
the m. /m. + result; it is also less than N/Z but greater
than the value of 1.1 obtained in our full nondegenerate
RPA calculations described in the next section. The
reason for the difference is that in the full nondegenerate
calculation the energy-weighted sum-rule strength is not
fully concentrated at a single energy (13.3 MeV in this
case), and certain 2fico spin-orbit intruder states carry
some strength above the resonance region.

IV. NONDEGENERATE RPA MODEL

So far we have been considering idealizations in which
all particle-hole or two-quasiparticle states in a given
space are degenerate. We now go to results of an open-
shell RPA calculation with the unperturbed energies
determined by the Nilsson parameters' and pairing.
When nondegeneracy of the individual two quasiparticles
is included, the giant-resonance strength, isolated in one
isoscalar and one isovector state in the degenerate
schematic model, gets spread out over many states. We
have calculated M„and Mz for all states arising from ap-
plying quasiparticle RPA to the spherical Nilsson model
configurations from 2d —,

' to 7f '„using separab—le quadru-

pole particle-hole forces with an unlike-to-like nucleon-
nucleon interaction ratio P/a=3. For " Sn we needed
a= —9.6X10 MeVfrn, to place the 2+& state at the
empirical energy. An effective mass ratio of 0.75 was
necessary to place the GQR at about 643 ' and to ob-
tain a realistic amount of core polarization in the low-
lying 2+ state from the giant resonances. All significant
giant-resonance strength in the range 8 to 16 MeV lies in
five excitations from 9.5 to 13.2 MeV, dominated by one
state at 13.2 MeV with M„/M =60.3/53. 9= 1.12.
Defining M„/M& as the rrns sums over these five states,
we get M„/M =1.14. As mentioned in Sec. III, this is
somewhat lower than the (degenerate) schematic model
quoted above for the same value of r„/r . The two cal-
culations are different in that, for equal average two-
quasiparticle energies, the interaction must be much
greater in the degenerate case to push the isoscalar GQR
down to the empirical value of 643 ' . These results
are summarized in Table II as set A. For comparison, we
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TABLE II. Neutron and proton multipole matrix elements M„and M~ in fm' calculated from a non-

degenerate RPA code using a separable interaction and including pairing. The calculation is described

in Sec. IV. M„and M~ are given for the isoscalar giant-quadrupole resonance (GQR) and the 2, transi-

tion in " Sn. Case A uses a realistic neutron skin of r„/r, = 1.04; Case B uses r„/r, = 1.1.

Case
GQR (13.2 MeV)

M M„/M M„
2l (1.23 MeV)

M M„/M

A
B

60.3
73.6

53.9
44.1

1.12
1.67

72.8
91.1

42.5
43.2

1.71
2.11

Empirical (GQR): M~=63.0+13.0' and M„/M =1.9%0.4 with M =31.0+1.3b

Empirical (2+&): M~ =45.5+0.4' and M„/Mp 1 72+0 21
= 1.27+0.26'

'Based on sum-rule estimate for " Sn from Ref. 13 (arbitrary 20%%uo error).

See Ref. 7 and footnote b of Table I.
'M~=[B( E2) t]'~ from Ref. 2.
See Refs. 2 and 14.

'See footnote e of Table I.

also performed the same calculation with r„/r =1.10,
which gives the results labeled set B. This unreasonably

large neutron skin is used to more nearly obtain the pion

GQR results for M„/M~. The expectation was that the

M„/M resulting from this unphysical neutron skin

would be unacceptably different from the existing data
on the low-lying transition.

