
PHYSICAL REVIEW C VOLUME 37, NUMBER 4

Nucleon-nucleon scattering in a time-dependent treatment

APRIL 1988

J. Holz and W. Glockle
Institut fur Theoretische Physik II, Ruhruniuersitiit Bochum, D 463-0 Bochum, Federal Republic of Germany

(Received 18 November 1987)

The time-dependent Schrodinger equation is solved for NN scattering in the case of a one-boson-

exchange potential. The method works in momentum space with a complex contour to damp the

oscillations which build up for large times. Since we abandon a partial wave decomposition, the

treatment is well suited for high energies. The behavior of various observables is displayed as a
function of time. As a side effect, we gain some quantitative insight into how the stationary scatter-

ing process is approached.

I. INTRODUCTION

Scattering processes are usually treated in a stationary
manner. The energy spreads of realistic wave packets are
much smaller than energy intervals on which scattering
amplitudes vary noticeably. This is of course the very
reason that initial momentum distributions of beam parti-
cles drop out of scattering observables and therefore a
stationary treatment is justified. Also from a practical
point of view the solution of a Lippman-Schwinger equa-
tion for a two-nucleon t matrix, though containing a Cau-
chy singularity in momentum space, can rather easily be
achieved. However, already for three particles this is no
longer the case. The treatment of the free propagator
singularity requires painful work to handle it properly.
Therefore a glance at a time-dependent treatment of the
scattering process, where obviously no singularities are
present, is natural. Moreover, one may be curious to
know how the initial momentum distribution, in a two-
nucleon system for instance, changes in the course of the
reaction time to the final one, or how the final polariza-
tion of a nucleon builds up in the course of time from an
initially unpolarized situation. There are many articles'
on time-dependent scattering processes in atomic and
molecular physics, which all treat the problem in
configuration space. In nuclear physics the forces medi-
ated by meson exchanges are naturally given in momen-
tum space. Also the time dependence of the momentum-

space wave function shows up in the explicitly known—iE t
phase factor e ', which is easier to control numerically
than the strong variations of the configuration-space
wave function for instance near the edges of the poten-
tial. Therefore we performed this study for time-
dependent NN scattering mediated by meson exchanges
in momentum space. The search for simplicity was also
the motivation to work directly with vectors thereby
avoiding the tedious partial-wave decomposition of an
one-boson exchange (OBE) potential. This leaves the po-
tential in its simple analytical form. In a previous study
we formulated and solved time-dependent potential
scattering in momentum space. An example presented
there clearly demonstrates the advantage of working with
vector variables directly in comparison to a partial-wave
decomposition. We shall refer to that work as I. We rely

II. FORMALISM

It is well known that time-dependent scattering states
gati(t) are uniquely related to time-dependent free states
fo(t ), which describe the situation before the particles
can interact. This connection is expressed by

q(t ) =n'+'y, (t ),
where 0'+ ' is the Moiler wave operator, given for poten-
tial scattering by

(2.l)

(+ ) . i(Hp+ V)v —iHp~=s — lim e e
T~ 00

Ho is the operator of kinetic energy and V the interac-
tion. This is equivalent to saying

(2.2)

lim
~~ g( t ) —go(t )

~~
=0 . (2.3)

Let
iH(io i) i Ho[ io —i)— —

Q to t =e ' —e (2.4)

then

f, (t):Q(t, t)g,(t—)—
lH( tp t ) /' Hp( tp t )0 e 0 0

—iH(t —tp)' $0(to) (2.5)

is a solution of the time-dependent Schrodinger equation,
which coincides with the wave packet fo(t) at t =to Be-.
cause of the existence of the strong limit (2.2),

on I in Sec. II, where we formulate the equations for
time-dependent potential scattering including a contour
deformation of momenta to damp the large time oscilla-
tions. The treatment of two spin- —,

' particles based only
on vector variables is worked out in Sec. III. The numer-
ical performance and its accuracy is described in Sec. IV.
Our results and pictures for the time evolution of the
N¹cattering process are shown in Sec. V. Section VI
contains the summary. Finally the Appendixes contain
for the convenience of the reader the expressions of the
NN potential we use, some details arising from our treat-
ment of two spin- —,

' particles, and a discussion of the over-
lap of a stationary scattering state with the initial wave
packet for large negative times.
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P, (t)=go(t)+ —. f dt'e '
Vg, (t'), (2.7)

then the unique solution to that equation tends strongly
for to~ —Do towards the scattering solution f{t }defined
in (2.1). Also the scattering solution g(t ) obeys

11(t)=1Io(t)+—. f dt'e ' Vf(t') .
—oo

(2.8)

In an actual calculation, as we are going to present,
one has to live with a finite to, and one determines the
state P, (t}. The error induced can be discussed in the

0

following manner. We expand the time development
operator in (2.5} into the complete set of stationary
scattering states

~

q&'+' and possible bound states
~

n &:

&,(t)= f d'q lq&"" ' ' '+'&ql 4o(to)&

+ & In &e
" ' &"

