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The cross sections for the elastic and inelastic scattering of alpha particles from Bi have been

measured at 50.5 MeV for angles up to 92 in steps of 1'. An optical model analysis of the elastic

scattering data has been made, starting with the parameters predicted from systematics and con-

sistent with those determined at higher energies. The large angular range combined with the rela-

tively small errors in the measurement restrict the real potential to just three discrete families. A
nearside-farside decomposition of the data clearly reveals the Fraunhofer diffraction pattern super-

imposed on the large background of Fresnel diffraction. The inelastic scattering data have been

analyzed in terms of the collective model using the distorted wave Born approximation, for which

the distorted waves were generated by the optical model analysis of the elastic scattering data.
The values of the deformation lengths (PR) obtained are compared with those reported in the

literature.

I. INTRODUCTION

The study of elastic scattering of a particle incident on
a nucleus is a basic ingredient for understanding other
more complicated reaction processes, such as transfer re-
actions, the formation of compound nuclei, and their
various decay modes. The analysis of the differential
cross sections for elastic scattering provides a simple
handle to determine the interaction between nuclei.
Phenomenologically, this interaction is parametrized in
terms of the complex optical potential with a Woods-
Saxon geometry.

Although alpha scattering has been studied extensive-
ly,

' the optical model parameters deduced are not
unique except at higher energies (E,)90 MeV) where
nuclear rainbow scattering is observed. At low energies
the analysis suffers from the Igo ambiguity (determining
the potential only at the strong absorption radius) and
the discrete potential ambiguity. '

The present measurement of alpha scattering from
Bi has been carried out with the aim of reducing the

ambiguities in the optical potential by measuring the
data accurately over a wide angular range. In Sec. II
the experimental procedure and the angular distribution
results for elastic and inelastic scattering are presented.
In Sec. III a detailed discussion of the optical model
analysis is given. From the systematics of the alpha-
nucleus optical model parameters established earlier,
the parameters relevant to the Bi+ He system at 50.5
MeV are deduced. These initial parameters are then fine
tuned to get the best fit to the data. The notch perturba-
tion test' has been carried out to determine the radial
region of sensitivity. The discrete family ambiguity,
combined with the surface ambiguity, has been studied.
A nearside-farside decomposition"' of the data has
been made. The nearside-farside analysis prominently
features the Fraunhofer oscillations at large angles
which are due to the interference of the near and the far
amplitudes. In Sec. IV the data for the inelastic scatter-

ing to the low lying states in Bi are compared with
distorted wave Born approximation (DWBA) calcula-
tions employing the optical parameter set which best fits
the elastic data. The deduced deformation parameters
are then compared with those from other measurements.

II. EXPERIMENTAL PROCEDURE AND RESULTS

The measurement was made using the unanalyzed 50.5
alpha-particle beam from the 224 cm variable energy cy-
clotron at Calcutta. The target was located at the center
of the 90 cm diameter scattering chamber. The collima-
tor geometry used for the beam transport into the
chamber was chosen to optimize the beam transmis-
sion. ' For the collimation three slits were used. The
first slit of 8 mm diameter was followed by a second slit
of 2 mm diameter with a spacing of 1.5 m between them.
This was followed by a third (antiscattering) slit of 6 mm
diameter at a distance of 41 cm from the second collima-
tor. The target was 9 cm downstream of the third slit.
This geometry sets an acceptance of 10.6 mm mrad with
a beam size of less than 6 mm.

The measured data are shown in Fig. 1 plotted as
o lo.z, where o.z is the Rurtherford cross section. In
order to minimize systematic errors in o/oa, it is im-

portant to determine the beam energy and the detector
angles accurately. The three collimators were optically
aligned to ensure an angular offset of less than +0.2'.
The angular offset of the two detector arms was checked
optically and found to be better than +0.05'. The angu-
lar offset of the detectors was checked independently us-
ing a Mylar [(C,pHs04)„] target and locating the two
peaks in the energy spectra, arising due to alpha scatter-
ing from hydrogen, as a function of angle. The energy
difference approaches zero as the maximum kinematical-
ly allowed angle, 0,„, is approached. The calculated
value of Om, „ for the alpha-'H system is 14.7', indepen-
dent of the bombarding energy. The measured angular
offset by this method was less than +0.07'. The ratio of
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010- i
mate value of E and the convergence is rapid. For a
given detector angle 8 and beam energy E, the energies
E(' 0), E(' C), and E(' C*) corresponding to the peak
positions can be predicted using relativistic kinematics
and K (E ) can be calculated as

