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Nucleon-exchange effects are examined in the case where one of the nuclei involved exhibits

properties of considerable clustering. The results, obtained by analyzing the exponential parts of
the exchange-normalization kernel function in a three-cluster resonating-group formulation, indi-

cate that, as in the case of no target clustering, the one-exchange and core-exchange terms are still

the terms which make the dominant contribution. The characteristics of the one-exchange term are

found to be rather insensitive to the clustering nature of the target nucleus. The core-exchange

term, on the other hand, may acquire a rather long range compared to the direct potential when the

degree of clustering is appreciable.

I. INTRODVCTION

Detailed analyses' of resonating-group kernel func-
tions have led to a basic understanding of the roles played
by antisymmetrization on the essential features of the in-
ternuclear interaction. For a two-cluster system that
consists of clusters A and 8 with nucleon numbers 1V„
and Ntt (N„&Ntt ) and described, respectively, by
translationally-invariant shell-model functions of the
lowest configuration in harmonic-oscillator wells having
widths parameters a„and et+, it has been found that the
following general conclusions can be made (see Ref. 3 for
the definition of the various terms}.

(i) Among all class-A terms, the one-exchange terms
are the most important. At relatively high energies, the
type-lc or knockon exchange term has, in particular, a
dominant influence.

(ii) Among all class-8 terms, the core-exchange terms
make the largest contribution. For systems in which ab-
sorption is strong, the core-exchange type-a and type-d
terms are particularly significant.

(iii) The one-exchange terms are generally important in
all scattering systems and over a wide energy range, but
the core-exchange terms are generally important only
when the nucleon-number difference (N„—Ntt ) of the in-

teracting nuclei is rather small.
(iv) At energies higher than about 25 MeV/nucleon,

the contribution to the cross section in the decreasing
part of the V-shaped angular-distribution curve comes
essentially from the direct term and the one-exchange

terms (mainly the type-lc term), while the contributiop to
the cross section in the increasing part of this curve
comes essentially from the core-exchange terms.

An especially important consequence of the above-
mentioned findings is that, for a scattering system in
which the interacting nuclei have a rather sma11 nucleon-
number difference, the real part of the macroscopic, opti-
cal potential must contain a significant amount of Ma-
jorana, or parity-dependent, component. In fact, even
the parity II of the Pauli-favored states (i.e., the states
with the stronger interaction} has recently been deter-
mined. By studying the diagonal elements of the parity-
projected GCM (generator-coordinate method) norm ker-

nel, Baye has shown that II is given by ( —1) " for col-
lisions between two p-shell nuclei, and by ( —1) for col-
lisions between two s-shell or two sd-shell nuclei.

Numerical studies in specific nuclear systems ' fully
support these findings. In addition, it is noted that the
findings remain essentially unchanged even when absorp-
tion is present and when a common oscillator width pa-
rameter is chosen to describe the clusters involved.
Furthermore, one finds' that the investigation of antisym-
metrization effects can be substantially simplified by
studying the norm kernel alone, although additional use-
ful details do emerge if the Hamiltonian, or energy, ker-
nel function is also examined. '

In this investigation, we continue our study by consid-
ering situations in which one of the nuclei involved, say
nucleus A, exhibits considerable clustering properties it-
self. In reality, these are situations that occur rather fre-
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quently. For example, in the case of a+ Li or a+ Ne
scattering, one must necessarily take into account the
fact that the nuclei Li and Ne have predominantly
a+ d and a+' 0 cluster structures, respectively, and
hence, cannot be adequately described by simple shell-
model functions of the lowest configuration. Thus, it is
clear that, in such situations, the proper way to study ex-
change effects is to examine the kernel functions occur-
ring in a three-cluster formulation. This is obviously a
rather diScult problem; fortunately, based on our experi-
ence from two-cluster investigations, one can still carry
out the study by adopting the simplifications of choosing
a common harmonic-oscillator width parameter for each
of the three clusters involved and by examining only the
main features of the norm kernel.

The evaluation of the norm kernel is fairly complicat-
ed. However, with the use of the complex-generator-
coordinate technique, one can readily derive the general
expressions for the exponential parts of this kernel in the
three-cluster (A&+ A2)+B case, where the nucleus A is
now considered to have an ( A, + A & ) cluster structure.
As in the two-cluster problem, this information is in fact
suf6cient for the purposes of this investigation. That is,
one can proceed with these exponential parts to deter-
mine the characteristic ranges and characteristic energies
of the various nucleon-exchange terms and, thereby, find

out whether or not target clustering has any significant
influence on the effects of antisymmetrization in the
properties of the intercluster interaction.