In the results presented so far we have only considered
the multipole matrix elements. These are the A,th mo-

ments of the mass transition densities' which may be

seen explicitly by rewriting Eq. (1}in the form

M(n ) pA(n )
(g)

with the transition densities defined by' *'

hadronic data, that have been discussed above, have been

extracted using certain models. In particular, the nu-

cleon scattering values are based on the collective model

for inelastic nucleon scattering described in Ref. 1 and

the pion scattering values are based on cross section for-

mulas obtained from the idea of 5 dominance for pion-

nucleus scattering. ' Here we examine the transition den-

sities predicted by our quasiparticle RPA model. In the
next section we use these densities in fully microscopic
calculations of inelastic scattering observables. These
calculations provide a good indication of the consistency
between the model assumption used in extracting M„and
M above and the current microscopic models for calcu-

lating inelastic cross sections.
The relevant transition densities are shown in Fig. 1 as

a function of radial position. They are based on
harmonic-oscillator radial wave functions. For the GQR

It is the transition densities that contain the complete
model information concerning the transition. The mul-

tipole matrix elements, which are uniquely determined

only via electromagnetic data at the photon point, clearly
measure the transition densities in the tail region.

Inelastic scattering cross sections depend, in general,
on somewhat different features of the transition densities,

and these reactions can, in some cases, provide detailed
information on the radial profile of the densities. ' ' For
example, pions at 130 MeV are strongly absorbed so the
cross sections at the first peak are sensitive to the densi-

ties just beyond the nuclear surface and are expected to
follow the multipole matrix elements. Low energy nu-

cleons experience moderate absorption and refraction, so
they are also sensitive to the surface properties of the
densities. These reactions are the ones being considered
here. Electrons and intermediate energy nucleons are, on
the other hand, sensitive to interior details of the transi-
tion densities.

The experimental values of M„and M& obtained from

C)

2—

0
1— 5

21
3
2—
1—
0-—'

5

Set A
---Set B P„(r)

0

r(fm)
-2

r(fm)

FIG. 1. The proton (top) and neutron (bottom) rnatter transi-
tion densities for the 6rst (E„=1.23 MeV) 2+ state (left) and the
dominant E„=13.2 MeV state in the GQR region (right) of" Sn. The solid curve is the result of our standard calculation,
set A, while the dashed curve results when a larger neutron ra-
dius is employed in set B.
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we show only the dominant contribution from the 13.2
MeV level. The solid curve denotes set A (r„/r~ =1.04)
while the dashed curve denotes set B (r„/r~ =1.10). Of
particular note is the difference between p„and p for the
2+& transition. We also see that the neutron densities stick
our farther than the proton densities and have longer
tails. The radial difference is about 0.2 fm for set A and
somewhat more for set B. To be more complete it would
be necessary to include Coulomb effects in a Woods-
Saxon basis and consider the unbound nature of the
GQR. Preliminary results for Pb indicate that the use
of more realistic radial wave functions does not produce
large effects in the transition densities.

V. SCATTERING CALCULATIONS

=4' ", [~tc'p, ~'+f(8)~t'sp, ~'], (10)

where t is the spin independent central coupling (for
electrons, nucleons, or pions), t is the spin-orbit cou-
pling (for nucleons only), pP is the matter (particle num-

ber) transition density; there is an implied coherent sum
on the proton and neutron components of the tp prod-
ucts, and f (8) is an angle-dependent factor from the
plane-wave matrix element of a current operator. An-
tisymrnetrization for the nucleon scattering calculations
is treated in a short range approximation which neglects
convection current contributions for these transitions.
For electromagnetic observables it is more convenient to
refer to

instead of do/dQ. Note that Eqs. (9) and (11) lack a
(.2A, + I) factor relative to the definition in Ref. 16 (see

In this section we present the results of parameter-free
folding model calculations for inelastic electron, nucleon,
and pion scattering which use the RPA transition densi-
ties described in Sec. IV as the common nuclear structure
input. For the first 2+ transition we consider the avail-
able electromagnetic data along with cross section data
from low energy proton ' and neutron scattering and
the 130 MeV pion work of Ref. 7. The low energy nu-
cleon data are the same as those used in extracting
M„/M in Ref. 2. For the GQR we consider the pion
cross section data of Ref. 7, and, in the absence of elec-
tromagnetic data for " Sn, the electron cross section data
of Ref. 13 for " Sn. The value of M for the GQR in" Sn is expected to be similar to that for " Sn.

