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Fermion calculations in the boson space using the Dyson boson mapping
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An algorithm for obtaining a recursive algebraic expression for the various expansion
coefficients appearing in the physical boson basis states is presented, using the Dyson boson map-

ping. It is observed that only the first few terms of the physical boson basis states, expressed in

the present form, contribute to the matrix element of the Hamiltonian. Explicit numerical calcula-
tions have been performed for Ni and Sn isotopes in the obtained physical boson basis states. The
pairing Hamiltonian has been used as the model interaction. The results are more than 90% in

agreement with exact shell model calculations.

I. INTRODUCTION

In recent years, many attempts have been made to
perform the nuclear shell model calculations in the bo-
son representation. ' The main objective of these stud-
ies is to formulate a microscopic theory that is capable
of relating the parameters of the interacting boson model
(IBM) (Ref. 9) Hamiltonian to the nuclear single particle
energies as known from the experiment and the effective
shell model nucleon-nucleon interaction. These micro-
scopic formulations also referred to as boson expansion
theories (BET s), mainly involve the expansion of bifer-
mion operators in terms of bosons. The expansion
coefficients are determined through the requirement that
the commutation properties are mapped correctly. The
explicit mapping is required due to the fact that the bi-
fermions do not obey the simple boson commutation re-
lations. Both unitary and nonunitary mappings have
been used. The unitary mappings are mainly infinite bo-
son expansions. The nonunitary mapping of the bifer-
mion operators is achieved through the generalized
Dyson boson mapping (DBM) (Refs. 3 and 7) and leads
to a finite number of terms in the boson space. This
mapping has been employed in the present work.

Due to the finite nature of the DBM, any fermion
operator written in terms of bifermions has a finite num-
ber of terms in the boson space. For carrying out the

I

explicit calculations in the boson space one needs to con-
struct the physical boson basis (PBB) states. 2 The PBB
states are obtained by replacing each bifermion operator
in the fermion basis by the corresponding boson image
using the DBM. An iterative procedure for obtaining
the PBB states, recently formulated by Li, ' has been
found to be inadequate. "

In the present work, a general procedure for con-
structing the PBB states is outlined. An explicit recur-
sive algebraic expression for the various expansion
coefficients appearing in the PBB state for the ground
state has been obtained. This PBB state, presented in
Sec. III, is expressed in the form such that only the first
few terms contribute to the matrix element. Therefore,
in the present form one needs to construct the expres-
sions for only the first few coefficients appearing in the
PBB states. The present formulation has been applied to
Sn and Ni isotopes. The numerical results [ground state
energies (Eo) and occupation probabilities (v, )] are
presented in Sec. IV. The results are more than 90% in
agreement with the exact shell model calculations. For
completeness, the DBM is briefly reviewed in Sec. II.

II. DYSON BOSON MAPPING

The Dyson boson mapping in terms of coupled opera-
tors is written as

A JM(ab) ~b JM (ab)

Ja
A A A A=bJM(ab) y Jl J2J3J4 Jb

cdJ, J,
J3J4

j, J)
jd J, ( —1) ' ' [(bJ («)XbJ (bd))J XbJ (cd)]JM

J3 J4

(la)

AJM(ab)~bJM(ab): bJM(ab)— (lb)

j +j +J+J J& jc 1
i J

(C, Cb)SEJM(ab)= —g J1J2(—1) ' ' ' ' fbt (ac)Xb (bc))'
Jy & 2cJ,Z,

(lc)

37 1295 1988 The American Physical Society



1296 J. A. SHEIKH 37

where

C, =( —1) ' 'CJ

J, =+2J(+I,
A JM(ab) =(C, Cb )JM

Ja Jb
b'M"'= & m m M 'J.-.jb-b ~

bf
mamb

bJM (ab) = [bJM(ab) ]

(2)

(3)

In order to have a one to one correspondence with the
phenomenological bosons, the collective operators are
defined as

[b„,b „]=5„, ,

[b„,b„]=[b„,b„]=0,
(6)

bJgg y Xy~ (ab )bJM ( ab )
a(b

These collective bosons satisfy the following commuta-
tion relations:

and the symbols I ] and [ ] denote a 6j and 3j coupling
coefficient, respectively. The operators C, (C, ) are the
fermion single particle creation (annihilation) operators.
The operators bjM(ab) [bj M. (a'b')] are the coupled bo-
son creation (annihilation) operators and satisfy

[bJM(ab), bjM (a'b') ]
Ja+Jb+ J

5JJ'5MM'(~aa'5bb' ( 1 ) ~ab'~ba'» ~

(4)
[bJM(ab), bjM (a'b')]=[bjM(ab), bjM(a'b')]=0

where the collective coeScients X are constrained to
satisfy the orthogonality relation,

QX(JM(ab)XJM(ab) =25„„.
ab

The quantum numbers v,p, . . . denote the eigenstates
for a particular J value. In the present work the ground
state boson is denoted as so(b(x) ).