The basic structure of the exchange-normalization ker-
nel is discussed in Sec. II. Here one sees that, in contrast
to the two-cluster case, many nucleon-exchange modes
are now present. Among these, one exchange mode, to
be called mode a, turns out to be especially important.
The properties of this particular mode will be described
in detail in Sec. III. Numerical studies have been per-
formed for a+ Li and a+ Ne scattering in mode a, and
the findings are also discussed in this section. These par-
ticular systems are chosen for illustration, because the
nucleon-number difference of the interacting nuclei is
small in the former case, but large in the latter case. Fi-
nally, in Sec. IV, we summarize the results and make
some concluding remarks.

II. EXCHANGE NORMALIZATION KERNEL

In this section, we study the properties of the exchange
normalization kernel NE for the general case of A +B
scattering, where the nucleus A is considered to have a
cluster structure of A, + A2. For simplicity in notation,
we shall conveniently label clusters A„A2, and B as
clusters 1, 2, and 3, respectively. The nucleon numbers of
these clusters are equal to N „N2, and N3, with
N, +N2 ——N„and N3 =Nz. For the construction of the
cluster internal wave functions, we shall use, as men-
tioned in the preceding section, harmonic-oscillator wells
having a common width parameter a.

In the single-channel resonating-group formulation for
A +B scattering, the wave function g of the system is
written as

p=R) —R2,

R=R3—(NIR, +N2R2)/(N, +N2),
(2)

with R„R2, and R3 being, respectively, the c.m. coordi-
nates of clusters 1, 2, and 3. The functions P, , P2, and (()3

represent the internal structures of the clusters; they are
chosen to be translationally invariant products of single-
particle functions of the lowest configuration in
harmonic-oscillator wells having a common width pa-
rameter a. The function F(R) describes the relative
motion between clusters A and B; it is obtained by solv-
ing a projection equation, as discussed in detail in Refs. 8
and 9.

The relative-motion function G(p) between clusters 1

and 2 is assumed to have the form

G (p) ="(p)e".p( pl2rp—'» (3)

where h (p) is a polynomial in p„,p, and p„and p, 2 is a
reduced nucleon number given by

p)2 ——N(N2/(N)+N2) . (4)

To describe the presence of appreciable clustering in nu-
cleus A, we choose the parameter y to be substantially

smaller than a. ' For example, in the case of Li, an ap-
propriate value" for the clustering parameter y, defined
as

is around 0.5. On the other hand, it should be noted that,
when y =1 (i.e., y=a), the wave function for cluster A

reduces to a translationally invariant shell-model func-
tion of the lowest allowable configuration in a harmonic-
oscillator well with width parameter a and, consequently,
we get back the results reported previously in Refs. 1-3
for the two-cluster limiting case.

The exchange normalization kernel NE is given by

Nz(R', R")= ( [p,(()2G(p)]$35(R—R')Z
i

A"IA, 2[/, $2G (p)]$35(R—R")Z I ),

where PI, $2, and P3 are antisymmetric functions ob-
tained by antisymmetrizing the cluster internal functions
P, , P2, and tI)3, A, z is an intercluster antisymmetrization
operator for clusters 1 and 2, and the operator A" is
defined by the equation

with A' being an antisymmetrization operator that inter-
changes nucleons in clusters A and B. By employing the
complex-generator-coordinate technique, one finds
straightforwardly that NE has the form

Q=~ I [pl$2G (p) ]$3F (R)Z (R, )I,
where A is an antisymmetrization operator, Z(R, ) is
any normalizable function describing the total center-of-
mass motion, and
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NE(R', R")= g g [P„„exp(—A„+' —C,+' R"

8—„+" )+H.c.], (8)

where P„„is a polynomial in R', R'-R", and R", and
the quantity x represents the number of nucleons inter-
changed between A and B. The index v is used to denote,
for a fixed value of x, the many modes of nucleon ex-
changes among the three clusters; it is defined by the set
o va ues or x21 X31 X32 X231 and x312 where x,,
represents the number of interchanges for nucleons with
the same spin and isospin in clusters i and j, and x;Jk has
a similar meaning except that nucleons of the same spin
and isospin in all three clusters are now involved in the
interchange process. Clearly, one can see that the value
of x is given by

X X31 +X32 +X231 +X312 (9)

where

I"[2a'f 'g—'+2b'd'e' c'(d'g'+e—'f')], (l2)

The general expressions for the coefficients A„„, 8„„,
and C„„can be derived in terms of N1, N2, N3, a, and y
for each exchange mode. The results are