The reaction model used in the present calculations
can be neatly summarized by presenting the relevant
terms from the general plane-wave Born cross-section
formula for natural parity transitions excited by elec-
trons, nucleons, and pions. ' In this case, where only the
matter transition densities were produced by the RPA
code (under the reasonable assumption that these dom-
inate the scattering process for collective excitations such
as the 2+& and the GQR), the 0+~A, [be =( —1) ) Born
cross section contains only two terms

'2

Ref. 17). Note also that 8 (E2) 1' in Tables I—III is equal
to 8 (E2;0)=M„ in e fm with these conventions.

The actual scattering calculations for the hadronic
probes must include the effects of the mean nuclear field.
This is done in the distorted wave approximation (DWA).
The specific procedure is to generate a transition poten-
tial in ALLWRLD (Ref. 24) from the RPA matter transi-
tion densities and appropriate effective interactions t
and t . These are read into a DWA code [TAMURA

(Ref. 25) for nucleons, MSUDwPI (Ref. 26) for pions] that
uses an optical potential generated self-consistently from
the ground-state matter density and the same effective in-
teraction used to obtain the transition potential.

The nucleon scattering results used von Geramb's pa-
rametrization of the g matrix obtained from the HJ po-
tential, the so-called "Brieva-Rook" set. The 24 MeV
solution was used for E„=24.5 MeV while the 10 MeV
solution was used for E„=11MeV. These interactions
require some small adjustments to reproduce elastic
scattering cross sections in detail. We have made no
adjustments here. The pion scattering results are based
on a t matrix taken from phase shifts with absorption
and other medium modifications included explicitly.
This interaction provides a reasonable description of elas-
tic and inelastic pion scattering data in the region of in-
terest.

Both sets of RPA transition densities are used. Set A,
which came from assuming a 4% neutron skin, is con-
sistent with the schematic model and represents the stan-
dard prediction of our model calculations. It is shown by
a solid curve in the figures. We also include set B, con-
structed by assuming a 10% neutron skin, as an extreme
case which has M„/M for the GQR closer to that de-
duced from the pion experiments. Results for the 2+, and
GQR region will now be discussed separately.

A. First 2+ state ( E, = 1.23 MeV)

The results for 130 MeV positive and negative pion in-
elastic scattering to the 2+& state of " Sn are shown in
Fig. 2 with the experimental data. The calculated and
experimental differential cross sections are in fairly good
agreement for negative pions but lower than the data for
positive pions. The former are more sensitive to target
neutrons and the latter are more sensitive to target pro-
tons. The disagreement for positive pions is puzzling,
since the transition density of set A gives a value of
8(E2)=1810 e2fm, in good agreement with the experi-
mental value of B(E2)=2070+60 e fm . It would be
useful to compare the charge form factor to electron
scattering data, but none is available for " Sn. Using the
densities of set B, which have the larger neutron radius,
the ~ cross section increases along with the neutron
strength, becoming somewhat higher than the data.
There is also a small increase in the proton strength, giv-
ing 8(E2)=1866 e fm for set B. This is presumably
due to increased polarization of 2Acu proton transitions
by the valence neutrons, which have a larger radius in set
B, even though the protons will have a decreased strength
due to their smaller radius. The experimental value of
M„/Mz ——1.27+0.26, compared to the value of
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1.72+0.21 from other probes ' reflects the large values
of the m+ data in Fig. 2. The cross section ratio
R (8)=o (8)/)I +(8) is plotted in the bottom third of
the figure. The rapid angular dependence of this ratio,
due to the relative shift of the ~+ and m diffraction
minima, shows the prudence of the comparison of full an-

gular distributions with DWA calculations (rather than
simple force-ratio arguments based on cross sections at a
particular angle) in the extraction of M„/M ratios. We
think it is more important to emphasize the failure to fit
o +(8) than the failure to fit R (8).