E(' C) —E(' C*}
E ( "O)—E ("C) (2)
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FIG. 1. The ratio of the elastic scattering cross sections to
the Rutherford cross sections plotted as a function of the
center-of-mass angle. The solid line is the optical-model fit to
the data with the final values of the parameters given in Table
I.

At 8=60' and considering the 4.439 MeV state in ' C,
for example, K(E, ) varies from 61.970 to 59.338 MeV
when E varies from 10 to 120 MeV. The slow varia-
tion of E (E ) enables an application of (1) to determine
E even when the approximate beam energy is not
known in advance. For the present measurement, E
was estimated to be (50.54+0.04) MeV.

The elastic scattering angular distribution was mea-
sured in steps of 1' covering the angular range 5' to 92'.
The measured o. /cr„values vary from 1 to 3&(10
Beyond 8-60', oscillations are clearly seen in the angu-
lar distribution. Typical errors on the e/o „values vary
from 3—5 % below 70' to 5 —10% for angles beyond 70'.

The measured cross sections for the inelastic scatter-
ing to the states of 2.60 and 4.22 MeV are shown in Fig.
2. The yields from the other states were generally small.
Because of the presence of oxygen and carbon as target
contaminants, the cross sections were extracted only for
8 & 30' and 8 & 40, respectively, for the states at
E'=2.60 and 4.22 MeV.

the Bi+ He elastic cross sections at 5' and 6', assum-
ing them to be purely due to Rutherford scattering, was
used as a further check on the angular accuracy, deter-
mining the offset to be less than +0.1'.

Targets in the form of self-supporting foils of natural
bismuth metal were prepared by vacuum evaporation.
The thicknesses of the two targets used, determined by
the energy shift of 'Am alpha peaks, were 1.00 and
2.33 mg/cm .

Two Si detectors of thicknesses 2 mm and 3 mm, sub-
tending solid angles of 0.149 and 0.229 msr, respectively,
were used. The overall resolution was 200 keV. A 5
mg/cm thick Al foil, placed in front of the detectors to
stop 6ssion fragments, considerably improved the spec-
tra for 8& 50'. Absolute cross sections were determined
by measuring the detector solid angles and the current
integrator calibration. In addition to the current in-
tegrator, a monitor detector at 32 was used as a check
on the point-to-point normalization.

From a spectrum using a Mylar target, the beam ener-

gy E was determined accurately from kinematics. This
was done using the channel positions N(' 0) and N(' C)
of the elastic alpha peaks from ' 0 and ' C scattering
and the channel position, N(' C ) of one of the inelastic
alpha peaks from ' C scattering (4.439 or 9.641 MeV).
The expression used is
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where E (E ) is a slowly varying function of E . Equa-
tion (1) is applied iteratively starting from an approxi-

FIG. 2. Cross sections for the inelastic scattering to the
states at 2.60 and 4.22 MeV plotted as a function of the
center-of-mass angle. The solid lines are calculated using the
DWBA formalism as discussed in the text.
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III. ANALYSIS

A. Elastic scattering

1S = I 1+ exp[ (—R, 4 R—s )/~R ] I (7)

The elastic scattering angular distribution has been
analyzed using the optical model and the computer code
SNQOP Y. The optical potential employed is
parametrized as

1 coul(&) 1 Rf—R (r) '~rfr(") (3)

where Vc,„& is the usual Coulomb potential with
Coulomb radius Rc=1.3Ar' fm (AT is the target mass
number); Va and VI are the strengths of the real and the
imaginary parts, respectively. The form factor is given
as

