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A microscopic description of the recent data on the inelastic electron scattering form factors for
the 0+~2+ as well as 0+~4+ transitions in some doubly even Ti, Cr, Fe, Ni, and Zn isotopes is

attempted in terms of the projected Hartree-Fock-Bogoliubov wave functions resulting from realis-
tic effective interactions operating in the 2p lf sh-ell. It turns out that the available form factor
data out to about 2.5 fm ' can be reproduced in most of the cases in a fairly satisfactory manner
in terms of reasonable values of effective charges. It is seen that the empirical transition charge
densities in Ni and Zn isotopes extracted from the form factor data via the Fourier-Bessel analysis

play a decisive role vis-a-vis the choice of a model of core-polarization contributions.

I. INTRODUCTION

Inelastic electron scattering has proved to be an excel-
lent method for exploring nuclear structure. ' A mea-
surement of the electroexcitation cross section permits
one to obtain nuclear dynamical properties such as the
transition charge and current densities involved in the
transition. The calculation of these transition densities
in terms of nuclear wave functions provides a sensitive
test of the latter.

Recent inelastic electron scattering experiments have
provided valuable data on the 0+~2+ as well as
0+~4+ transitions in a number of doubly even 2p-1f
shell nuclei. Within a measured momentum-transfer
range up to 3 fm ' the observed C2 form factors are
characterized by two distinct maxima appearing at
q,z-0.7 and 1.6 fm '. The maxima of the C4 form fac-
tors occur at q,&-1.2 and 2.2 fm '. The relative mag-
nitude of the form factors at the two maxima is expected
to provide a sensitive test of the nuclear microscopic
models involved in the calculations.

We showed earlier that the yrast wave functions pro-
jected from the Hartree-Fock-Bogoliubov (HFB) intrin-
sic states resulting from realistic effective interactions
operating in the full 2p-1f shell provide a good descrip-
tion of the observed form factors for the 0+~2,+~ transi-
tions in some Ti, Cr, and Fe isotopes (with 46& A & 56)
in the first half of the shell. In this paper we show that
a similar description of the yrast wave functions also
permits a fairly satisfactory interpretation of the avail-
able data on the 2+ form factors in some doubly even Ni
and Zn isotopes (with 58 & A &68) in the second half of
the 2p lf shell. In this context -we discuss, for the first
time, the microscopic prescription of calculating the
transition charge densities in terms of self-consistent
HFB states. We also examine here the recent form fac-
tor data i.nvolving the 0+~4+ transitions in some
Ti, Cr, Fe, and Ni isotopes in the framework of the pro-

jected HFB method.
Recently, Mooy and Glaudemans have calculated the

form factors as well as the transition charge densities for
the (0+—+2+ ) transitions in the nuclei ' Ni in terms
of shell model wave functions' resulting from semiem-
pirical effective interactions operating in the restricted
valence spaces involving the

[(2ps/2, 1fs/2, 2p1/2)"

+(lf7/2} '(2p3/2& Ifs/2& 2pl/2)""i

configurations. The calculations involved an indepen-
dent variation of the effective charges for protons and
neutrons so as to fit the 8 (E2; 0+~2+ } values as well as
the ratio of the form factor at the first and second maxi-
ma for each isotope. However, such a procedure yielded
significantly mass depende-nt effective charges; the values
for the proton effective charge, e, turned out to be
(2.60, 3.30, 1.85}for the nuclei Ni, respectively.

The available data on the reduced E2 transition prob-
abilities in the Zn isotopes suggests enhanced rotational
collectivity in these isotopes compared to that in the Ni
isotopes. "' It is thus desirable to have an extended
shell model description of these isotopes involving more
than just one (1f7/2) hole. In view of the near-
intractability of such a description —the dimensionalities
of the matrices involved in the earlier shell model calcu-
lations with smaller numbers of valence particles are al-
ready above 1000—the available form factor data in
doubly even Zn isotopes have not been analyzed in a mi-
croscopic framework thus far.