The calculated nucleon inelastic scattering cross sec-
tions for E =24 5M. eV and E„=1 1 MeV are compared
with data ' in Fig. 3. Protons at these low energies are
most sensitive to neutron densities. Set A transition den-
sities give a reasonably good fit to the (p,p') data ' at an-

gles greater than about 30' and, therefore, will fit the in-

tegrated cross section fairly well, but they fall below the

1
1 0 ) I
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~ 10'
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data at the main peak. The enhanced neutron densities of
set B produce proton scattering cross sections in agree-
ment with the data at the peak, but too high compared to
data at angles greater than 30'. If we further increased
r„/r~ beyond the value used in set 8 to yield a ratio of
M„/Mz ——1.90 for the GQR in agreement with the pion
scattering data, the resulting differential cross section
would lie above even the first peak and would give much
too high a total cross section. The experimental neutron
inelastic cross section is described fairly well by the
transition densities of set A at backward angles and set B
at forward angles. The transition densities of set B do
not increase the neutron cross section very much relative
to set A due to the fact that neutrons at this energy are
rather more sensitive to nuclear protons. It has already
been noted that there is only a small increase in M~ when
the ratio of r„/r is increased from 1.04 to 1.1.

The deficiency in the slope of the theoretical cross sec-
tions relative to the experimental data evident in Fig. 3
has been noted in earlier microscopic calculations for
low-energy nucleon-nucleus scattering which use empiri-
cally determined densities. ' This is a real deficiency in
the model which is presumably associated with exchange
and rearrangement corrections to the folding model. On
the basis of Ref. 31, the theoretical calculations are ex-
pected to be low at forward angles. With this proviso,
the nucleon scattering data are consistent with the densi-
ties of set A which have M„/M =1.71, consistent with
the results of Ref. 2.

It is very puzzling that our predicted pz is consistent
with the neutron scattering and electromagnetic data but
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FIG. 2. Differential cross sections and m /m+ cross section
ratios for inelastic pion scattering to the first 2+ state in "Sn.
The solid and dashed curves are calculated from the set A and
set B densities, respectively, while the 130 MeV m.+ and m data
are from Ref. 7.

FIG. 3. Differential cross sections for inelastic nucleon
scattering to the first 2+ state in " Sn. Calculations with set A
(solid curve) and set B (dashed curve) are compared to the 24.5
MeV proton scattering data of Ref. 21 and the 11 MeV neutron
scattering data of Ref. 22.
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fails (badly) to describe the n+ data. In contrast, the m.

and proton calculations suggest the data are consistent
with our predicted p„. It is essential that we acquire good
nucleon and electron scattering data at higher energies.
The combination of E ) 135 MeV and electron scatter-
ing with high resolution would allow a detailed test of the
RPA densities, as would experiments at E„=E =60
MeV. ' Presumably such data would also contain infor-
mation regarding the reversal states, ' which are also part
of the whole picture we are examining. This is a minimal
requirement for quantitative studies of the isospin struc-
ture of quadrupole excitations.

B. Giant-quadrupole-resonance region

The calculations for positive and negative pion scatter-
ing to the GQR region are compared to the data of Ull-
man et aI. in Fig. 4. The RPA calculations assume the
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FIG. 4. Differential cross sections and ~ /~+ cross-section
ratios for excitation of the GQR in "~Sn with 130 MeV pions.
The data are from Ref. 7, while the solid and dashed curves
were obtained using densities from set A and set B, respectively.
The curves are the incoherent sums of cross sections calculated
for all of the states in the GQR region.

—'t .5O

E
1.0

C)

I
I I

0 5—
CU
LU

CQ

0.0
10

I I I I I ( I I

15
E„(MeV)

20

FIG. 5. Excitation function for electric quadrupole strength
in "Sn. The curves are from our set A (solid curve) and set B
(dashed curve) RPA calculations. The band at the top is indica-
tive of the values obtained from the electron scattering cfata for" Sn in Ref. 13, while the "data" point indicates the value ex-
pected based on the M~ extracted from the pion data of Ref. 7.
A Gaussian spreading width of 4 MeV was used to construct the
curves (but not the "data" point) from the discrete states in our
calculations and the tables of experimental data.