I 4o(to)& (2.9)

where the E„are the bound-state energies and E =q /m
with m the nucleon mass. Clearly for any finite to, bound
states overlap at least with the tails of the initial wave
packet pp(tp) and the solution 11, (t) of Eq. (2.7) has

bound states mixed in. Their strength, though, can be
made arbitrarily small with decreasing tp as is obvious
from applying the Riem ann-Lebesgue lemma to
& n

~
alp(tp) &. The more delicate discussion of the ampli-

tude '+'&q
~

gp(tp& is deferred to Appendix A. It is
shown that for tp~ —00 that amplitude reduces to the
expected form &q ~

fp(tp) &. Thus for to~ —00 it gives

y(t)= f d'q ~q&"'e
'

"|Io(q), (2.10}

where Pp(q) describes the initial momentum distribution:

&q~ gp(t)&—=e 'fp(q)—=Po(q, t) . (2.11)

In the following analytical considerations we work
with expressions where the limit to~ —00 has been per-
formed. As is easily derived from (2.8) and (2.10) and
shown in I the scattering state in the momentum repre-
sentation

f(q, t)—= &q ~
P(t) &

behaves asymptotically for t ~ Oo as

(2.12)

g(q, t)~e ' gp(q) 2mi f d q'—T(q, q')5(E E)—
x gp(q') (2.13)

The scattered part in (2.13) contains the on-shell T ma-
trix for all energies fed into the scattering process by the
initial momentum distribution Pp(q} and averaged over
the angular spread of fp. Since gp is freely at our dispo-

[/@(t)—@, (t)(/=//[n'+' —n(t, —t)]|l,«}/f 0,
for tp ~—ao . (2.6)

As a consequence if we rewrite the time-dependent
Schrodinger equation into the integral form

sal in the calculation we can use a wave packet with zero
angular spread. Then P(q, t) delivers asymptotically ex-
actly the quantity T needed to calculate the various con-—iE t
ventional observables. The typical time factor, e ', in
a momentum-space representation causes serious numeri-
cal problems for large

~

t
~

values. For large negative
times where one has only the free wave packet (2.11) this
problem can be trivially avoided by regarding only the
scattered part of the wave function:

R(q, t)=—f(q, t) —Pp(q, t) . (2.14)

For large positive times, however, the outgoing wave
packet carrying that phase factor is not known. In I we
introduced a method which propagates suitable wave
packets from negative and positive times forward and
backward towards t =0, thereby eliminating the oscilla-
tions. The second method we proposed in I, though, is
the one we use in this study. It is based on (2.8) rewritten
for R:

R (q, t ) =Ro(q, t )+—.f dt'e
—oo

X f d q V('qq ),R'(q , t '). '

Thereby the scattered part in first order in Vis

(2.15}

Ro(q, t)= —. f dt'e ' f d'q' V(q, q')go( q', t') .

(2.16)

The problem with (2.15}lies in the limit of large posi-
tive t values, which are necessary to extract T and where
one encounters the oscillations. If we could choose com-
plex momenta

~ q ~

= le ', I & 0, we could remove the
oscillating phase factor in the kernel. However, an
analytical continuation of (2.15} in the magnitude of q
may hit potential singularities (we do not want to replace
the propagator singularity in a time-independent treat-
ment by potential singularities in a time-dependent treat-
ment). For NN scattering, meson theoretical potentials
contain meson propagators (or denominators of form fac-
tors} of the type [(q—q') +It, ] ', which can acquire a
singularity for q complex and q' real. In the driving term
(2.16) we are forced to keep the momenta q' real in order
to avoid an exponential increase for negative times. The
problem is solved in the following manner. We choose
Po(q) such that it is strictly zero outside a certain
momentum interval, say [qp b„qp+b, ], where qp is—the
central momentum in the beam. Then it is easily seen
and shown in I that momenta

~ q ~

=l(1—ia), 1&0,
avoid singularities of the meson propagators provided
0&a&@/(qp+5). This restriction in a guarantees at
the same time the analytical continuation of Eq. (2.15) to
complex momenta

~ q ~

=l(1—ia}, 1&0, and

(
q'

[
=I'(1—ia), I'&0. This form of Eq. (2.15) for mo-

menta along the complex straight line I(1 ia), I &0, is-
used in our study. As the actual calculations show, the
complex momenta strongly damp the oscillations,
whereas a performance on the real axis leads to an uncon-
trolled behavior of R {see Sec. IV}. Once R is determined
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for complex momenta, Eq. (2.15) is used again as an in-

tegral representation for R (q, t ) evaluated at real momen-

ta q. Taking suSciently large t values, the on-shell T ma-

trix can be read off.
Equation (2.15) is an integral equation in the vector

variable q and the time t. For NN scattering, R itself is a

four component column vector. Clearly a reduction of
variables is welcome. We achieve this in the following
manner. In the Schrodinger picture the time evolution is—iH0(t —f')
propagated by e as explicitly seen in the kernels
of (2.8) or (2.15}. We split the total time elapsed,
T=2

~
to ~, into equally spaced intervals of length hT.