A global formula which fits the J„data for alpha parti-
cles is

Ja = Jo( 1 +CA T ) MeV fm (8)

where

Jo ——318.5 —2. 19E —124.2)& 3 exp( —0.8 &(4'~ —0.012E)

with E(Me V) =(E, —1.44 X 2ZT /A T
—28. 3 ) /4 and

c=2. The corresponding formulae for R z 4 and S are

Rz ~(fm)=2. 965+1.257AT'~

and

f„=1/I 1+exp[(r —R„)/a„]], (4) S(fm ')=1 627 .0 00—24E. , . (10)

1 g Rg ( 1 +~ ~s /R It )
4~ ~ zz z

T
(5)

the Rz 4 radius (where the potential becomes 2.4 MeV)
defined as

where x =R or I.
As the analysis of the data at these relatively low ener-

gies (E =50.5 MeV) suffers from discrete family ambi-
guities (in particular for the real part of the potential) we
followed the procedure of extrapolating to lower energies
the "unique" real potential parameters determined at
higher energies with suitable energy variation. For do-
ing this effectively we have made use of the systematics
of the volume integral,

As discussed in Ref. 8, by combining J~, Rz 4, and S, it
is possible to predict Vz, Rz, and az of the real part.
For the Bi+ He system at E =50.5 MeV, these
values are given in Table I.

For the imaginary part also we have the correspond-
ing systematics of JI, R~ 4, and S values, using the po-
tential parameters from Ref. 15. A global formula for JI
has been given as

JI ——43.4( 1+5 A r ' ~
)[ 1 exp( ——aE, )],

where a=0.03 MeV '. In Fig. 3 the systematics for
Rz4 and S are displayed. These quantities can be
represented as

Rz ~(fm)=(1.333+1.503AT'~ )

Rq 4
——agin[( Va —2.4)/2. 4]+Ra,

and the slope, S, at r =Rz 4,

(6) X[1—exp( —0. 11E )],
S(fm '

)= 1.912—0.002 26E

(12)

(13)

TABLE I. Initial and final values of optical model parameters and related quantities.

V, (MeV)
r„(fm)
az (fm)

Jg (MeVfm')
R, 4 (fm)
S (fm ')
R, , (fm)

Initial values

Real part
108

1.343
0.649
292

10.425'
1.507
6.628

Final values

111
1.343
0.649

300
10 AAA

1.508
6.628

VI (MeV)
r~ (fm)

aI (fm)

JI (MeVfm )

R& 4 (fm)
S (fm ')
R, , (fm)

Prescription
14.2
1.597
0.462

62
10.211
1.799
7.539 7.063

Imaginary part
1 Prescription 2

18.9
1.431
0.692

62

16
1.454
0.79

56
9.999
1.076
7.300

'Rz 4 and S are the radius and slope at the point where the potential becomes 2.4 MeV.
For the imaginary part two prescriptions were used to predict the initial parameter values (see text for details).
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As before, by combining these quantities, we can predict
the parameters of the imaginary potential. These values
are given in Table I (prescription 1).

We have also used an alternate prescription to predict
the parameters of the imaginary potential. It has been
found (Fig. 4) that the ratio of the rms radii of the imag-
inary and the real parts of the potential also has a simple
parametric representation which is approximately in-
dependent of the target nucleus. The relation is given as

~ &0-2z X

R 58M; 0
90z„o

R = (y~)2 /(t~)
1+ 0. 13 (1-exp (-0.014E (M~)))0(

X O
hh o 0 4 D
4 g X

8
XX

Rlx(fm)=1+0. 13[1—exp( —0.014E )] . (14)

2.4—
S=1.912- 0.00226 E„

2.0'-
E

1.6—

R& &-(1.333+1.5Q3 A ) x(l-exp(-Q. 11QE„))

208pb

Further assuming RI ——Rl&R+, al ——Rlzaz, and with JI
predicted from (11), it is possible to get the imaginary
potential parameters. These values are also listed in
Table I (prescription 2).