GQR is made up of discrete states, so we incoherently
add the cross sections for the levels in the 9
MeV &E„&19MeV region to obtain the angular distri-
butions shown here. The sum is dominated by a single
state near E„=13.2 MeV as noted earlier. The transition
densities of sets A and B give very similar results for posi-
tive pions which are sensitive mainly to the nuclear pro-
tons. Both sets of calculated differential cross sections
are much above the data. For negative pions, set A gives
results fairly close to the data but a little high, while
those of set B give too much cross section. This is con-
sistent with the sensitivity of negative pions to the in-
crease in M„produced by the large ratio r„Irk=1. l.
These results exclude set B as having an excessively large
p„. We see from a comparison of the calculations of set
A with the data that the large value of M„/M~ deduced
from experiment is due not to an unexpectedly large m.

cross section (M„) but to an unexpectedly small n+cro. ss
section (M ). This is opposite to the result for the 2+,

transition where the experimental ~+ cross section seems
high. We again point out that looking only at R (8) hides
the fact that the problem is with the predicted m+ cross
section andlor the proton density. A similar conclusion
has also been reached by Seestrom-Morris et al. in a re-
cent paper on pionic excitation of the giant resonance in
208pb

We wish to emphasize that this question concerning
the proton component of the GQR is susceptible to in-
dependent experimental tests. There exist electron
scattering data for the giant resonances in "Sn from
Tohoku. ' We present these data in Fig. 5 as a band
(about +20% wide to reflect sotne of the experitnental
uncertainties) compared to our model predictions. The
discrete strengths were folded with a 4 MeV Gaussian to
give some spreading in comparison to data. The experi-
mental pion data correspond to about half of the set B
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curve, as indicated by the "data" point in Fig. 5. Spread-
ing effects would lower this. Although there are large
systematic uncertainties in the present electron scattering
data, they are most consistent with set A. The factor of 3
between set A and the pion results should be easily
measurable. Ideally the results of electromagnetic mea-
surements should be presented in a form like Fig. 5, for
direct comparison to calculation, rather than in terms of
derived numbers such as fraction of the T =0 sum rule.

The pion-scattering results, taken as a whole, indicate
that it is reasonable to use the multipole matrix elements
as an approximate way to summarize the data. We will
do so in the remainder of this paper. There are variations
of perhaps 20%o or so between cross-section ratios com-
puted from different densities with comparable M„/Mp
ratios. This is probably an indication of the size of effects
attributable to the radial sensitivity of the pion, but it
cannot be quantified at this time. The deficiency in our
predictions of the n+ data (about a factor of 2) are much
larger than these effects.

VI. DISCUSSION

A. Comparison to other calculations

Our results of various types of calculations of the GQR
all agree with each other to the extent that all lie far
short of the values of M„/M determined from analysis
of the pion data. It is of interest to compare our results
with other theoretical determinations of M„/M and the
inelastic pion cross sections. Auerbach et al. 32 have
done a self-consistent continuum RPA calculation with
Skyrme III forces for a hypothetical closed-shell ' Sn
isotope. Values of the squared neutron and proton mul-
tipole matrix elements were presented and the ratios of
~+ and m inelastic cross sections are given at the angle
corresponding to the peak in the m. angular distribution.
In our calculations this corresponds to about 20 rather
than the angle of 23' where the experimental data are tab-
ulated. Inspection of Fig. 4 indicates that for set A, R (8)
increases from the tabulated value 1.30 at 23' to 1.55 at
20' due to its rapid angular dependence. The latter value
should be compared to model 3, and we note that the
agreement is quite good. Notice that they also predict a
o + that is substantially above the experimental data as
we do. Thus we agree on the crucial point regarding the
proton content of the GQR. Because their basis is pure
particle hole (not two-quasiparticle), they are unable to
treat the 2+& state correctly, but, as we have seen in Sec.
III, this defect should not affect their results for the giant
states substantially. The value of M„/M for the GQR
deduced from their table for the isoscalar giant resonance
region is 1.45, which is close to the value of N/Z = 1.40
but somewhat greater than any of our results except that
obtained with an unrealistic ratio of neutron to proton
rms radii. They do not report on the ground-state densi-
ties from the Hartree-Fock calculation used as a basis for
the particle-hole states in the RPA calculation, but one of
the authors has assured us that the neutron and proton
densities have reasonable rms radii.