Within the kth interval Eq. (2.15) reads, back in operator
notation,

The simple analytical expressions E result from the expli-
cit time integration and are given in I together with
higher-order interpolating schemes replacing (2.19).
Equation (2.20) allows us to calculate R(t], +]) from
R(t], ), and what is the decisive point, with the help of an
integral kernel which is independent of k. Therefore the
inversion involved has to be performed only once.

We end this section with a remark on calculating
bound states. One can maximize the admixture of bound
states in f, (t) by choosing to ——0. Then one starts the

0
time propagation with a free wave packet located in the
middle of the potential. For the sake of simplicity let us
assume that V supports just one bound state. Then (2.9)
tells us that f, 0(q, t ) behaves for t ~ oo as

0
I

R(t)=R "(t)+—. f dt'e VR(t'), (2.17) p(t )~e ' C(q)+ ]p„(q)e " C„ (2.21)

X VR(r'+t], }, (2.18}

showing that the kernel acting on R is independent of k.
In addition, if we choose small enough intervals, R(t)
can be interpolated linearily. Thus for the kth interval
with tg+& ——tg+AT we set

t~+hT —t
R(t)=R(t&)

f —tg
+R(t], +])

['k ~

where R " (t) is known from the previous interval.
Since the time evolution operator in the Schrodinger pic-
ture depends only on t t', th—e integral in (2.17) can obvi-
ously be rewritten as

f
I

~k 0

Choosing different times one can easily extract E„and
q]„(q).

III. APPLICATION TO NN SCATTERING

NN scattering can be successfully described by meson
exchanges and even by an OBE parametrization thereof.
A recent version of the one-boson exchange potential
(OBEP) used in our study is given in Appendix B. These
simple analytical expressions include all possible invari-
ants formed out of the initial and final relative momenta

q and q' and the spin vectors cr
&

and n2. Invaince under
rotation and parity transformation, and assuming isospin
invariance, leads to the following general form for an in-
teraction between two spin- —,

' particles

V(q, q')= VD+i(o]+o2) nV, +(tr] k)(o'2 k)Vz
(2.19}

Then the time integral in (2.17}can be performed analyti-
cally and we end up with

+(o].p)(cr2 p)V5+(cr] n)(o2 n)V4

+[(o] k)(o2 p)+(o] p)(o2 k)]V5 . (3.1)

R(q, t„+,)=R (q, t„+,)

+ —.E»(q, b, T) f d'q'V(q, q')R(q', t„)

+ —.E»(q, hT) f d'q'V(q, q')R(q', t„+,) .
1

(2.20)
I

We used k =q —q', p =—'( q+ q' ), and n =k X p =q X q'.
The functions V;, i =0, . . .5, depend only on q, q', and

q q', and, because of time reversal invariance, V5 is pro-
portional to —,'(q —q' ). This factor vanishes on shell
and reduces the six terms to the standard five expressions
which occur in the analogous Wolfenstein parametriza-
tion of the N¹ransition amplitude. In the forms of the
OBEP given in Appendix B three of the terms in Eq. (3.1)
are hidden in cr

&
o 2, which can be expressed as

(kXp) o .o =p (cr .k)(tr .k)+k ( ]'p)(o 'p)+(o].n}(o»—(k p}'[(o k}(o2'p)+(o]'p}( z'")& . (3.2)

0 0
0 1 0 00'0'1'0 (3.3)

Can the decomposition (3.1) of V be carried over to the
scattering state P(t}? The initial state $0(t} is a four-
component spinor according to the four possible initial
spin orientations

1 0 P(t) =g,(t )+—.f dt'e ' Vf(t'),
—oo

(3.4)

I

To each choice of the initial spinor corresponds a spinor
f(t). The four possibilities can be combined into 4X4
matrices $0(t ) and f(t ), which obey

0 0 0 1 where



37 NUCLEON-NUCLEON SCA l l ERING IN A TIME-DEPENDENT. . . 1389

1 0 0 0
0 1 0 0

&o")=&o"' 0 O 1 0 (3.5)

0 0 0 1

One can study the invariance properties of Eq. (3.4)
under rotation and parity transformations. We use an in-
itial momentum distribution go(q) which is centered

I

around a mean momentum qp and is a scalar function
1(o((q—qo) ) [see Eq. (4.1) for the form we use]. The re-
sult is that f(t} behaves like V and can therefore be
decomposed analogous to (3.1). The same conclusion is
reached by regarding the perturbation series of (3.4).
Therefore the decomposition for f and consequently for
the scattered part R we use in the actual calculation,
reads

R(q, t)=R o+i(o, +cr z). noR& +(cr& ko)(nz ko)Rz+(o, po)(nz po}R3

+(~l no}(~2 no)R4+((rr ]'ko)(o'z'po)+(0']'po)(rr2'ko) }R5 (3.6)

where no, ko, and po depend on q and qo. Since the mo-
menta q are, in general, off-shell it is convenient to intro-
duce the orthonormal basis vectors