In the present work we show that the use of
J =0+,2+ states projected from the HFB wave func-
tions generated in the full 2p-1f space leads to a fairly
satisfactory unified interpretation of the available

i
F

i
(0+~2+) in the nuclei ' Ni and ' ' Zn in

terms of reasonable value of nearly mass-independent
effective charges. This set of effective charges is also

37 1427 1988 The American Physical Society



1428 P. K. RAINA AND S. K. SHARMA 37

shown to yield excellent quantitative agreement between
the calculated and the observed values of the reduced E2
transition probabilities in these nuclei.

In recent years considerable attention has been devot-
ed to the coordinate-space reconstruction of the transi-
tion charge densities associated with the electroexcita-
tion of nuclear levels in the framework of the Fourier-
Bessel method of Dreher et al. ;' these analyses have
been carried out by Heisenberg for the Ni isotopes and

by Neuhausen for the Zn isotopes. The empirical tran-
sition densities acquire significance vis-a-vis the test of
model wave functions since they contain structural infor-
mation unaffected by the accuracy of the usual plane-
wave Born approximation (PWBA) for large momentum
transfers. We have calculated here the transition charge
densities for various Ni and Zn isotopes in terms of the
projected HFB wave functions. By combining the model
space transition densities resulting from the self-
consistent wave functions with each of the two existing
models for the core-polarization transition density, we
have attempted to examine whether the empirical values
point towards a preferred choice.

We have also calculated here the
~

F
~

(0+~4+)
values in the nuclei ' Ti, ' ' Cr, Fe, and Ni with
a view toward testing the efficacy of the projected HFB
description vis-a-vis the recently measured data for the
electroexcitation of 4+ levels in these nuclei. The recent
work of Mooy and Glaudernans has revealed that a re-
stricted shell model description of the (0+~4+) form
factors in the nuclei Cr, Fe, and Ni requires
highly-mass-dependent effective charges which are also
drastically different from the set required for a reason-
able quantitative agreement with the observed (0+ ~2+ }
form factors in these nuclei; the values [e (0+
~2+), e (0+~4+)] required to optimize the fit to the
observed data are [1.33, 2.06], [1.42, 1.76], and
[3.33, 1.54] for the isotopes ' Cr, ' Fe, and Ni, respec-
tively. In this context we find that the HFB description
for the J =4+ states in the Ti, Cr, Fe, and Ni isotopes
not only obviates the necessity of invoking significant
mass dependence, it also permits a good quantitative dis-
cussion of the (0+ ~4+ } form factors in terms of
effective charges quite close to those required for a com-
parable fit to the (0+~2+ ) data in these nuclei.

In Sec. II we present some details of the calculational
framework. In Sec. III we discuss the form factors and
transition densities, as well as the E2 transition strengths
associated with the (0+~2+ ) transition in some doubly
even Ni and Zn isotopes. We shall also discuss in this
section the results of the calculation of the

~

F
~

(0+~4+ } values in some Ti, Cr, Fe, and Ni iso-
topes. Section IV contains some concluding remarks.

II. CALCULATIONAL FRAMEWORK

In the calculations presented here we have employed a
slightly modified version' of the Kuo-Brown (KB)
effective interaction' for the

when the creation operators b; can be expressed as

b; =pc, , a, b, =g( —1)' cj, a,
J J

(2)

Here the operator a creates a particle in the orbit

~
jm ), and c; are the expansion coefficients. The index

j labels the single particle states 1f7/2 2p3/2 2pf/p and
1f~/2, and the index i is employed to distinguish between
different states with the same m.

The states with good angular momenta J projected
from the HFB state

~
4x. ) can be written as

quite satisfactory from the point of view of reproducing
the 8 (E2;0+~2+) systematics and yrast spectra, ' as
well as the inelastic electron scattering form factors in-
volving the 2&+ and 22+ states in several Ti, Cr, and Fe
isotopes. The single particle energies for the 2p lf o-r-

bits are taken from the observed 'Ca spectrum.
For calculating the (0+~2+) as well as (0+~4+)

form factors in various 2p lf s-hell nuclei, we have ob-
tained the axially symmetric intrinsic states by following
three different methods —the HFB method discussed in
Ref. 17 for the nuclei Ti, ' Cr, and ' Ni, the de-
formed Hartree-Fock —Bardeen-Cooper-Schrieffer (HF-
BCS) method discussed by Goodman' for the nuclei