A„„= ,'boa I (—be +—aj cej )—
I"(b'd—' +a'f' c'd'f'), —

8„„= ,'l20a ——I'(bg—+am cgm)—2 2

—I"(a'g' +b'e' —c'e'g'),

C„„= 1[2beg +2—ajm —c(gj+em)]

Eqs. (10)—(23):

I =(4ab —c )

I"=(4a'b' c'—)

A 1 =(N, —x, ) —(x31+x312)N, /N3,

A 2 21+x312 ) (x 32+x 231 )Ni /N3

A 3 (x31 +x231 ) (N3 x3 )Ni /N3

81 (x21+x231 ) (x31+x312)N2/N3

2 (N2 x2) (x32+ 231)N2/N3

83 (x 32 +x 312 )—(N3 x 3 )N2 /N3

d =ia(N1 A2 N2 A —
1 )/(Ni+N2),

e =i a[(N1+N2) A3 —N3( A 1+A2))/N,

f =18 12'

g =iN1a,

h =ia(N, B2 N281)/—(Ni+N2),

j =ia[(N, +N2)83 N3(81+82)]/N,

I = —&tu12a,

m =iN2a,

with i being the imaginary unit number,

X1 X21 +X31 +X231 +X312

X2 X21+X32+X231+X312

X3=X

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38}

(39)

(40)

(41)

(42)

po Nq N~ /( N q
——+Na ), (13) and

a =-,'a(N, +N', /N3 —A3/N3 —A2/N2 A 1/NI )
N =N1+N2+N3 . (43)

and

c = za( N1N2/N3 —A 383/N3 A282/N2

—A, B, /N, ), (16)

a'= —,'@12(a+y) I'(bd +ah —cdh), —
b'= —,'p, 2(y a) I'(bf +al— cf—l), —
c'= —I [2bdf +2ahl —c (dl +fh)],
d'= I [2bde +2ahj —c—(dj +eh }],
e'= I [2bdg ~2ahm ——c(dm +gh)],
f'= I [2bef +2ajl —c(fj +—el}],
g' = I [2bfg +-2alm c(fm—+gl)) . —

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(14)

b = —,'a(N2+Nz/N3 83/N3 82/N2 81/Ni ), —

(15)

By adopting the Born-approximation procedure' used in
previous analyses, ' we can construct equivalent ex-
change potentials between clusters A and B which are
characterized by characteristic wave numbers k„„and
characteristic ranges 8„„,given by

k
A„„+8„„—[ C„.[

(44)

1/2

xv

2
i C„„i

4A„Q„„—C„
(45)Rxv

k
g2

xv 2M xv
Po

These equivalent potentials have either a Wigner or a
Majorana character, depending upon whether C is
smaller or larger than zero. Also, as has been explained
previously, it is useful to define two alternative charac-
teristic quantities, i.e., the characteristic energy E„and
the characteristic weight g„„. These quantities are
defined as

In addition, we have defined the following quantities in with M being the nucleon mass, and
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g„„=(k„Q„„) (47}

This latter parameter (i.e., g„„)may be considered as pro-
viding a qualitative measure of the relative importance of
the corresponding nucleon-exchange term; that is, for ex-
change terms belonging to the same class, the one with
the largest value of g„„will generally be more important.

Because of the complicated structure of A„, B„„,and

C„„, an analytical study of the characteristic quantities
would be dif6cult. Hence, the procedure that we adopt to
learn the systematic features of these quantities is to per-
form a number of numerical investigations involving
many different choices of N] Np N3, a, and y. In Table
I, we show, as an example, the values of R„„,k„„,E„„
and g„„obtained in the a+ Li case for a selected set of
exchange modes and with (N„N2, N3 ) =(4,2,4), a =0.367
fm, and y=0. 18 fm . For comparison, we also list
the values of these quantities (in parentheses} for the
two-cluster case with y =a=0.367 fm . In addition, it
should be noted that, in this particular case, exchange
terms having x =1 and 2 belong to class A with C„&0,
while those having x =3 and 4 belong to class B with

C„„)0.
From Table I, one notes the following features.
(i) For a given value of x, the values of the characteris-

tic weight g„„are not only almost the same for all ex-
change modes, but also nearly equal to the value in the
two-cluster limiting case with y =1. This indicates that,
even when a strong degree of target clustering is present,
the one-exchange term is dominant among class-A ex-
change terms, and the core-exchange term (x =Ns) is
dominant among class-8 exchange terms. Additionally,
one can conclude from this observation that, in a qualita-
tive sense, the overall importance of the effects of an-
tisymmetrization seems to be rather insensitive to the
clustering properties of the nuclei involved.

