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Isospin splitting of the giant dipole resonance in the s-d shell
and the interacting boson model
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A phenomenological algebraic approach to nuclear isovector excitations is discussed within the
framework of the interacting boson model. Analytic formulae are obtained for isospin splittings
and excitation strengths of the giant dipole resonance in deformed nuclei. An application of the for-
malism to ' Mg is presented, where both schematic and realistic calculations have been performed.

I. INTRODUCTION

The interacting boson model' (IBM) for even-even nu-
clei has been successfully applied to the description of
low-lying collective states of light nuclei, just like those in
the 2s-1d shell, by including in the formalism further de-
grees of freedom, such as isospin, which consist of con-
sidering boson excitations formed by neutron-proton
correlated pairs, in addition to the usual neutron-neutron
and proton-proton boson pairs. On the other hand, an
extension of the IBM for the treatment of high-lying col-
lective excitations, like giant resonances, has been
proved to be adequate in reproducing experimental data
(photon absorption, elastic, and inelastic scattering cross
sections).

Since it has long been recognized that isospin plays a
crucial role in determining the main characteristics of
isovector giant dipole resonances (GDR}, it seems
worthwhile to combine the two above-mentioned exten-
sions of the IBM in unified formalism in order to obtain a
more general description of GDR and a stringent test of
the algebraic model. Moreover, by exploiting the limit
symmetries of IBM, it is possible to derive analytic ex-
pressions for the GDR fragmentation due to isospin, in
addition to that arising from nuclear deformation, with
axial [SU(3) (Ref. 1)] and triaxial [SU'(3) (Ref. 7)] sym-
metries.

In this paper we present the general formalism for the
treatment of GDR, with particular emphasis on the
closed-form formulae obtained for deformed nuclei (Sec.
II). Then, in Sec. III, an application to Mg is discussed
and results of both schematic and realistic calculations
are presented in two IBM dynamical symmetries, SU(3)
and O(6). Conclusions and perspectives for further appli-
cations of the model are summarized in Sec. IV.

II. FORMALISM

In IBM language, the isovector GDR is represented by
a p boson with quantum numbers J =1, which de-
scribes a coherent superposition of particle-hole excita-
tions across a major shell, and strongly interacts with the

low-energy s and d bosons, mainly through a
quadrupole-quadrupole force. This coupling is responsi-
ble for the GDR fragmentation which produces two, or
three components, for axially symmetric and triaxial nu-

clei, respectively. Relevant calculations for nuclei with
SU(3) symmetry, as in lanthanide and actinide regions,
are in fair agreement with the experimental data for pho-
ton absorption, elastic, and inelastic scattering in the
GDR energy domain. As a matter of fact, in addition to
the effects related to the coupling to low-energy levels,
arising in particular from ground-state deformation, it is
well known that the GDR of nuclei with isospin To+0 is

split into components characterized by different isospin
values; this energy splitting mainly originates from nu-

clear symmetry potential. ' Thus, we introduce an iso-
vector p boson which couples with s-d bosons in the
frame of the IBM-3 version of the model, including iso-
spin. In IBM-3, the low-lying collective states are defined

by product functions in both the (s, d) boson and the iso-
spin space. The usual s and d bosons carry one isospin
unit and have a third component equal to + 1 (neutron-
neutron pair), 0 (neutron-proton pair), and —1 (proton-
proton pair). Since the p-boson collective excitation lead-
ing to GDR states is characterized by isospin t=1 and
third component t, =0, a natural choice for overall iso-
spin group symmetry is U(3), reduced to SU(3) under
isospin conservation.

It has been proven that an IBM-3 description of
states, totally symmetric in both the boson and isospin
spaces, can be reduced to an equivalent IBM-1 calcula-
tion at the cost of introducing parameters explicitly
dependent on isospin in the IBM-1 Hamiltonian. This is
the approach adopted in the present work.