Ti, Cr, Fe, Ni, and Zn, and the usual deformed
HF method for the nuclei ' Zn. Pairing correlations
between only the like particles are allowed in our HFB
and HF-BCS calculations. The choice of the intrinsic
state for a particular nucleus has been dictated by the
following considerations. It is seen that the inclusion of
pairing correlations (in the HFB framework} results in
nearly spherical intrinsic states in nuclei with N=28,
and with N )34. This is related to the fact that the usu-
al HFB method does not permit a treatment of the de-
formation and pairing degrees of freedom on the same
footing because of the subshell closure at N=28 and the
approaching shell closure at N=40; it tends to em-
phasize the latter degrees of freedom. The near-
spherical HFB intrinsic states for N=28 and N )34 nu-
clei yield vanishingly small ( & 10%}amplitudes for yrast
states with Jg2. These HFB intrinsic states are inap-
propriate vis-a-vis the present calculation, which re-
quires, as an essential prerequisite, a reasonably satisfac-
tory description of the J =0+, 2+, and 4+ states. The
HF-BCS intrinsic states for the nuclei Ti, Cr, Fe,

Ni, and Zn, and the HF intrinsic states for the nuclei
Zn, contain J=2,4 states with sizable (&10%) am-

plitudes.
The use of the projected HFB/HF-BCS wave func-

tions in the context of the calculation of the transition
densities has not been discussed so far in the literature.
In what follows we briefly sketch an outline of the
method. '

The axially symmetric intrinsic HFB (or HF-BCS)
state with K = (J, ) =0 can be written as

(lf7/2 2p3/z, 2p&/2, 1f,n)
valence space. This interaction was shown earlier to be =[(2J+I)/8m. ] I D~~(Q}R (Q)

~
4x )dQ, (3)
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P(r)= g p„„(r)Y~„(8,$) .
A.p

(4)

The transition charge density pz(r) is the reduced ma-
I

where R (0) and Dtrx(Q) are the rotation operator and
the rotation matrix, respectively.

The nuclear charge density operator can be expanded
in multipoles:

trix element of p&.

p.(r) =
& Jf lip. llJ; &

Using the projected HFB wave functions given by Eq.
(3), one obtains the following expression for the transi-
tion charge density:

pg( J; Jf ) = & Jf0
l pt„( r)

l
J;0 &

J J /P Jg k Jf
=(n n ') ' Q(2J;+1) f g 0 d '„o(8)n(8)

r

X g .„R„ t (r)R„, (r)&al Y~ 'lP.&aa PP + ~p

sin8d8 .
(6)

Here the term in square brackets is a Clebsch-Gordan
coefficient, and R„t(r) is the radial part of the harmonic
oscillator states

l
nl &. The functions Ys's

' are the spher-
ical harmonics of order L. The explicit expressions for
the normalizations n and the matrices n (8) and M(8)
are given in Ref. 8. The expressions for calculating the
form factors and the reduced transition probabilities for
electric quadrupole transitions, as well as the static
quadrupole moments of the 2+ states, have also been
given in Ref. 8.

For the evaluation of the single particle matrix ele-
ments we have employed the oscillator wave functions
with the length parameter given by b =1.01A ' . The
center-of-mass correction has been taken into account
by multiplying a factor exp(b q /4A). The correction
due to the finite size of the proton has been incorporated
by multiplying with the proton form factor fz(q):

f~(q) = 1/(1+q'a ' /12)', (7)

where a =0.84 fm.
Furthermore, in order to compare the form factors

calculated by the PWBA with the experiments, the ex-
perimental data have been plotted at the effective
momentum transfer q,~ instead of the kinematic q:

3Zake
a ——q 1+ 2ERi eq

where R eq is the radius of the equivalent uniform charge
distribution of the ground state and E, is the energy of
the incident electrons.

The recently measured cross sections associated with
the 0+~4+ transitions in the nuclei ' ' Cr have been
given as a function of the scattering angle. In these
cases the momentum transfer q has been calculated using
the relation

q =2(E;Ef )' sin(8/2),

where Ef denotes the final energy of the electron.