In essence, by the prescriptions mentioned above we
have all the parameters predicted for the Bi+ He sys-
tem at E =50.5 MeV and these are consistent with the
ones determined at higher E . Starting with these pa-
rameters, we have optimized the fit to the data by varia-
tion of the parameters and the usual X minimization

40 80 120

E„(MeV)

160 200

FIG. 4. Ratio of the rms radii of the imaginary and the real
parts of the alpha-nucleus optical potential plotted as a func-
tion of alpha energy. The solid line is an empirical fit with the
functional form indicated.

criterion. The predicted imaginary potential parameters
are slightly different for the two prescriptions; however,
the same final parameters are obtained by starting with
either set. The final set of parameters and related quan-
tities are listed in Table I. The fit to the data is shown
in Fig. 1 and the quality of the fit is quite good except at
the extreme backward angles. It may be noted that the
final set of values for the real potential parameters and
the volume integral Jz are nearly the same as the ones
we started with. However, the imaginary potential pa-
rameters have changed considerably, even though JI has
not changed appreciably. The reaction cross section
determined by the optical model is crz ——2234 mb.

The l value at which the alpha transmission coefficient
becomes 0.5 is usually identified as lsA. Using this the
strong absorption radius R sA can be calculated with the
expression

R sA= (rllk) I 1+[1+(IsA+ 2i ) l9 ]
96-

8.4- 90Z'
n n 0

0

where q and k have the usual meaning. In the present
case isa ——24.7 and R sA = & & fm

1. Notch perturbation test
7.6-

76-
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FIG. 3. Systematics for R24 and S (as defined in the text)
for the alpha-nucleus imaginary potential for the targets Pb
(solid circles), Zr (open circles), ' Ni (crosses), and Al (trian-
gles) in the alpha energy range 20—170 MeV. The solid lines
are empirical fits to the data with the functional forms indicat-
ed.

Vz(r) = Vz(l)fz(l) I 1 4'(r)[1 fz(r)]], — —

where

f (r)=1/[1+exp[(r —R )la ]J .

(16)

A radial notch perturbation test' has been carried out
to determine the region of the potential most sensitive in
predicting the elastic scattering data. The procedure is
to introduce a radial perturbation into the potential in a
localized radial region and to observe its effect on the
predicted cross sections. It is then concluded that a re-
gion of the potential is least (most) sensitive to the data
if a perturbation in this region has a weak (strong) effect
on the cross section. This can be done by comparing the
experimental data with the calculations and by calculat-
ing 7 as the perturbing potential is moved along the ra-
dial region. In the present work we have used the per-
turbing potential (for the real R and imaginary I parts)
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The position of the center of this notch is the R param-
eter and this can be varied over the whole radial region
of the potential. In the present analysis we have kept
a =0.1 fm and varied Rz from 4 to 14 fm for the real
and the imaginary parts separately and calculated the 7 .
In Fig. 5 the 7 values are plotted as a function of the
notch radius, R~ ( =R„„,h). It is seen that the X maxi-
ma occur at -8.5 fm for the real part and -9 fm for
the imaginary part. These values are well inside the
strong absorption radius of —11 fm. This indicates an
increased sensitivity of the potential about 2 fm inside
Rs„. The full width at half maximum (FTHM) of the

vs R plot has a broader distribution for the real part
compared to the imaginary part. From the figure it is
possible to conclude that the Bi nucleus appears
effectively black to 50.5 MeV alpha particles inside of
about 6 fm.

2. Discrete potential family ambiguity

It is well known that it is not possible to determine
the real part of the potential uniquely from an analysis
of low energy alpha scattering data. This is due to the
discrete family ambiguity problem and in principle one
can obtain several discrete potentials giving equally good
fits to the data. This problem can be considerably re-
duced and the range in the choice of potential families
narrowed to reasonable values if the data are available
over an extensive angular range. It is interesting to
determine the possible potential families which will be
allowed by the present data measured over a large angu-
lar range. If the best potential, as discussed earlier, is
taken as the zeroth family (n=0), the potentials for fam-

ilies with n = 1 or n = —1 are given by the relation

V+, ——Vz k(h /Rs)[(E, + ~~ Vc)/2m]'

+h /8mRs, (17}

where Rs ——Rz (I+ma„. /Rz )', m is the reduced mass,
h is Planck's constant, and V& ——1.44ZTX2/R& MeV is
the Coulomb potential. Similarly, we can get the V+z
families also. Using these values and R&,a& of the best
fit family we can calculate the Jz values.