A,
np ——

sing'
—cosp

0

Pp=

q —qp

I q —qo I

q+qp

I q+qo I

(3.7}

(3.8)

which include the special case kp, pp, np for y'=0 and
z'=z =q qp. Inserting then the Pauli matrices explicitly
into (3.6) leads to R(q', t') in the

I m, m2) representa-
tion:

qXqp
np=&pX pp=

I qxq, I

in order to keep the various terms in (3.6) orthogonal to
each other with respect to taking the trace. Now a
straightforward procedure would be to insert the decom-
positions (3.1} and (3.6} into the integral equation for
R(q, t), which is the analogue of (2.15) in the spin-
dependent case, and project by appropriate traces onto
the individual R; s. It would give six coupled equations
for the scalar functions R;. Fortunately there is a much
simpler way. f(t) is a 4X4 matrix built up by six in-
dependent scalar functions. How are they distributed
over the 16 positions? We choose a fixed coordinate sys-
tem such that

(3.9)

0

qp
——0

1

sine

q=
cos8

sin 8'cosy'

q
' = sin8'sing'

cosO'

(3.10)

~o=
V2

1Po= ~2

&I+z'cosy'
&I +z'sing'
—&1—z

& I —z'cosy'
&1—z'sing'

&I+z'
(3.11)

Then the orthonormal basis vectors (3.7)—(3.9) turn out
to be (z'=q'. qo)

Si
S2e'p

R(q', t') =
S2e'~

Se'+
3

S4e

S,

S4e

S,
S5

—S4e'+

—2l g73e

—S2e

—S2e

S)

(3.12)

S4 ———R
&

——,'+I —z' (Rz —R3)+z'R5,

Ss ——Ro ——,'(1 z')R2 ——,'(1+z—')R3+V 1 —z'zR5,

S,= ,'(1+z')R, + ,'(1-z')R, + R, +-V'—I z'R, . —

One discovej. 's six linear combinations S; which are distri-
buted over the 4X4 matrix such that in each column
there occurs just three of them. Consequently (3.4) has to
decay into two sets of three coupled equations (corre-
sponding to the first two columns}. In order to achieve
these sets one has to work out the 4 X4 matrix represen-
tation of V, Eq. (3.1). This is straightforward and the re-
sult is displayed in Appendix C. The remaining matrix
multiplication of V and R in the integral term of Eq. (2.4}
is easily performed and it gives the two sets of coupled
equations,

with (z'=q' qo)

S) ——Ro+ —,'(1—z')R2+ —,'(1+z')R3 —+I—z' Rs,
S2 ——R

~
——,'+1—z' (R2 —R3)+z'R5,

S3 ———,'( I+z')Rz+ —,'(1 z')R3 —R4+—+I—z' R5,

(3.13)
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S, (q. ,z, t)=S '(q, z, t)+ —. f '
dt'e ' "' '' g f"dq'q' f dz' f de'V (q, q', y)J! '

l —oo a=O —1 0

X(q,z, q', z', y', t'), (3.14)

y =q q
' =zz'+ +1—z +I —z' cosy' (3.15)

and as factors cosy' and sing' within J,' '. Though the g'
integral can be performed analytically, it is more trans-
parent in the actual calculation to do it numerically. The
time integrations in the two sets (3.14) are handled as de-
scribed in Sec. II leading to the structure (2.20). Then the

I

for i =1,2, 3 and i =4, 5,6, respectively. The terms J
are linear combinations of the S s and are displayed in
Appendix C. We recognize that the dependence on the
vector variable q shows up as a dependence on q =

~ q ~

and z =q qo. The azymuthal angle y' occurs in the vari-
able

I

equations are solved by rotating the momenta into the
complex plane. For large times t the asymptotic on-shell
values S,. are extracted and rewritten via (3.13) into the
amplitudes R; for the scattered part R in Eq. (3.6). Then
in a standard manner the observables are determined as
we describe in Sec. V. We would like to emphasize that
this method determines the on-shell T matrix for NN
scattering directly without partial-wave decomposition
and scattering phase-shift parameters.

IV. NUMERICAL PERFORMANCE

We choose the wave packets in the form

' 3/2
—(o /&)(q —qo)

2 2

for qo —6 (q &qo+4,
Pp(q) =&(q —qp) fp(q ) =5(q —qp)

0, otherwise . (4.1)