III. RESULTS AND DISCUSSION

A. The 0+ ~2+ transition in the nuclei
58, 60, 62Ni any 64, 66, 6szn

1. Form factors

We first discuss here the Ni isotopes. The squared
form factors

l
F(q)

l
(0+~2+ ) in these isotopes are

calculated and compared with the experiments in Fig.
1. The form factors have been computed with the
effective charges e =1.8 for protons and e, =0.8 for
neutrons. As discussed later, it is seen that this set of
effective charges is quite consistent with the available
8 (E2; 0+~2+ ) values in these isotopes.

Overall, it is seen that the agreement between the cal-
culated and the observed form factors is remarkably
good throughout the momentum-transfer range

q =0.5-2.8 fm '. The degree of quantitative agreement
in the nuclei ' Ni is quite satisfying, particularly in
view of the fact that the effective charges were not fine
tuned for each isotope.

A significant discrepancy occurs in the case of the nu-
cleus Ni where the present calculation underestimates
the form factors for the range q =0.8 —1.2 fm '

by
about 30 percent. This may be due to the noninclusion
of the 1g9/p orbit in the valence space. As pointed out
by Delphini and Glaudemans, as well as Potbhare
et aI. ,

' the 1g9/2 orbit is expected to play an important
role vis-a-vis the structure of the yrast levels in Ni iso-
topes with A )60. However, the nonavailability of the
core-renormalized effective interactions for the

( 1f7 )2 2p 3q2 2p ~ q2 1f5 q2 ig 9q2 )

space has prevented us from examining here the explicit
role of the 1g9/p orbit.

We have also presented in Fig. 1 the results obtained
by Mooy and Glaudernans in the framework of the shell
model involving the
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proton-neutron interactions are strongest for orbits with
large spatial overlap, such processes are expected to be
favored in the nuclei ' Ni where the energy difference
between the proton and neutron Fermi surfaces is not
very large. In heavier nuclei ( A ) 62) with larger neu-

tron excess, the amplitude of proton excitations leading
to correlated proton-neutron configurations is expected
to decrease due to larger gap between the proton and
neutron Fermi surfaces.

Figure 2 presents a comparison of the calculated and
the experimental

~

F (q)
~

values for the 0+ ~2+ tran-
sjtjons jn the nuclej ' ' Zn. These form factors were
analyzed earlier with phenomenological models —the
modifie Tassie model and the Gaussian model. The
best-fit calculations carried out in the framework of the
latter model have also been shown here.

As in the case of the Ni isotopes, the present form fac-
tor calculations for the Zn isotopes also employ effective
charges such that the isovector effective charge, defined
by (e —e„), is always le. However, it turns out that a
reasonable variation of the isoscalar effective charge—
with e„=(0.75, 0.55, 0.75) for the nuclei ' Zn,
respectively —is required for optimizing the agreement
with the available 8 (E2; 0+ ~2+ ) values. With these
effective charges, the form factors for q&1.2 fm ' com-
puted with the self-consistent wave functions are also in
excellent agreement with the experiments. %e notice,
however, systematic discrepancies between the calculat-

FIG. 1. Experimental and calculated squared form factors

~

F
~

' for the 0+~2+ transitions in the nuclei " 'Ni. The
solid curves show the results obtained with the self-consistent
wave functions. The broken curves display the results obtained
in the recent shell model calculation (Ref. 9) involving restrict-
ed configuration mixing.
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configurations. These calculations employed the
eifective charges (e, e„)=(2.60, 0.72), (3.30, 0.50), and

(1.85, 0.82) for the nuclei ' Ni, respectively.
Considering first the momentum-transfer range

0.5&q&2.1 fm ', we find that the projected HFB and
the shell model estimates are quite close except around
the second maximum (q —1.6 fm ') in the nucleus Ni,
where the latter are smaller by roughly a factor of 2.
For larger momentum transfers the shell model esti-
mates are an order of magnitude larger —a feature that
emphasizes the desirability of precise form factor data
for q&2. 1 fm ' in the nuclei ' Ni.