In the present work, we have made use of further con-
straints, requiring R z 4 and S values for the various fam-
ilies to be equal to the corresponding best fit values.
Once again by combining J&, R z 4, and S, we can gen-
erate the V„, Rz, and az for the various families. We
have used this alternate prescription for arriving at the
parameters of the real part, rather than assuming Rz
and az for the various families to be the same and equal
to the corresponding best fit values. The present pro-
cedure is attractive in that we demand the potentials to
be the same at Rz 4 (10.444 fm} which is very close to
Rs~ (11 fm).

Having fixed the real part by the above procedure, we
kept the imaginary part fixed at the best value and calcu-
lated the X for various potential families. For complete-
ness we also computed the 7 for potential sets which do
not satisfy the family ambiguity condition for Jz but
have the same Rz 4 and S. In Fig. 6 these results are
plotted. The figure reveals the discrete ambiguity in the
potential values. As expected the X values are large in
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FIG. 5. The notch perturbation test: total X, summed over
experimental points, as a function of the notch radius for the
rea) and the imaginary parts of the potential. The solid and
the dotted lines are guides to the eye connecting the P values
for different values of r, calculated in the interval of 0.5 fm, for
the real and the imaginary parts, respectively.

2— I

(-1) (0) (+1)
0 t I I l 1 I t l l I I t I 1
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FIG. 6. Average g per point values plotted as a function of
the volume integral of the real potential. The labels ( —1), (0),
(+ I) represent different discrete potential families as discussed
in the text. The solid line is drawn to guide the eye.
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between the various families. It appears that the present
measurement has been able to restrict the potential to
just three discrete families with n =0,+1. This could
possibly be because, in addition to the extensive angular
range measured, we also have reasonably small error
bars on the data at large angles.

9. Nearest fa-rside decomposition

fN(F)(8) =ftt, N(F)(8)+fN(F)(8)

where

(19)

f)v(s)(8) =(2ik) ' g (21 + 1)e '(SI —1)Q I+ '(cos8),
I

(20)

The angular distribution shown in Fig. 1 has a Fresnel
difFraction pattern in the forward angular range and a
Fraunhofer pattern at the back angles. It has been
shown"' that a decomposition of the data into the far-
side and nearside components helps in filtering out the
strong (but less sensitive to optical parameters) Fresnel
part and enhances the relatively weak (but most sensitive
to optical parameters) Fraunhofer part. This technique
is a good handle to get at the reaction process taking
place.

The elastic scattering amplitude is given by

f (8)=ftt (8)+f(8), (1&)

where fR and f are the Rutherford and the nuclear
parts, respectively. Both these components are divided
into the far (F) and near (N) amplitudes so that

In Fig. 7 we compare cr/o)v for the optical model and
the experimental cross sections. It is evident that the os-
cillations which were less clearly seen in the o /o n plot
stand out rather prominently in the figure. The
Fraunhofer oscillations arise due to the interference of
the near and the far components. By presenting the data
in this way the quality of the fit to the data can be
judged much better.

The oscillations observed in Fig. 7 have a regular
periodicity of 68-9'. This quantity is related to the
wave number k and radius R as lk8=n/(kR). Express-
ing b, 8 in radians, and using k -3X 10 '3 cm ', we cal-
culate R to be -7 fm. This value of R is close to the
rms radii of the real and imaginary parts of the best-fit
potential.

B. Inelastic scattering

The measured inelastic scattering cross sections to the
states with excitation energies E'=2.60 MeV and 4.22
Mev are shown in Fig. 2. As the yields for inelastic
scattering from the other states were small, they have
not been considered for quantitative analysis.

The inelastic scattering data have been analyzed in
terms of the collective-DWBA model, using the distort-
ed waves generated from the optical potential deduced
from the elastic scattering data. The cross sections cal-
culated using the code' DwUCK4 are also shown in Fig.
2.