We expect that all calculations of the giant-resonance
strengths would tend to reduce the ratio of M„/M from
the unperturbed values due to the interaction between the
neutrons and protons. On that basis one might then
wonder why this ratio is equal to N/Z in Ref. 32. The
explanation is likely that the continuum calculations
favor neutrons compared to protons in the particle com-
ponent of the particle-hole states. This effect could com-
pensate for the reduction of M relative to M„by the in-

teraction, giving a result closer to the hydrodynamical
value of N/Z. This possibility can be examined by com-
paring calculations of neutron to proton excitations for
the isoscalar giant resonance in Pb. The continuum
effects should be less important for this nucleus because
the particle-hole excitations are lower in energy and
should put the particle lower in the continuum, where
neutron and proton wave functions are more nearly
equal. Indeed, Ref. 32 gives a relatively lower ratio in

Pb (M„/M =1.42 compared to N/Z =1.57) than in
Sn with (M„/M =1.45 compared to N/Z =1.40).

Our calculations in Pb give M, /M„=1.50, which is
much closer to Ref. 32 than are our " Sn results. In the
Julich calculation often used in comparing to data, the
ratio is N/Z for Pb. The RPA results of Ref. 34 in-
clude a discretized continuum but no two-particle two-
hole effects. From these considerations one cannot con-
clude that the ' Sn results simply correspond to the con-
tinuum RPA theory being very close in physical content
to the hydrodynamic model of a giant isoscalar vibration.

Another RPA calculation of the neutron and proton
matrix elements for the giant isoscalar excitation in Pb
is the one-particle one-hole plus two-particle two-hole
RPA with discretized continuum states that has been
done by Wambach. In the one-particle one-hole calcu-
lation the ratio M„/M in the region of the giant-
resonance peak is —1.2, but above the giant-resonance
peak the ratio is much higher. When the two-particle
two-hole components are included in the RPA, the ratio
in the isoscalar giant-resonance peak is very close to
N/Z. Perhaps as the quantum calculation basis becomes
enlarged to incorporate configurations beyond the simple
particle-hole states, it comes closer to being capable of
simulating the classical hydrodynamic model.

B. Core-polarization from the GQR
as determined from m /~+

As stated in a number of different ways in this paper
there is an important connection between the isospin
composition of the giant-quadrupole resonances and that
of the low-lying 2+& transitions. In order to investigate
the isospin consequences on the 2+, transition from the
large GQR M„/M~ deduced from n /n. +, we use the
RPA schematic model of core polarization but constrain
M„/M to be 1.9 for the isoscalar GQR. The core-
polarization effects are calculated using Eqs. (5). The in-

put parameters are the same as used in the four-state di-
agonalization described in Sec. III. The results for M„
and M for the GQR and the 2+, transition are shown in
Table III. Case a shows the results with standard input
parameters. The fact that M„and M for the 2+, transi-
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tion are slightly weaker in Table III than in Table I is due
to the fact that perturbation theory is used for the core-
polarization calculation, instead of the exact diagonaliza-
tion used in the four-state problem. In particular, the
effect of the reversal state, which is closer in energy to the
2+& state than are the giant resonances, is somewhat
stronger in the four-state diagonalization than in pertur-
bation theory. Nevertheless, the core-polarization results
are quite consistent with the four-state diagonalization
and, in fact, with the full nondegenerate quasiparticle
RPA results shown in Table II.

For cases b, c, and d we set M„/M =1.9 for the iso-
scalar GQR. For case b this is done by increasing M„
from case a. The core-polarization effect on the 2+& tran-
sition is to increase M and M„/M to values greater
than the empirical ones. These incorrect core-
polarization effects do not unambiguously rule out the ra-
tio of 1.9 for the GQR, since the GQR M extracted
from the m. + data are smaller than that in case b. The
pion GQR data are more like case c, where we reduce M
in the GQR. For case c, the core-polarization results
yield an M& much too low for the 2+& transition in con-
trast to the n. + data. In addition, M„/M~ is too large
compared to the mean value from previous independent
probe comparisons. Furthermore, the same pion experi-
ment which gives M„/M =1.9+0.4 for the isoscalar
GQR gives M„/M =1.27+0.26 for the 2+, transition.
This is in the opposite direction to what is needed fram
the self-consistent core-polarization isospin distribution
as seen by pions.