It is interesting to note that the proton effective
charges employed in the shell model calculations in the
nuclei * Ni are considerab1y larger than the A-

independent value (e =1.8) employed in the present
work. This can be qualitatively understood in the fol-
lowing manner. The shell model value of the proton
effective charge simulates partly the effects due to the ex-
citations involving two or more 1f7/2 protons. Since the
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q (fm ')

FIG. 2. Experimental and calculated form factors for the
0+~2+ transitions in the nuclei ' 'Zn. The broken curves
represent the best-fit calculations with the Fourier-Bessel ex-

pansion of the transition charge densities (Ref. 4).
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TABLE I. The Q(2+) and 8{E2;0+~2+}values (labeled PHFB) in the nuclei " ~Ni and ' ' Zn calculated with the set of
effective charges employed in the form factor calculations. The B (E2; 0+~2+ }values are in units of e'fm and the Q(2+) values

have been given in units of efm'. Here, (Qo) ((Qo), } gives the contribution of the valence protons (neutrons) to the. intrinsic

state.

Nucleus (e, e )

8 (E2;0+~2+ )

PHFB Expt. PHFB
Q(2+)

Expt.

"Ni

Ni

Zn

Zn

68Zn

'Reference 11.
Reference 12.

'Reference 24.

—3.4
[ —1.1, —2.3]

—12.5

[—3.9, —8.6]
—13.1

[—5.3, —7.8]
—20.3

[—10. 1, —10.2]
—24.6

[—13.5, —11.1]
—18.2

[—9.8, —8.4]

(1.80, 0.80)

(1.80, 0.80)

(1.80, 0.80)

(1.75, 0.75)

(1.55, 0.55)

(1.75, 0.75)

846

970

1610

1457

1210

668+70'

909+70'

876+75'

1580+50

1370+50

1360+60b

16.1

21.3

31.8

34.3

29.9

—15+8'

3+7'

5+12'

ed and observed form factors for q~ 1.2 fm '. The cal-
culated form factors for q —1.5 fm ' are smaller by
about 40 percent than the observed ones, and the second
maxima of the theoretical form factors display a sma11
but noticeable shift towards higher momentum transfer.
These discrepancies may again be rejecting the necessity
of explicit involvment of Ca core excitations as well as
the 1g9/p excited configurations. Present calculations re-
veal (see the second column of Table I) that the total in-

trinsic quadrupole momenta for the Zn isotopes are sub-

stantially larger than those obtained for the lighter Ni
isotopes. This onset of sizable oblate deformation may
signal enhanced 1g9&z occupation via a lowering of the
(down sloping) Nilsson orbitals with k =+—', .

As discussed later, the apparent inadequecy of the
effective charges to simulate the excitations from the
core into model space —or out of model space into
higher orbits —in the context of large momentum-
transfer data manifests itself in the form of discrepancies
between the calculated and empirical transition densities
in the interior region ( r & 3 fm).

2. The reduced transition probabilities, B(E2; 0+ ~2+ ),

and the static quadrupole moments, Q(2+ )

In Table I and Fig. 3 we have presented the results for
the static quadrupole moments, Q(2+ }, as well as the re-
duced transition probabilities, 8 (E2;0+~2+ ) in the nu-

clei 58,60, 62Nj and &,66, 68Zn The g (2+ )

values have been computed with the effective charges
employed in the calculation of the form factors for vari-
ous isotopes discussed in the preceding section. The cal-
culated 8 (E2;0+ ~2+ ) values are seen to be in excellent
agreement with the experiments; the only noticeable

discrepancy occurs in the case of the nucleus Zn where
the present calculation underestimates the lower bound
of the observed value by about 6.6 percent.

The usefulness of the available Q (2+ ) values —and
these are just three in number —vis-a-vis a test of the
present microscopic description is severely constrained
by the large error bars arising due to the uncertainties

8
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Zll

FIG. 3. Graphical presentation of the results for electric
quadrupole transition probabilities and static quadrupole mo-
ments in some doubly even Ni and Zn isotopes. The straight
lines join the points calculated with the effective charges em-

ployed in the form factor calculations.
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associated with the effects of higher excited states in the
Coulomb excitation processes. The calculated values
are, however, qualitatively consistent with the available
data; in particular, the latter seem to support our predic-
tion of oblate intrinsic shapes in the nuclei ' Ni.