(ii) For each value of x, the characteristic ranges R„,of
various exchange modes vary over an appreciable range.
In particular, it is seen that the variation is especially
large in the core-exchange case. Also, one should note
that, even though y is appreciably smaller than a in this
calculation, there do exist exchange modes for which the
values of R„„in the three-cluster formulation are quite
close to the value of R„„ in the two-cluster limiting
case. '3

(iii) In the present calculation, where y is realistically
chosen to be smaller than a, the value of k„„for each ex-
change mode is smaller than that in the two-cluster limit-
ing case. This is of course related to the fact that, as y
becomes smaller than a, there is less probability for the

TABLE I. Values of characteristic quantities in the a+ Li case.

Exchange mode v

Xg) +231

0 0
1 1

0 1

0 0
(two-cluster case; y =1)

+312

R„„
(fm)

2.219
2.111
2.088
2.060

(2.004)

k„
(fm ')

1.729
1.755
1.739
1.805

(1.829)

(MeV)

25.8
26.6
26.1

28.1

(28.9)

14.71
13.73
13.18
13.82

(13.44)

0
0
0
0
1

0
0
1

(two-cluster

0
2
1

0
0
0
0
0

case; y =1)

1.179
1.027
0.994
0.975
0.921
0.903
0.901
0.891
(0.882)

0.935
0.983
0.993
1.069
1.080
1.073
1.099
1.096

(1.110)

7.6
8.3
8.5
9.9

10.1
10.0
10.4
10.4

(10.7)

1.21
1.02
0.97
1.09
0.99
0.94
0.98
0.96

(0.96)

0 0
1 1

0 1

0 0
0 0

(two-cluster case; y = 1)

1.217
1.171
1.170
1.167
1.101

(1 ' 100)

1.073
1.138
1.140
1.044
1.212

(1.212)

10.0
11.2
11.2
9.4

12.7
(12.7)

1.71
1.78
1.52
1.49
1.78

(1.78)

0
0
0
0
0
1

0
(two-cluster

0
2
1

0
1

0
0

case; y =1)

3.333
2.965
2.898
2.543
2.465
2.393
2.379

(2.334)

1.470
1.652
1.690
1.926
1.987
2.059
2.048

(2.099)

18.7
23.6
24.7
32.1

34.1

36.6
36.2

(38.1)

24.00
24.00
24.00
24.00
24.00
24.28
23.73

(24.00)
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existence of high-momentum components in the A &+ A2
relative motion.

Also, it is noted from Table I that the characteristic
ranges for x =1 are much larger than those for x =2,
and the characteristic ranges for x =4 are much larger
than those for x =3. This indicates that, in the case
where absorption is strong, a complete omission of two-
and three-exchange terms should have only minor effects
on the differential cross-section results over the whole an-

gular region. Indeed, a three-cluster resonating-group
study' of the a+ Li system did show that, with
moderately strong absorption, this expectation turned out
to be entirely valid.

The features mentioned above [i.e., items (i)—(iii)] have
been found not only in the a+ Li example, but also in all
other cases examined. Hence, even though we have in-

vestigated only a limited number of cases, we do believe
that these features are general and can be considered as
representing the essential properties of nucleon-exchange
terms in a three-cluster formulation.

To gain further understanding of three-cluster ex-

change effects, we shall concentrate on a particularly im-

portant exchange mode, to be called mode a, which is
characterized by the fact that all nucleon-exchanges take
place entirely between, say, clusters 1 and 3 (for simplici-

ty, the discussion below will be restricted to the interest-
ing case where N] )N3). We single out this particular
mode for a detailed consideration, simply because numer-
ical studies in many systems have shown that, for the
core-exchange case, ' the corresponding equivalent po-
tential acquires the longest characteristic range among all
core-exchange modes. For example, consider the core-
exchange terms in the a+ Li case described above. As is

III. PROPERTIES OF EXCHANGE MODE 5

For the exchange mode a, the coefficients A„and C„
(8„=A„ for this mode} have much simpler expressions
and are obtained by solving the following simple equa-
tions:

(2p, ]3—x)+ (1—g)yx
xa xa gapa (4&)

yx
2 Axa+ Cxa I 0+

(2
(49)

where

(50}

with

Ju]3 N, N3 l(N] +N3 ) (51}

Using the resulting expression for C„,one can then find

the quantity x for which C is equal to zero. The result

1s

seen from Table I, the characteristic range for mode a is
equal to 3.33 fm. On the other hand, for the mode where
two nucleons are interchanged between clusters 1 and 3,
and two other nucleons are interchanged between clusters
2 and 3, the characteristic range has an appreciably
smaller value equal to 2.54 fm.