For cases b and c, M„/M~ is set equal to 1.9 for the
isoscalar GQR with no consideration of the energy-
weighted sum rule, and correspondingly no change was
made in the isovector GQR. Case d has the added
feature that the 2fico energy-weighted sum-rule strength
has been preserved for the isoscalar and isovector giant
resonances. For the isovector quadrupole state M„/M„

has changed from —1.1 to —0.75. From Table III we see
that for case d the M is too small and M„/M is too
large for the 2+& transition. In all cases the M for the
isoscalar GQR is much too large compared to the M„ in
Table III determined from the GQR proton sum-rule
strength seen by pions. We conclude from these com-
parisons that the pion scattering results for the 2+& and
the GQR are inconsistent if viewed from the standpoint
of an internally consistent structure model for quadru-
pole excitations. For testing the predictions of this mod-
el, it is crucial that the pion results be checked and cross
correlated with reactions involving other probes that ex-
cite this set of states. The predicted proton transition
densities should be tested with electromagnetic probes,
perhaps Coulomb excitation with heavy ions as well as
electron scattering measurements.

C. Background subtraction

Finally, we emphasize that our results are contingent
upon uncritically accepting the data and corresponding
errors. It is well known that the history of giant-
resonance studies contains examples of the accidental
propagation of systematic background subtraction errors
into the data. Bertrand recommends adding a
minimum 20%%uo error to data when large continuum back-
grounds are subtracted. In the case of the data con-
sidered here, such an uncertainty would eliminate most
discrepancies between theory and experiment, since typi-
cally the missing cross section is 25 —40%%uo of the sub-
tracted background. It is also important to note that the
background shapes assumed in the pion analyses ' are
very different from those used in other studies of the
GQR. ' A systematic understanding of the back-
ground for all probes is a necessity if the results are to be
meaningfully compared. Finally, the most surprising as-
pect of the pion data is that the n/n+ ra. tio for the
background is as large as the ratio for the GQR, and this

TABLE III. Neutron and proton multipole matrix elements M„and M~ in fm for the isoscalar
giant-quadrupole resonance (GQR) and those resulting from core polarization on the 2+, transition in
'"Sn. The core-polarization effects are calculated using Eq. (5).

Case M„
GQR

Mp M„/Mp M„ Mp

2+)

M„/Mp

c
d

Empirical

76.7
114.6
76.7
89.3

60.3
60.3
40.4
46.8
63.0+13.0'
31.0+1.3

1.27
1.9
1.9
1.9
1.9+0.4'

77.5
102.6
69.2
78.3

44.6
48.6
31.0
38.7
45.5+0.04~

1.73
2.11
2.23
2.02
1.72+0.21"
1.27+0.26'

'Quasiparticle RPA (QRPA) with standard input parameters (see text).
Fix M~ (GQR) from QRPA and M„/M from m. /m+.

'Fix M„(GQR) from QRPA and M„/M~ from m /n+.
dFix M„/M~ from n /n+ with GQR sum rule unchanged from case a.
'Based on sum-rule estimate for " Sn from Ref. 13 (arbitrary 20%%uo error).
See Ref. 7 and footnote b of Table I.
M~ = [8 ( E2) 1 ] ' ~' from Ref. 2.

"See Refs. 2 and 14.
'See footnote e of Table I.



37 ISOSPIN DISTRIBUTION OF QUADRUPOLE STRENGTH IN. . . 1547

background ratio would have to increase even more to
get the GQR ratio we would predict. This anomaly in
the excitation of other continuum states (if indeed that is
the source of the pion background) deserves as much at-
tention as the structure of the GQR.