3. Transition charge densities

In the preceding sections we have seen that the intro-
duction of the state-independent —and (nearly) mass-
independent —effective charges for the valence particles
is, on the whole, quite adequate in most of the cases for
describing the observed 8 (E2) values and the form fac-
tars. The effective charge model implicitly assumes that
the contributions arising from the core polarizations or
the extra-model-space components are proportional to
the valence space contributions. A more realistic model
involves the mixing of the zeroth-order valence wave
function with the 2 pole, nkvd giant resonances; this
description is consistent with the use of the separable,
multipole-multipole interaction in conjunction with the
first-order perturbation theory. In view of the expected
sensitivity of the transition densities towards the details
of the radial characteristics of various parts of wave
functions, we have also considered here this prescription
for invoking core polarization by assuming the Tassie
model for the 2 -pole excitations. The total transition
density is constructed as the sum of two terms —the
valence-space term A (r) with isoscalar effective charge
set to zero, and the Tassie core-polarization transition
density term 8 (r) .(Ref. 25):

p(r) = A (r)+NB (r), (10)

B(r)=r ' p, (r) .
dr

when 8 (r) is related to the ground state charge densities

ps, (r } by the relation '

underlying valence orbits. On the other hand, the col-
lective contributions inherent in the Tassie model reduce
considerably the single-particle features of the valence
part.

We have also displayed in Fig. 4 the shell model re-
sults for transition densities obtained by Mooy and
Glaudemans with the effective charge prescription for
the core polarization. The results are in qualitative
agreement with the projected HFB estimates involving
the effective charges. The quantitative differences arise
from the enhanced (lf7&2~1f5&2)" and (lf7~2~2p3&2)"
transitions allowed in the present calculations. As point-
ed out by Mooy and Glaudemans, these transitions
govern to a large extent the first maximum at r —1 fm
and the first minimum at r-2.5 fm in the valence part
of the transition densities.

In Fig. 5 we have presented a comparison of the pro-
jected HFB results for the transition densities in the nu-
clei ' ' Zn with the empirical values extracted from

003
p(e fm s}

Q,02-

~ ~

~ ~ sea ~ ~

I

-Ol-

0.03

001

0

The normalization constant N is obtained by requiring
overall consistency with the usual effective charge mod-
el; we adjust X so that the total charge resulting from an
integration of p(r) is just e .

In Fig. 3 we present the transition charge densities for
Ni isotopes calculated by combining the projected HFB
predictions with one or the other of the two models for
the core-polarization component. We have compared
our results with the empirical transition densities ex-
tracted from the available form factor data in the frame-
work of the Fourier-Bessel method by Heisenberg. It is
seen that in the region 3 & r & 8 fm the predictions of the
effective charge (dot-dashed line) and the Tassie prescrip-
tions (dashed line} do not differ significantly. Whereas
the latter prescription yields transition densities in excel-
lent agreement with the empirical ones, the estimates in-

volving the A-independent effective charges display
minor discrepancies in ' Ni. In the interior region
(0&r & 3 fm), however, the Tassie model for core polar-
ization provides a vastly improved description of the
transition densities, in keen contrast with the effective
charge model estimates which show large oscillations.
The effective charge model emphasizes the role of the

at03- NI

Q02

OE,Ol

0—

-O.ol

- 0.02—

I 1 1 I 1 I I

2 3 a 5 6 7 8 0
r(fm}

FIG. 4. Transition charge densities for the first 2+ state in
Ni calculated with the effective charge model (dot-dashed

line) and with the Tassie model (dashed line). The empirical
charge densities (Ref. 3) have been shown in the form of an er-
ror band. The dotted curve represents the shell model results
(Ref. 9).
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the form factor data by Neuhausen. Here again we find
that the Tassie prescription for the core participation
permits a significantly improved description of the
empirical transition densities.

B. The 0+ ~4+ transition in the nuclei
Ti Fe and Ni

FIG. 5. The empirical transition densities (error band) and
the theoretical predictions involving the effective charge model
(dot-dashed lines) as well as the Tassie model (dotted lines).