& =]MOI(1 —y)' —g( I+y')+ [(1—g)'( I —y')'+4g'y')]" I
—(1—g)(1 —y)'2 2 1/2 (52)

which depends rather complicatedly on ]MD, y, and g.
However, in practical cases of interest where y is between
about 0.5 and 1, one can show that x is close to pp. This
is illustrated in the a+ Li case with (N, ,N2, N3 ) = (4,2,4)
and a+ Ne case with (N„N2, N3)=(4, 16,4) in Table II.
Here one sees that, for 0.5(y & 1 x /pp differs from 1

by an insignificant amount.
The expressions of the characteristic range R„and the

characteristic wave number k turn out to be compara-
tively simple for this exchange mode and, consequently,
an analytical analysis can be made. The results shows
that for x &x, R„, and k have largest values when
x =1, and for x &x, R, and k„have largest values
when x =Nz. Therefore, even with target clustering tak-
en into account, one can conclude that, among all ex-
change terms of mode a, the one-exchange term has the
largest influence for x &x and the core-exchange term
has the largest influence for x ~ x .

(,~=4N„N~ l(N„Ns)— (53)

0.2
0.4
0.5
0.6
0.8
1.0

TABLE II. Values ofx /po.

System
a+ Li

1.118
1.035
1.020
1.011
1.002
1.000

~+2oNe

1.099
1.041
1.025
1.014
1.003
1.000

For the core-exchange mode a in the special case
where N, =N3, there is one particularly interesting
finding. This finding is that the characteristic weight g,
is independent of the clustering parameter y and is given
by
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(i) For x =1, R„ /RD, is smaller than 1 and nearly in-

dependent of y. In contrast to this, it is noted that, for
the core-exchange case (x =4), R„ /RD, increases rapid-
ly as y decreases. In the a+ Li case where core exchange
has important effects, the value of R„ /RD, at the realis-
tic value of y =0.5 is equal to 1.55 which is substantially
larger than the value of 1.12 in the two-cluster limiting
case (y =1).

(ii) In the core-exchange case, E„a/ct decreases rapidly
as y decreases. Together with finding (i) above, this
means that when there is a large degree of target cluster-
ing, the core-exchange contribution may be quite impor-
tant even when strong absorption is present, but this con-
tribution may rapidly diminish when the energy becomes
high.

(iii) In the relevant range of y between 0.5 and 1, the
characteristic weight g„depends very insensitively upon
y. In the a+ Ne case, for example, one sees that the
three- and four-exchange terms have very small charac-
teristic weight, for any value of y within this range. This
is an indication that, in this case, one may simplify the
resonating-group calculation by omitting these exchange
terms and yet obtain a reasonable description of the be-
havior of this system.

IV. CONCLUSION

In this investigation, we examine the effects of antisym-
metrization in the case where one of the nuclei involved
exhibits properties of considerable clustering. The re-
sults, obtained by analyzing the exponential parts of the
exchange-normalization kernel function in a three-cluster
formulation, indicate that the overall importance of ex-
change effects seems to be only weakly affected by the de-

gree of target clustering, and the one-exchange and core-
exchange terms remain to be the terms which make the
dominant contribution. For the one-exchange term, it is
additionally found that its characteristics are rather in-
sensitive to the clustering nature of the target nucleus.
On the other hand, for the core-exchange term, there is
an indication that its range may become quite large when
the degree of clustering is appreciable, but its influence
may decrease fairly rapidly with increasing energy.

The important task now is to examine the systematic
features of experimental scattering data in order to verify
the findings of our series of investigations. Unfortunate-
ly, this cannot be carried out at present. As is evident
from our discussion, exchange effects are best studied by
examining data which are performed at relatively high
energies between about 25 and 50 MeV/nucleon, and
which cover a wide angular range. At present, experi-
mental results that meet these criteria exist only in very
light systems, such as He+ a scattering where
resonating-group calculations have been found to be
highly successful. ' For systems involving heavier nuclei,
there are almost no data that are suitable for our pur-
poses. In this respect, it would indeed be desirable to per-
form many careful measurements in the abave-mentioned
energy range, as such measurements would certainly help
us to better comprehend the effects of nucleon exchange
and, consequently, achieve an eventual understanding of
the many intricate phenomena exhibited by nuclear sys-
tems.
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