Their parameters are given in Table I. We use m =4.758
fm. The minimum and maximum energies related to
qo —6 and qo+ 5 are denoted by E;„and E,„. The q'
and z' integrations are performed by Gaussian quadra-
ture with typically 35 and 13 points, respectively. This
refers to wave packets Nos. 1 —3, whereas the number of
quadrature points could even be reduced for wave packet
No. 4. This is sufhcient to achieve an accuracy of three
digits in the on-shell T matrices. It is important to locate
most of the q points between 0 and qo+h. The remain-
ing ones are distributed between qo+ 5 and a numerically
determined cutoff value around 50 fm '. In case of
strong forward scattering induced by wave packet No. 2
(see Sec. V) the values z' & 0 should be more heavily pop-
ulated than z' &0 whereas for the other cases we distri-
buted the z' values symmetrically around z =0. Table I
also shows the angles a for the complex contours and the
initial time to together with the lengths hT of the small
time intervals within which R is interpolated linearily.
Wave packet No. 1 is used for NN scattering on a
Malfliet-Tjon potential and on an OBE potential. They
have different ranges, which is reflected in the different
u's. The small value u =0.3 is due to the pion mass. Nu-
merical details concerning the potential scattering of a
spinless particle at a Malfliet-Tjon potential has been dis-
cussed in I where all necessary parameters are given. As
an additional insight we show in Table II how the scat-
tered part R varies in time and specifically approaches its

I

(q,z)=(Sms
~
T(q, qqp)

~
Sms), (4.3)

where S is the total two-nucleon spin. Then the partial-
wave projection to a state of total angular momentum j
reads

I

asymptotic value.
With the exception of the edges of the initial momen-

turn distribution we recognize stability within three di-
gits. For additional figures exhibiting the smooth behav-
ior of R along the complex path in contrast to the oscil-
lating behavior for real momenta we refer to Refs. 3 and
4. In Ref. 4 it is also demonstrated that a direct solution
of the integral equation (2.20) for real momenta leads al-
ready for relatively small positive times to deviations
from the correct behavior and appears to be unfeasible.

In the case of NN scattering at the OBEP (Ref. 5)
given in Appendix B we used the wave packets Nos. 1, 3,
and 4. Only for the purpose of demonstrating the numer-
ical accuracy, we calculated the standard phase-shift pa-
rameters (Stapp parametrization) from the full on-shell T
matrix extracted at large positive times. According to
(2.13)

R(q, t) ~ mimqe —''T(q, qqp)fp(q) . (4.2)f~oo

The T matrix is given in the
~

m
& m2 ) representation. By

simple linear combinations it can be converted into the
~
Sms )-representation

3n &21+1i.
I's, is(q'q ) =4m . i g C(1'Sj,ms ms, ms, ms)C—(1Sj,Omsms )

I
mgmg

1

X dz Y, (O, y=0)T, (q, z ),—1 mSmS
(4.4)
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TABLE III. NN phase-shift parameters projected out of the full T matrix gained in a time-

dependent treatment in comparison to phase-shift parameters calculated in the conventional partial-
wave projected stationary treatment.

Ec~ (MeV)

25.0
50.0
71.0

105.0
162.5

25.0
50.0
71.0

105.0
162.5

Time
dependent

41.443
27.370
18.577
7.286

—7.263

—10.886
—15.099
—17.380
—19.828
—21.529

'S,

lp

Time
independent

41.438
27.371
18.575
7.296

—7.256

—10.881
—15.097
—17.381
—19.828
—21.688

Time
dependent

14.445
13.092
9.233
2.080

—9.435

62.322
42.297
31.160
17.796

1.550

3p

S)

Time
independent

14.442
13.096
9.240
2.097

—9.436

62.325
42.303
31.167
17.776

1.470

25.0
50.0
71.0

105.0
162.5

1.119
0.484
0.051

—0.435
—0.822

1.127
0.476
0.052

—0.420
—0.843

—1.916
—3.044
—3.325
—3.115
—2.050

—1.914
—3.044
—3.325
—3.114
—2.065

and the connection to the unitary S matrix is

SI s Is q 5( ( E77lP2qT&
& 1&(q q ) (4.5)

We show in Table III several phase-shift parameters in
comparison to values gained by the standard stationary
treatment, which works directly in a partial-wave basis.
The agreement is better than one percent except for the
parameter e&, which is a small quantity.

In the spin-dependent problem the typical CPU time
for one wave packet and one isospin is 1000 sec on a
Cyber 205. Note that such a run covers for instance en-
ergies between 20 and 100 MeV.

As a further numerical test for the quality of the
method and as an unconventional method to determine
bound state energies we followed the time development of
a wave packet starting at t =0 in the middle of the poten-
tial. Based on Eq. (2.21) we extracted the binding energy
of the Malfliet-Tjon potential from the formula

iE 5
e ' R(q, z, t )zR(q, z, t~ —)

e iE 5
e ' R(q, z, t, ) —R(q, z, t3)

(4.6)

V. PICTORIAL INSIGHT
INTO THE NN SCATTERING PROCESS

Let us first regard the scattering on the Ma16iet-Tjon
potential. The magnitude of the scattered part of the
wave function, R (q, t ), is shown in Fig. l. At the scale of

with 5=t2 —tj ———(t3 —t&). We have chosen t&
——295

fm, t2 ——300 fm, and t3 =290 fm. The right-hand side of
(4.6) should be independent of q, z and should be of mag-
nitude 1. Our results are shown in Table IV. Note that
the values obtained for E„are in good agreement with
the correct one, E„=—0.0113 fm '= —2.23 MeV.