( lf ~j 4(qr)
~

1f ) occur at q —1.8 and 2.4 fm ', respec-
tively. Since the description of F(q) in the projected
HFB framework involves [see Eq. (8) in Ref. 8] a linear
combination of the matrix elements ( 1f ~

j4(qr)
~

1f )
and ( 1f ~j4(qr) ~

2p ), it is expected to display the fol-

lowing general features.
(i) In view of the proximity of the maxima of the two

matrix elements, we do not expect significant A depen-
dence in the position of the first maximum. This feature
is strikingly rejected in the observed data; the first
maximum appears at practically the same position —at

q —1.2 fm '—in various nuclei.
(ii) We do not anticipate the occurrence of the second

maximum in nuclei with structure dominated by the
(lf7rz)" configurations for protons as well as neutrons,
since in such cases the form factor is governed by only
the matrix element ( 1f ~j 4(qr)

~
1f ).

(iii) In the deformed 2p-1f shell nuclei, the 2p3/g orbit
is also expected to play an important role. The magni-
tude of

~
F(q)

~

at the second maximum as well as the
location of this maximum is, therefore, expected to
display considerable variation over the range q =1.8
-2.5 fm ', depending on the relative importance of the
matrix element ( 1f ~j 4(qr)

~
2p ).

2. The nuclei with N or Z=28

1. Quali tati ue features

The qualitative aspects of the 0+~4+ form factors
in the 2p-lf shell nuclei are mainly governed by the
two radial matrix elements ( lf ~j ~(qr)

~
1f ) and

( If ~j „(qr)
~

2p ), if we assume that the q dependence of
these matrix elements is not significantly changed by the

Ca core-polarization processes. It turns out that (see
Fig. 6) whereas the matrix element (lf

~
j4(qr)

~
lf )

possesses just one maximum at q —1.2 fm ', the matrix
element ( lf

~j 4(qr)
~

2p ) possesses a maximum at
q —1.1 fm ' followed by a minimum at q-2.2 fm
The zeros of the matrix elements ( 1f ~j 4(qr)

~
2p ) and

The squared form factors for the 0+~4+ transitions
in the nuclei Ti, Cr, Fe, and Ni are calculated and
compared with the experiments in Fig. 7. In the cal-
culations reported in this and the next subsection, we
have employed the mass-independent set of effective
charges (e, e )=(1.5, 0.5) for the nuclei ' Ti and

Cr. In the case of the nuclei Fe and Ni, the
values employed are (1.7, 0.7) and (1.8, 0.8), respectively.

From the results presented in Fig. 7 one finds that the
calculated form factors are in very good quantitative
agreement with the experiments. In the case of the nu-
cleus Cr present calculation correctly predicts the posi-
tion as well as the magnitude of the second maximum.
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Nucleus

48T1

50T

50C

52cr

54C

54F

& g.'&
[ g.')., &g'. )„]

16.4
[6.7, 9.7]

—9.4
[—4. 8, —4.6]

26.3
[13.0, 13.3]

11.4
[7.8, 3.6]

26.7
[13.1, 13.6]

9.0
[6.4, 2.6]

60N —12.5
[—3.9, —8.6]

'Reference 9.
Reference 26.

'Reference 24
dReference 27.

go&
g'. &., &g:&,]

21.3
[16.5, 4.8]

14.9
[6.1, 8.8]

33.2
[19.1, 14.1]

15.7
[9.7, 6.0]

33.7
[20.3, 13.4]

—7.5
[—5.5, —2.0]

17.3
[9.1, 8.2]

PHFB
[e, e„]

547
[1.7, 0.7]

378
[1.7, 0.7)

1302
[1.6, 0.6]

727
[1.7, 0.7]

1232
[1.5, 0.5]

600
[1.7, 0.7]

846
[1.8, 0.8]

635
[1.3, 1.6]

Expt b

690+40
750+50

330+40
315+30

1040+115
1135+100

565450
660+30

1000+70'

500
[1.4, 2.3]

909
[3.3, 0.5]

535+40
675+40

914+20'

B (E2;0+~2+ )
SM'