Following Rowe and Iachello, we consider the SU(3)
symmetry in the (s, d) boson space, corresponding to the
rotational pattern in deformed axially-symmetric nuclei.
In particular, the (A., O) irreducible representation (irrep}
of SU(3) in Elliott's notation" labels the ground-state ro-
tational band, where A, =2N, with N the effective boson
number. The p boson transforms like a first-rank tensor
under SU(3). High-energy (GDR) states are then ob-
tained by coupling the irreps that describe the low-lying
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states to the (1,0) irrep of the dipole collective excitation.
Since the boson state functions must be completely sym-
metrized, isospin SU(3) irreps are represented by Young
diagrams having the same antisymmetrized parts as the
corresponding boson SU(3) irreps to which they are cou-
pled. Therefore, the dipole excitation has isospin label
(1,0) with T, =0, while the ground-state isospin

To ——T,o (A———2Z) /2,
where A and Z are the mass and atomic numbers, respec-
tively, belongs to the (N, O) irrep, where the allowed
values of T are N, N —2, . . . , 1 or 0 depending on wheth-
er N is odd or even. The group decomposition chain to
be investigated is thus the following:

SU~ '(3 }SSU'r'"'(3)@SUE'(3)S SU'P'(3)

DSU" ~'(3)SU' ~'(3) . (2}

Here, the indexes 8 and T label the boson and isospin
symmetries, respectively, and s, d and p refer to the low-
energy L =0+,2+ bosons and the high-energy L =1
boson, respectively.

Under the assumption that s-, d-, and p-boson isospins
couple at the SUr(3) level (the validity of the assumption
will be discussed later), in complete analogy with the cal-
culation of Rowe and Iachello for SU&(3), one has to
deal with the following SUr(3} product representation
and its decomposition:

b,E» ——2a (N ~1) . (7)

In the same way, the energy difference of the second and
the third state (4), with isospin To + 1 and To, respective-
ly, both in the (N —1, 1) irrep is simply

bEz3 E[(N —1, 1},——To~ 1] E[(N —1—, 1},To]

of the isospin-dependent interaction, since it is not essen-
tial for GDR splitting considerations. However, a
leading-order Hamiltonian term, linear in Tp, such as
H 'r ——k(t To), can be easily defined as a function of the

SUr(2) [ =SOr(3)] Casimir operators in isospace.
If one simply assumes that the isospin coupling interac-

tion is expressed, without loss of generality by the
relevant Casimir operators, it is found that the energy
splitting of the first two states (4), which belong to

different SUr(3) irreps and have the same isospin, To + 1,
is given by

hE» E[(N——~1,0), T o+1]—E[(N —1, 1), To y 1]

=ah, C2[SUz.(3)],
where hC 2 is the difference between the quadratic
Casimir operators for SUr(3}, evaluated for the relevant
irreps and defined as usual

C2[SU(3)]=—2[A, ~p ~Ap~3(l, ~p)] .

From Eqs. (5) and (6) one obtains

(N, O) (1,0)=(N 4-1,0)e (N —1, 1) . (3) =bb C2[SUr(2)], (8)

The ( N + 1,0) irrep contains T =N + 1,N —1, . . . , To
+ 1, . . . , while the nonsymmetric (N —1, 1) irrep

contains T =N, N —1, ~ Tp+1 Tp ~ ~ ~ . Therefore,
IBM-3 predicts a splitting of each SU&(3) GDR state into
three components

~

(A, ,p), T, T, &, namely:

where

C2[SUr(2)]=2L(L i 1) .

From Eqs. (8) and (9) one obtains

EE~3 4b ( To ~ —1—) .

(9)

(10)

Ili &=I(N+I o»To+1To&

112 &= ~(N —11»T.+1 To&

i
13 &=

i
(N —1, 1),To, To& .

Thus the total number of GDR states is six for axially
symmetric nuclei.

The boson Hamiltonian, which includes a quadrupole-
quadrupole interaction between high- and low-energy bo-
sons and is responsible for the GDR fragmentation due
to nuclear ground-state deformations, has been discussed
in Ref. 4. Obviously, if isospin is conserved, the total
Hamiltonian commutes with the total isospin operator
(and —in any case —with its third component), but the
boson interaction terms depend on the relevant isospin
values. From a computational point of view in realistic
cases different from an exact SU&(3) symmetry, this cor-
responds to performing various IBM calculations, as in
Ref. 5, for each isospin channel with a suitable choice of
the relevant coupling.