TABLE IV. Test for Eq. (4.6). The bound-state energy E„
extracted for various q and z values and the magnitude of the
right-hand side are shown.

q (fm)

0.49
0.49
0.49
1.10
1.10
1.10
1.55
1.55
1.55

—1.0
0.0
1.0

—1.0
0.0
1.0

—1.0
0.0
1.0

—0.0111
—0.0111
—0.0111
—0.0111
—0.0111
—0.0112
—0.0110
—0.0110
—0.0116

Magnitude

1.0008
1.0008
1.0007
1.0009
1.0008
1.0005
1.0011
1.0008
1.0001

the figure the very beginning of the scattering process at
t = —99 fm is not visible. Around t =0 roughly half of
the heights of the final values are achieved. Then for
t & 0 the forward and backward scattering become more
pronounced. At intermediate times the energy is not
conserved. This is clearly visible in the fact that around
t=0,

~
R(q, t)

~

decreases much more slowly than for
large positive times. The interval in q depicted is nearly

(qo —b„qo+b, ) and R(q, t) supports at intermediate
times virtual momenta far outside that interval. For
t = 100 fm the final shape is strongly dominated by the in-
itial momentum distribution fo(q). Only after dividing

by that factor one is left, according to Eq. (4.2), with the
on-shell T matrix as a function of energy and scattering
angle.

More dramatic is the scattering process at higher ener-
gies delivered by the wave packet No. 2 which is shown
in Fig. 2. Here the forward scattering is much more pro-
nounced. A partial-wave representation (which we did
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not use) would require many terms.
Knowing the scattered part of the wave function R(t)

at all times we can now determine how spin variables de-
velop in time. As an example, let us regard how the po-
larization of one particle arises out of an unpolarized
state:

Tr(R(q, t )R+(q, t )rr )
Po q, t-:

Tr(R(q, t )R+(q, t ) )
(5.1)

Because of parity conservation Po is always orthogonal to
the scattering plane. This quantity is shown in Fig. 3.
For t = 100 fm one can read off both the angular distribu-

FIG. 1. The magnitude of the scattered part of the wave function
~
R(q, z, t)

~

as a function of z=q. qo and q=
~ q ~

for various
times between t = —99 and 100 fm. This is for the Malfliet-Tjon potential and wave packet No. 1.



J. HOLZ AND %.GLOCKLE 37

tion of Po for fixed energy and the energy variation of Po
for fixed scattering angle. One recogaizes strong qualita-
tive deviations from the final values at positive and nega-
tive intermediate times. Inserting the formal solution for
R derived from (2.10),

R(q, t ) = I d q'e ~ $0(q') f(q, q')
E ~+l6' —E

into (V.1), we get

(5.2)

' 4o(q'), „e ' 40(q")
Po(q, t) = d'q' J d q" Tr(T(q, q')T+(q, q")o )

Eq +«—Eq E"—i e —E
tg ig

(5.3)

FIG. 2. The same as in Fig. 1 for wave packet No. 2.
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This formula shows that the intermediate time structure
in Fig. 3 results from an interplay of the shape of the ini-

tial wave packet, fo(q), and the half-shell properties of
the NN T matrix T(q, q').

The same quantity Po is shown in Fig. 4 for the wave
packet No. 3, which is shifted to higher energies but has
an overlap with energies contained in the wave packet
No. 1 used to generate Fig. 3. Here the deviations at in-

FIG. 3. They component of Po as a function of z=q. qo and q=
~ q ~

for various times. This is for the OBE potential and wave

packet No. 1. Po varies between —0.63 and 0.62.
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termediate times from the final shape are different from
the ones in Fig. 3. Of course, at suSciently large positive
times, here t =100 fm, where the dependence on the ini-
tial momentum distribution fo(q } drops out, the values
agree in the overlap region. This can quantitatively be

seen in Table V. As another example we choose an initial
polarization P;=e in the y direction. Note that the x
and z directions span the scattering plane. The resulting
polarization of one of the nucleons is

FIG. 4. The same as in Fig. 3 for wave packet No. 3. Po varies between —0.90 and 0.70.
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p(q, t )= [Tr{R(q,t )(1+a P; )R+(q, t )tr )]

&( [Tr(R(q, t )(1+a".P; )R+(q, t ) )] (5.4)

The polarization in the y direction is shown in Fig. 5.

The underlying wave packet is No. 3.
If the initial wave packets get sharper in energy, then

one can take the T matrix out of the integral and the time
dependence cancels between numerator and denominator

hg

t ilail

SO.OO RO.OO

FIG. 5. The y component of P resulting from an initial polarization in y direction as a function of z =q.q and q =
~ q ~

for various
times. This is for the OBE potentia1 and wave packet No. 3. P~ varies between —0.97 and 1.00.
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FIG. 6. The same
h gh m e~e
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leading to a time-independent and wave-packet-
independent result. To demonstrate this, we choose wave
packet No. 4 with an energy spread DE=18 MeV and
the same initial polarization as above. This is sharp
enough to produce a series of pictures, Fig. 6, which ex-
cept at the very beginning are stationary.