[e, e„]

1.61 x 10
[1.5, 0.5]

2.36x 10'
[1.5, 0.5]

1.23 x 10
[1.5, 0.5]

2.65 x 10'
[1.5, 0.5]

2.33x 10'
[1.5, 0.5]

2.91 x 10'
[1.7, 0.7]

3.46x 10'
[1.8, 0.8]

7.9x 104

[2.06, 1.06]

1.3x 10'
[1.76, 0.76]

2.2x10'
[1.54, 0.54]

B(E4;0+~4+)

[e,e, ] [e , e„]
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(e„,e, ) values are considerably larger than those con-

sidered in the present calculation. Large renormalized
values of the effective charge, which imply an enhanced
involvement of the 2p3/2 orbit, are not unexpected in

this nucleus in view of the significant nonsphericity of
the zeroth-order description of the proton wave function
in terms of the (1f7/t ) configuration.

It may be pointed out here that the effective charges
employed in the present calculation of the 0+ ~4+ form
factor for various 2p-1f shell nuclei are either the same
or lie within 12 percent of the values employed in our
earlier calculations for the 0+~2+ form factors in

these nuclei. This feature is not shared by the shell

model calculations (see columns 5 and 7, Table II); the
shell model results are characterized by large differences
between the effective charges employed for the 0+~2+
transitions and those for the 0+ ~4+ transition.

Figure 8 compares the calculated and observed ! F !
for the 0+~4+ transitions in the nuclei Ti, Cr, and
'4Cr.

Although the 0+~2+ transitions in the nuclei Ti
and Cr have been discussed earlier by Iwamoto et al.
in the framework of the shell model involving restricted
configurations, no shell model calculation has so far been
reported in these nuclei for the 0+~4+ form factors.
Since these nuclei do not involve the )f7&z subshell clo-
sure, it is diScult to justify a priori any truncation
scheme for reducing the number of shell model
configurations.

As mentioned earlier, the projected HFB calculations
have been carried out with a constant set of effective
charges —with e =1.5 and e =0.5—for the nuclei con-
sidered here. It is seen that the present calculation is
quite successful in reproducing the magnitude of the
form factors at the first maxima. However, one observes
discrepancies in the momentum-transfer range
1.5&q~2.7 fm; the position of the first minimum is
shifted towards higher momentum transfers and the cal-
culation underestimates the magnitude of ! F ! around
its second maximum in the nuclei ' Cr. It is seen that
the quadrupole moments of the intrinsic states (see
column 2, Table II) in the nuclei Ti and ' Cr are
significantly larger than those for the nuclei with N or
Z=28. The onset of sizable quadrupole deformations
may warrant the inclusion of the 1g9/2 orbit in the
configuration space. It would also be worthwhile to ex-
amine the effect of incorporating more configurational
admixtures within the 2p- 1f shell by considering
quasiparticle-excited E=O intrinsic states, in addition to
the usual one resulting from the HFB calculation.

-4

IV. CONCLUSIONS

-5

-4

-5

-6

1065 i5 2P k5

q, «(fm ')
FIG. 8. Experimental and ca1culated squared form factors

!F!' for the 0+~4+ transition in the nuclei 'Ti, ' Cr, and
'4Cr.

We have discussed here the calculation of the form
factors associated with the electroexcitation of the 2+
and 4+ levels in a number of 2p-lf shell nuclei. The
BE(2) values as well as the transition charge densities
have also been calculated in the case of the 0+~2+
transitions. It turns out that the projected HFB ansatz
for the wave functions in conjunction with the realistic
2p- 1f shell effective interactions provides a nearly
parameter-free framework for interpreting and correlat-
ing the available data from a microscopic perspective.

Present calculations have revealed significant
discrepancies vis-a-vis the large-momentum-transfer
(q&2.0 fm ') form factor data —and the related transi-
tion densities data for the interior region (r & 3)—in
some cases. An explicit inclusion of the Ca core exci-
tations as well as ()g9&2)" configurations may lead to an
improved description of the form factors and the transi-
tion densities, apart from reducing considerably the
quantitative significance of the choice of a model for
"effective charge" contributions.
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