A similar approach has been applied to the study of
GDR fragmentation in medium-mass nuclei' within the
framework of the dynamic collective model. ' In the
SU&(3} case it is not necessary to write the explicit form

The constants a of Eq. (7) and b of Eq. (10) should be
determined on the basis of available experimental data.
Summing up, if the GDR coupling to the low-energy lev-
els shows SUr(3) symmetry, each GDR component, aris-
ing from fragmentation due to nuclear deformation, is
split again into three components separated in energy in
accordance with Eqs. (7) and (10). In particular, the
coefficient b must be positive since the GDR states with
T = Tp + 1 are shifted to higher energy with respect to
the T =Tp state.

While there is no definite experimental evidence for an
energy splitting of type (7), formula (10) can be related to
the overall experimental information' on GDR isospin
splitting and to the first theoretical estimate, ' based on
schematic considerations about symmetry potential ener-

gy and particle-hole interactions for spherical nuclei.
According to Ref. 10, one can obtain the following

rough estimate for b in Eq. (10):

4b = V, /A —2k (x &„,„,=60/A (MeV),

where A is the mass number, V& an exchange term in the
Lane potentia1, ' and the term proportional to k results
from the reduced dipole transition strength in the
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particle-hole interaction for mode T = To + 1, &x

being an average value of the neutron excess.
Once the energy displacements of isospin GDR states

are established, it is possible to derive an expression for
the dipole transition strengths. In the present approach,
the total isovector El transition operator, 8 ", can be
factorized in two parts which act on the boson and iso-
spin space, D z

' and D z', respectively.
The boson matrix elements have been derived in Ref. 4

in adiabatic approximation, where the energy spacing in
the ground-state band is negligible compared with the
GDR deformation splitting, and are simply proportional
to the reduced Wigner coefficients' of the
SUs (3)0SOs (3) decomposition connecting the L =0
ground state in the (2N, O} irrep to the two GDR states

belonging to the (2N+ 1,0) and (2N —1,1) irreps, for an
axially symmetric nucleus:

M, = & (2N + 1,0)
i i

8 ~s"
i i

(2N, O}&

X &(2N, O},0;(1,0},1
i i

(2N+1, 0), 1&, (12a)

Mp ——& (2N —1, 1)
i i

8 ~"
i i

(2N, O) &

X & (2N, O},0 (1 0) 1
I l

(2N 1 1) 1 & (12b)

Since the reduced matrix elements of the 8 s"' operator
between the SU&(3) irreps in Eqs. (12a} and (12b) are
equal, they amount to the same proportionality constant.

If we introduce the SUr(3) symmetry, each amplitude
(12a) and (12b) splits into three through the multiplica-
tion by the following amplitudes for isospin transition:

N i
——& (N + 1,0)

i i

8 'z"
i i

(NO) & & (NO), To, (1,0), 1
i i

(N + 1,0), To+ 1 & & To, To, 1,0 i To+ 1,To &,

N, =&(N 1, 1)
i

i8~)&i i(N, O)&&(N, O), T„(1,0), i
i

i(N 1, 1},To+i&&To, T„l,oi To+I, To&,

N3 ——&(N —1, 1)
i i 8'r"

i i
(N, O) &&(N, O), To', (1,0), 1

i i
(N —1, 1),To&& To, To, 1,0

i To, To& .

(13a)

(13b)

(13c)

Here again the reduced 8'r" matrix elements have the
same value and can be merged with the common
coeScient of Eqs. (12a) and (12b) into only one constant,
Dp. The ratio of transition strengths for the two different
GDR isospin components is simply

S(T= To+1)/S(T = To)

In the case where the above mentioned condition does
not hold, the GDR isospin coupling has to be described
at the SUr(2) level, which predicts two isospin com-
ponents with T = Tp and Tp + 1, whose energy difference
is given by Eqs. (10) and (11}.

The ratio of transition strengths is simply given in
terms of isospin Clebsch-Gordan coefficients

=(iN
i + iN2i )IiN3i =1/To. (14)

S(T= To+1)
S(T=To)

& To To '1 0
I To + 1 To &

& To To '1 0
I To To & To

A necessary condition for the Hamiltonian with GDR
coupling to be diagonalized in the coupled SUr(3) basis
(3) in adiabatic approximation is, however, that the ener-

gy spacin'g of the states with different T contained in the
(N, O) irrep, be small with respect to the energy splitting
induced by the GDR coupling to above mentioned states.
The latter can be estimated by means of formulae (10)
and (11},the former is easily connected with the symme-

try term in the Weiszacker mass formula

(16)
which would be equivalent to Eq. (14) if the two SUr(3)
states with T=Tp+ 1 were degenerate. If the boson
Hamiltonian does not show a SU+(3) symmetry, the bo-
son amplitudes cannot be obtained through the analytic
formulae [(12a) and (12b)], but have to be evaluated nu-
merically, as in Ref. 5, and multiplied by the SUr(3) or
SUr(2) transition amplitudes, depending on which iso-
spin symmetry is valid.