The relative cross sections for the E*=2.60 MeV

in which 0 I is the Coulomb phase shift, SI is the optical
model S matrix and Q

'+' are the traveling-wave com-
ponents' of the Legendre polynomials,

P (co$8) Q (+)+Q ( —) (21)

Following Fuller, " the far and near components of the
Rutherford scattering amplitudes are calculated as

ft(, tt(8)/ft((8)

= [1—exp( —2m ri )]—(i/2m. )[sin 8/2]'+'"S (8),
(22)

2.0—

16-
14—

1.2—

1.0

o.e—

Bi (& ~ &o)
E„50.5 Me&

FAR-SIDE NEAR-SIOE PEt:ONIPOSI7ION

ftt N(8)/fR (8)= —exp( —2m')[1 —exp( —2m')]

+ (i/2m. )[sin 8/2]'+'"S (8),
where

(23)
0.6—

0.4—

0.2—
S (8)= ( I+i g) 'F (I, I+i g, 2+i ri; sin 8/2), (24)

cr(8) =o~(8)+o F(8)+2(o Ncr~) cos(N, F), (25)

where (N, F) is the phase difFerence between the near and
the far amplitudes, we get

o/cr)((=1+crF/cr)v+2(crF/o~) cos(N, F) . (26)

in which I" is the hypergeometric function defined in
Ref. 17. Defining

PI I I I I I I I I I

0 ]0 20 30 40 50 60 70 80 90 100

corn (deg)

FIG. 7. The ratio of the experimental cross sections to the
calculated nearside cross sections plotted as a function of the
center-of-mass angle (points) compared to the optical model
predictions (solid line). The calculated values of
1+2(o+/crN )' are drawn as envelopes. (See text for details. )
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group of states were well reproduced by the 1=3 DWBA
calculation and the deformation parameter was deter-
mined as P3 ——(o,„vi'O'DwnA)' . Taking R=8.30 fm (the
mean of the real and imaginary potential radii) the de-
formation length was calculated as

P3R (E'=2.60 MeV)=(0. 71+0.05) fm .

For the (a,a') reaction at 42 MeV (Ref. 19) a value of
(0.75+0.04) fm has been reported, with the data ana-
lyzed in terms of the Austern-Blair model. Electron
scattering measurements report a value of (0.81+0.03)
fm for this state. In high resolution (p,p') studies, ' the
components of this state have been resolved with excita-
tion energies ranging from 2.49 to 2.74 MeV. The com-
bined P3R value (adding the intensities) is 0.89 fm.

For the states centered around E'=4.22 MeV, it was
found that the measured cross sections were best repro-
duced with a combination of the DWBA calculations for
l =2 and l =4. The deformation lengths were calculated
as

PzR (E'=4.22 MeV)=(0. 31+0.03) fm,

P4R (E'=4.22 MeV)=(0. 20+0.07) fm .

The DWBA model fit to our data did not improve by at-
tempting to include l=3 in the analysis; however, it is
possible to include 1=3 with a P3R value up to 0.23 fm
without any appreciable change in the quality of the fit.
In the high-resolution (p,p') work, ' several states have
been identified in this excitation energy region. The
combined deformation length of the levels ranging in E'
from 4.09 to 4.36 MeV are PzR =0.28 fm, P3R =0.33 fm,
and P&R=0.35 fm. The results from the present work
are broadly consistent with those from Ref. 21 except

that our data are not sensitive to the l=3 contribution
around this E* region.

IV. CONCLUSIONS

In the present study of the Bi+ He system it has
been shown that a reasonable set of initial values for the
optical model parameters can be obtained by extrapolat-
ing from the parameters at high energy, by using the sys-
tematics of the volume integral (J), the radius where the
potential becomes 2.4 MeV (Rz 4), and the slope (S) at
r =Rz 4 both for the real and the imaginary parts of the
potential. Furthermore, it has been shown that for accu-
rate measurements of the elastic cross sections over a
wide angular range, the number of acceptable potential
families can be restricted. The present measurement al-
lows only three acceptable families.

The notch perturbation test has revealed that the sen-
sitive region of the potential is around 8.5 and 9 fm for
the real and the imaginary parts, respectively. These
values are about 2 fm inside the strong absorption ra-
dius. The decomposition of the elastic scattering data
into nearside and farside components has enabled the
data to be presented in a way in which the large-angle
Fraunhofer oscillations are prominent.

The deformation lengths (PR ), deduced from a
DWBA analysis of the inelastic data using the parame-
ters determined from the elastic scattering analysis, are
in general agreement with those obtained from other
measurements in the literature.
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