It may be interesting to see the effect of individual
meson exchanges on spin observables. As an example,
Fig. 7 shows the polarization caused by pure pion ex-
change. Although there is some similarity to the full
OBE dynamics shown in Fig. 3 quantitatively the time
development and of course the final result are different.

VI. SUMMARY

Considering N¹cattering time dependently, allows us
to see how momentum distributions for two nucleons
change during the reaction time until they settle for large
times to a distribution determined by the on-shell T ma-
trix; it allows us to see for instance how from an initially
unpolarized state the polarization of a nucleon builds up
in time for each energy and scattering angle until it
reaches the final measurable angular and energy depen-
dent value. The initial wave packet contains a certain
range of energies for which the calculation yields all ob-
servables in one shot. Some wave packets we use have an
energy spread of 100 MeV or more and are centered
around 50 or 100 MeV. Their extension in space is about
7 fm and the reaction time is about 200 fm or 7)&10
sec. They are far away from the used realistic ones but
useful for determining the observables for many energies
in one run. The variation of the observables at intermedi-
ate times results from an interplay of the half-shell T ma-
trix and the shape of the wave packet. For a wave packet
centered at 50 MeV and having an energy spread of = 18
MeV the spin observables turned out to be essentially sta-
tionary during the reaction time of about 1200 fm or
4)&10 ' sec. Usual realistic wave packets are very
much sharper in energy (of the order of 1 eV or below )

and a calculation of the time-dependent pattern of spin
observables would yield perfectly stationary pictures over
the very-long reaction time.

Studying the time-dependent process can also be used
to determine bound states and binding energies. As an
example we have chosen a wave packet located'in the
rniddle of the potential at t =0. In this manner the time-
dependent state contains an appreciable admixture of the
bound state which can be extracted for large times due to
its specific frequency.

The NN potential we use is the OBE parametrization
(OBEPR) of the new Bonn potential. We use a
momentum-space representation and work directly with
vector variables avoiding partial-wave decompositions.
Certainly for higher energies this appears advantageous.
The time-dependent Schrodinger equation is rewritten
into an integral equation which has the initial wave pack-

—iE t
et as the driving term. The time oscillations, e ', in
momentum space seem to be at first glance very hard to
control numerically in an integral equation for large
times. We avoided that problem by choosing complex
momenta, which leads to a rather smooth wave function
and which goes to zero for large t values (besides near

q =0). The wave function for real momenta can then be
determined by quadrature and the on-shell t matrix can
be extracted at large times. It was decisive in our algo-
rithm to split the total reaction time into small intervals,
within which we could interpolate the wave function in
the time variable and perform the time integration
analytically. The kernel propagating the wave function
from one end to the other turned out to be independent
of the respective interval. This was the key point in our
algorithm for not unduly increasing the dimension of the
problem due to the additional time variable.

The algorithm turned out to be very accurate, as docu-
mented for instance in the phase shifts calculated for the
OBE potential. The complete absence of singularities in-
duces us to think of applying the method to three-body
systems. With increasing computer facilities this appears
to be possible.

APPENDIX A

We consider '+'&q
~
Pp(tp) & for to~ —ao. Introducing

the t matrix we have

T4 t

'+'&qlt('o(ro)&=&ql fo(ro)&+ f d'q' .
* &q'I fo(ro)&

gt I

(Al)

If one excludes an interval around the singularity at E =E ~ the integral tends to zero because of the Riemann-

Lebesgue lemma. In the remaining integral if the interval is chosen small enough we can remove q' T'(q', q)gp(q')
from the integral and extend in the remaining one again the integration over all q'. Consequently

(A2)Tf d q' .
' e ' '1tp(q') ~ q f dq'T*(q'q, q)g (qp'q) f dq' e

to ~—oo

One can now deform the path of integration to q'=~e', ~& 0. Then the denominator becomes regular and the ex-

ponential function real and decreasing for tp &0. In the limit to~ —ao the integral behaves as 0(
~

to
~

'
) as is easily

estimated. As a result, only the first term in (Al) survives.
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APPENDIX 8

(BI)

The OBEPR of the new Bonn potential is reproduced. It is a sum of the following terms referring to pseudoscalar
particles (n., rl), scalar particles (a, 5), and vector particles (ro,p):

gp (tr, .k)(a ~.k)
V'~'(q, q') =—

2~ 4~ 2 k2+mp2

FIG. 7. The p component of Po as a function of z =q.qo and q =
~ q ~

for various times. This is for a pure one-pion-exchange in-
teraction and wave packet No. 1. Po varies between —0.62 and 0.77.
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TABLE VI. The parameters of the OBEPR (Ref. 5).

Mesons

'9

5
o (T=1)
o. (T=O)

P

s'
0
0
p+
p+
p+

1

1

m& (MeV)

138.03
548.8
983
550
715
769
782.6

gp /4m.