bE(T, To}= 134—238~ -'"

X[T(T+I) To(To+1)] MeV . (15}

III. NUMERICAL APPLICATIONS

It is well known" that most nuclei in the 2s-1d shell
exhibit collective features in low-energy spectra. The
IBM yields a reasonable description of nuclear properties

TABLE I. Fragmentation of the giant dipole resonance in Mg.

Isospin T
Excitation energy (MeV)

Expt. (Ref. 21) Calc. SU&(3)
Dipole strength'

Expt. (Ref. 21) Calc. SU&(3)

11.17-18.20
18.45—22. 30
23.50-27.00

'Arbitrary normalization to unit.

17.5
22. 1

25.0
29.6

1.00'
0.77—1.00
1.80-2.03

1 00'
1.00
1.54
1.54
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FIG. l. Experimental (Ref. 21) and calculated [SU+{3)eSU& (2), solid line] photoabsorption cross section of t Mg. Dotted-dashed
line, T= 1 component; dashed line, T= 2 component; bars at the bottom represent calculated dipole strengths (in arbitrary units).

in this mass region. ' ' Moreover a large amount of ex-
perimental data is available regarding different GDR
fragmentation mechanisms, mainly deformation, isospin,
and configurational splitting. '

In particular, GDR in Mg has been investigated by
means of (e,e'), (y, xn), ' (y,p), ' (y, a), and
(y, xy') (Ref. 24) reactions up to an excitation energy
F.*=30 MeV. Different decay modes of GDR states, ex-
cited by the various probes, give reliable determination of
the isospin values of observed states. In this way, it is
possible to identify a large fragmentation pattern in Mg,
probably arising from both deformation and isospin
effects.

An estimate of the GDR isospin splitting in Mg can
be immediately obtained from Eqs. (10) and (11) with
To ——1 and A =26, leading to a value

hE =E(T=2)—E(T =1)=4.6 MeV .

mation does not hold, and the total Hamiltonian cannot
be diagonalized in the coupled SUT(3) basis (3). One is
then forced to abandon SU& (3) for the description of the
GDR isospin coupling and to resort to the simpler
SUT(2) symmetry.

As for the GDR deformation splitting, an order-of-
magnitude estimate is obtained by assuming a SUs(3)
symmetry, although it does not allow a realistic descrip-
tion of low-energy states. From the analysis of Mg
where the GDR strength, as observed in the photoab-
sorption cross section, ' is concentrated in two energy re-
gions around E, =18.5 and E2 ——25.0 MeV, if the split-
ting is mainly due to the nuclear deformation, the

SU,(3)

TABLE II. IBM parameters (Ref. 5) for Mg.

Parameter Value

On the other hand, the states contained in the (5,0) irrep
have T= 1, 3, and 5. Formula (15) yields, for the excita-
tion energies of the lowest T=3 and T=5 states, 20.6 and
57.8 MeV, respectively. Therefore, the adiabatic approxi- N

E

gAo

If -0

If-2,O~ +e e

0

0
'~ ~O~

N
ao (MeV)
a, (MeV)
a2 (MeV)
x
e~ (MeV)
b, (MeV)
Do (fm)

5
—0.310

0.133
—0.211
—0.0008
21.9
2.60
1.70

CO
I t I I I I I I

18.0 1$.0 20.0 22.0 24.0 28.0 28.0 30.0 32.0 34.0 38.0
E„(MeV)

FIG. 2. Photon elastic (solid line) and inelastic (dashed line)
scattering cross sections for Mg, assuming SU&(3)SUT(2)
symmetry, at scattering angle 8= 130 .
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[broken 0(6)

ground-state isospin being To =0, we derive a
quadrupole-quadrupole coupling constant 0.830 MeV and
a p-boson energy c. =22.35 MeV. The resulting ratio of
dipole strengths in the two regions is S (Ez )!S(E, )

=4N/(2N+ 3)=1.45, where N=4 is the number of
effective bosons in Mg, to be compared with the experi-
mental integrated value ' S(Ez )IS(E, ) =1.37.