VII. SUMMARY AND CONCLUSIONS

The values of M„/M, which we have calculated in the
quasiparticle RPA approximation, are in good agreement
with experiment for the first 2+ state. Whereas this ratio
for low-lying states is highly dependent on the shell struc-
ture in a SCS nucleus like Sn, we have shown in this pa-
per that giant resonances should not be dependent on
these (Hico configurations. The values of this ratio are
typically less than N/Z for the isoscalar giant resonance,
a result of the interactions between neutron and proton
configurations. By comparison with other calculations,
we conclude that the neutron multipole strength is
enhanced when the particle part of a particle-hole state is
properly treated in the continuum. Furthermore, the in-
clusion of two-particle two-hole configurations seems to
raise the ratio of M„/M to agree with the hydrodynam-
ic model of a homogeneous vibration.

However, the calculations presented in this paper and
those discussed in Sec. VI all differ from each other much
less than they differ from the ratio of M„/M which has
been extracted from the analysis of pion scattering. This
discrepancy does not seem to be due to effects of the
difference in neutron and proton transitions in or beyond
the nuclear surface, to interaction of the giant resonances
with the low-lying 2+ state, or to mixing of isovector
strength into the isoscalar energy region. The key point
is that Mp is "measured" to be small. Accurate medium
energy nucleon and electron scattering data would pro-
vide more stringent tests of the results of these structure
calculations. We emphasize that core polarization leads
to an interrelationship between all quadrupole excitations
in a given nucleus; experimental studies are thus of the
greatest value when they provide accurate data on the
full spectrum of 2+ states.

It is perhaps fortunate that the primary disagreement
between theory and data is with the ~+ scattering. Since
in the region of the resonance ~+ sees mainly protons,
the results can be independently tested with electron
scattering. In the long-wavelength limit electron scatter-
ing can be used to map out the 8(E2) t =

~ M~ ~

as a
function of excitation energy. Such a plot of the only
available electron scattering data' for Sn was shown in
Fig. 5. The comparison of calculations A and B with the
pion results (represented as a "data" point in the figure}
and electron scattering data would, if the electron
scattering were more reliable, be quite convincing evi-
dence that there is a problem with the m+ scattering and
not with the theory. We have included these results here
to motivate the electron scattering experiments needed to
help resolve this puzzle.

A report on Pb(e, e'n) has become available. In this
work the giant monopole and quadrupole multipole reso-

nances are mapped out as a function of energy using
coincidence measurements and subtracting the dipole
contribution by employing (y,n) measurements. For the
giant-quadrupole resonance, 62%%uo of the energy-weighted
sum rule is exhausted. This is in good agreement with
the various RPA calculations described in Sec. V, and,
therefore, in disagreement with the ~+ results of Ref. 8.
In a separate examination of M„/M~ in Pb(n, n') at
the Crocker Lab (University of California, Davis) has
been compared to (p,p'} ' in the giant-quadrupole region.
The resolution is not adequate to extract the multipole
contributions from the background, but the continuum is
consistent with distorted-wave Born approximation
(DWBA) ratios based on M„/M~ =N/Z, unlike the pion
case. The evidence is mounting that there is nothing
unusual or unexpected in the isospin structure of the iso-
scalar giant-resonance contrary to the indication of the
pion inelastic scattering results.

Two other possibilities which remain are the following.
(I) There might be a problem with the extraction of the
pion inelastic scattering cross sections from the data.
The isoscalar resonance sits above a high background,
and what is interpreted as giant-resonance excitation
cross section depends on what is subtracted as back-
ground. Some theoretical calculation of the background,
such as that done by Osterfeld for the Gamow-Teller
(p,n) resonance, would perhaps be valuable in helping to
settle this question. We mention again that other experi-
ments ' use a shape for the background that is ex-
tremely different from that used for (n, m'). Certainly it is
crucial for different experiments exciting the same states
to deal with this problem in a consistent fashion. If there
are different subtraction procedures from one probe of
the giant-resonance region to another, then they should
be well motivated. (2) There may be contributions in the
isoscalar resonance region from transition densities or
currents other than the matter density considered in this
and all previous calculations. It does seem unlikely that
such effects could explain the enormous ratio of M„/M„
of 1.9+0.4 for ' Sn or 3.8+1.2 for 2osPb. These unex-
pectedly large deviations from isoscalar ratios remain a
puzzle which needs both theoretical and experimental
contributions for its solution.
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