14.9
3
2.6713
7.7823

16.2061
0.95

20
6.1

0.0

Ap (GeV)

1.3
1.5
2.0
2.0
2.0
1.3
1.5

~(S)(q q/)

3 2
1 gp

k +
i(cr)+oz) n F&(k ),2 2

2m 8m 4m
(B2)

Z( v)(q q~)
1

2m

'3 1, 3p2
g2

m&

k 3 k 1

,+,i(cr(+cr, ).n —(o (.cr2), +,(0 (.k)(o2 k)
8m 4m 4m 4m

+ [—k +2i(cr, +crz) n —k (cr( crz)+(cr( k)(crz k)]2

2m

2

+ [—k (o, o2)+(o(.k)(crz. k)] F&(k ) .
4m

The form factors are chosen in the form

Fi3(k )=(Ai3 miJ)l(Ai3+k—) .

(B3)

In the case of isovector particles, the terms are to be multiplied by v.
&

r2. The parameters of OBEPR are given in Table
VI.

APPENDIX C

With the abbreviations

u =qz, u'=q'z', co=q&1 —z, co'=q'&1 —z'

I

u co'e '+ —u 'co0
I

u co'e '~ —u 'co

the explicit forms of the three types of 4&(4 matrices occurring in the OBEPR of Appendix B are
I I

2i coco'sing' u co'e '+ —u 'co u co'e '+ —u 'co 0
—uco'e'+ +u'co 0

i(o, +cr2).n= —uco'e'+ +u'co 0 0

(Cl)

0
t r—u co'e'+ +u 'co —u co'e'+ +u 'co —2icoco'sing'

(Q —Q')

(u u')(co co'e''r )— —
(o) k}(o2k)=

(u u )(~ met)
(co —co'e ™)

(u —u ')(co —co'e 'r )

—(u —u')2

co —2coco cosp +co
—(u —u')(co —co'e'+ )

(u —u ')(co —co'e '~ )

co —2coco cos((p +co

—(Q —Q')

—(u —u')(co —co'e'r )

(co —co'e 'q'
)

—(u —co')(co —co'e '~
)

—(u —u')(co —co'e 'r )

(u —u')

(C3)

1 0 0 0
0 —1 2 0
0 2 —1 0
0 0 0 1

The linear combinations J,' ' in (3.14) are

J )
' ——S), J2 ——cosy'S2, J3 ——cos2y'S3y J4 ——cosy'S4, J5 ——S5, J6 ——S6;

J',"=2( u co' —u 'co cosq)')S2, J3"——( —u co'cosy'+ u 'co }S,+ ( u cs p' o(cos2g'Q 'co—}S3

J3"———2( u co'cos2p' —u 'cocosq)')S2+4coco'cosy'sin g'S3

(C5)

(C6)
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J4" ' ——2coco'si n tp'S4+ ( u co'coscp' —u 'co )(S5+S6),
J5"= —2(uco' —u'co cosy')S4, J6"=J'& '

',

J', '=(u —u') S, +2(u —u')(cocoscp' —co')Sz+(co cos2y' —2coco'cosy'+co' }S3

J2 ' (——u —u ')(co —co'costp')S, —[((u —u
'

) —co —co' }costp'+ 2coco'cos q&']S2 —( u —u ')( co cos2cp' co'—coscp' )S3

J3 ' = ( co 2—coco'c os(p'+cos2y' c )S, +2(u —u')( —co costp'+ co'cos2tp'}S~+ (u —u ') cos2cp'S3

J4' ' —
I [(u u—')2 co— co—' ]costp'+2coco'I S4+(u —u')(co co—'costp')(Ss+Ss),

J's ' =2(u —u')(cocoscp' —co')S4 —(u —u') Ss+(co 2c—oco'costp'+co' )S6,

J~6 ' ——2(u —u')(co cosy' co—')S4+(co 2c—oco'cosy'+co' )S5 (u——u') S6 ',

J'& ' ——S&, J2 ——cosy'S2,(6)

J3
——cos2y'S3 y J4 ' ——cosy'S4

J5
= —Ss+2S6~ J6 =2S5 —S(6) (6)

In the OBEPR the terms V, a=3,4, 5, do not occur separately and are set to zero. There occurs instead the term
o &.o 2 to which we associate a term V6 and correspondly the J' ' above.

Y. Sun, R. C. Mowrey, and D. J. Kouri, J. Chem. Phys. 87, 339
(1987), and references therein.

A. Goldberg, H. M. Schey, and J. L. Schwartz, Am. J. Phys.
35, 177 (1967).

J. Holz and W. Gloeckle, J. Comput. Phys. (to be published); in
Proceedings of the International Workshop on Few Body Ap--
proaches on Nuclear Reactions in Tandem and Cyclotron En-

ergy Regions, edited by S. Oryu and T. Sawada (World

Scientific, Singapore, 1987), p. 3.
4J. Holz, Ph.D. thesis, University of Bochum, 1987.
5R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1

(1987).
6L. W'olfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).
7T. Hippchen (private communication).
N. Austern, Direct Nuclear Reaction Theories (Wiley, New

York, 1970).