%e assume the same parameters for Mg, by varying
simply e according to the A ' law. Moreover, a value
b =60/(4A ) =0.58 MeV is adopted for the GDR isospin
splitting in SUT(2).

By applying Eqs. (10) and (16), one obtains the results
of Table I, to be compared with the experimental in-
tegrated values. ' By associating to each GDR com-
ponent, at energy E, a width I (E) obeying the phenome-
nological power law

I'(E)=0.035E3~~ MeV,

S.0—

4.0—

3.0—

76.4

38.5 I

~28.1

1(

2
lV 1

0+

2.0—

1.0—

0 0+

FIG. 3. Experimental (Refs. 25 and 26) and calculated level

schemes of Mg.

with E expressed in MeV, one obtains the photoabsorp-
tion cross section compared with experiment ' in Fig. 1

and photon scattering cross sections of Fig. 2. As expect-
ed, the agreement with experimental data is rather poor,
with the exception of the main peak at E, =17.5 MeV.
In particular, too much strength is concentrated in the
region above 22 MeV. The "pigmy" resonance below the
GDR is, of course, not reproduced because it cannot be
described by the present collective model.

Since the low-energy spectrum is rather close to that of
a y-soft nucleus, we have also performed a more realistic
IBM calculation based on a broken Oz(6) symmetry.

'

The IBM parameters of Table II are obtained by a
least-squares 6tting procedure; the calculated levels and
8(E2) transition intensities are compared with the experi-
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FIG. 4. Experimental (Ref. 21) and calculated [broken Orr(6)SUr(2), solid line] photoabsorption cross section of Mg. Dotted-
dashed line, T=1 component; dashed line, T=2 component; bars at the bottom represent calculated dipole strengths (in arbitrary
units).
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N

6

0

CD

If-O

&A ~a
0 a«»osa yr

Og O~~ O~~ O~~ Og
O~

worth noting: while the former deformation splitting of
each GDR state into two components can be obtained in
other GDR models, the latter, showing a dominant state
and a series of smaller equivalent strengths, is rather
peculiar to the IBM model and in much better agreement
with the experiment.

Figure 5 shows the photon elastic and inelastic (to the
2~+ state) scattering cross sections. Such a measurement
on Mg would be highly desirable, since the (y, y') reac-
tion, which is essentially nonstatistical, yields a useful
probe to investigate GDR components with different iso-
spin' and, therefore, a good test of the model.

I I I I I I I I
16.0 18.0 20.0 22.0 24.0 25.0 28.0 30.0 32.0 34.0 36.0

E (MeV)

FIG. 5. Photon elastic (solid line) and inelastic (dashed line)
scattering cross sections for ' Mg, assuming a broken
Oz(6)(3) SUT(2) symmetry, at 8= 130'.

mental ones in Fig. 3. With a suitable choice of the
quadrupole-quadrupole interaction strength among s, d,
and p bosons, assuming a ratio of 1.0 between the
strengths in the T=1 and T=2 channels [according to
formula (16)], we obtain the total photoabsorption cross
section shown in Fig. 4. Here again, the simple power
law (17) has been adopted for the GDR widths. Obvious-
ly, the fine structure in the cross section, in particular
below GDR excitation, cannot be reproduced by the
present model; its complete description would require de-
tailed shell-model calculations.

The different fragmentation of dipole strengths in the
schematic SU&(3) model and in the realistic Os(6) limit is

IV. CONCLUSIONS

The SUs(6)SSUr(2) approach, proposed in Sec. II,
constitutes a simple yet accurate tool to deal with isospin
effects in the GDR region for light even-even nuclei. In
addition, thanks to the particularly flexible IBM struc-
ture, it allows realistic calculations, as that shown for

Mg, with little computational effort.
Of course, more experimental information about pho-

ton scattering is necessary in order to test the model.
Moreover, it is to be pointed out that the present pro-
cedure can be applied with slight modifications to the
study of reactions other than photon absorption and
scattering, proceeding through GDR excitation like
charge-exchange processes, induced, for instance, by
low-energy pions, and muon nuclear capture.

We are grateful to Professor F. Iachello for many valu-
able comments.
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