Using the collective operators defined above, the
DBM [Eqs. (la) —(lc)) in the collective representation is

J,J,J,J4 ' 4

VPCT

(8a)

b JM=bf

i J
J +J +J+J, Ja Jc

EJM(ab)= —g J(J2( —1 )
' ' 'Xg (ac)XJ (bc) ' '[bj" Xb J ]JM

Jb
1 2c
P,V

(Sb)

(8c)

where

Ja Jb J1

~j„'J'(J')———,
' g J,J2J,J4 jd j, Jz Xj (ab)XIJ (dc)XJ'(ad)Xf'(bc)

abed
J3 J J4

(
1)J2+J)+J4 Jp)(J4) J3 J3+J4+J J)ja2(J4)

J"J3 (J4) J JCTJP(J )

( J, +J2+J3+J Jaj3(J4)
J 1JP3(J4)

(10)

It is to be noted that the DBM is (a) finite and (b)
nonunitary. Due to (a), any fermion operator written in
terms of bifermion operators will have a finite number of
terms in the boson space.

For the evaluation of matrix elements one needs a
suitable set of basis states. The construction and the use
of the PBB states are discussed in the following sections.

III. BASIS STATES

The physical boson basis states are obtained by replac-
ing each bifermion operator appearing in the fermion
basis states by its corresponding boson image using Eqs.
(8a) —(Sc). The procedure for constructing the PBB
states is outlined and is illustrated for the ground state,
(s OP

~

0). First we write s o in the following form:
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s p=sp —7rp(sp) sp 2g rpspspp g 1 sppsp g Tp&(sp ) sg
0 t 2- v t t- vp f t- 0

V~O vp~O o&0

fO tO
JV—2 g T+pps~ —g 1p~~spp~ —g r '(b, 'xb, ')psp 2—g r '(b, "xbj')pYp

va&0 vptr &0 J1&0 vJ1~0

(bj Xbj )psp —g r ' '(bj Xbj )pso —2 g rp~ '(bj Xbj )ps~
vpJ1~0 J1cr~0 vpJ1~0

J"JP
rp' '(bj" Xbj )ps —2 g rpj'[(sp Xbj )j Xb j ]p —2 g rpj'[(s„xbj )j Xb j ]p

vpo' J1+0 J3+0 vJ3AO

and

—2 g wpj'[{sgj )j Xb j ]—2 g 7~' [~(sp Xbj )j Xb j ]p
vp J3~0 J3eeo 3

t0 0
prja[( s~xb j)j Xb j ]p —2 g ~r[~{ ysxbj )j Xb j ]p —g g rp ~ [{bj Xbj )j Xb j ]p

vcrJ +0 vpo J +0 vpoJ J &0

0 00( )

~00
00(0)

v 00(0)+ =+00(0) ~

(12)
J,J JOJO(0)

i(y Soar(0) ~

00

The above form of the s Ot is very useful. For example, in
determining the terms of (s p) with all b 's coupled to
J=0, only the first six terms of Eq. {11)contribute. The
PBB state for p = 1 (two particles) is

where

Np ——(1—~ ),
N„= —2v0, (15)

(13) and

N
VP

for p =2,

(s p')'
I
o)=s ~ ',

I
o)=s yp'

I
o) .

Following as in Eq. (14), the PBB state for p pairs of
identical valence nucleons is

Using the expansion of s p [Eq. (11}],we obtain

(s p}
I
0)=Np(sp)

I
0)+ QNppp I

0)
v~O

+ g N,pp I
0)+(terms with bj&p), (14)

vp~O

(s p F
I
0) =N](sp Y'

I
0)+ Q N~p„(s p P '

I
0)

V~O

+ g N~pp~(sp) 'I 0)+
vp+0

where

(16)

= [1—[p —(m +1)]PINj' „' —2(p —m)r N~„„'
gv. =m gv. =m gv. =m —1

+ [p —(m —1)]i ' N~„'
gv. =m —2

l

—2+ r P~(v, v2. . .v „cr)N~ „'
cr&0

I

V 1V

X ~ ~ —~ v&v2. . v~ —»~ ~ ~ ~ X ~ ~+~(v~v~
a&0 ~v. =m —2 u~O

g

p —1
vm +)Nv v. . .g

1 2''
gv. =m

(17)

with

n') m')0, (18)

where n ' is the superscript and m ' the number of coordi-
nates appearing in the various terms of Eq. (17). Here,

P (v&v2. . .v, o ) = g v;~a =0, for m =0 . (19)

Equation (17) is a closed algebraic expression for the
various expansion coefficients appearing in Eq. {16). For
example, m =0 in Eq. (17) corresponds to the first term
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of Eq. (16), i.e., N~~, m = 1 corresponds to N~, etc.
Using the procedure outlined above, a similar recur-

sive algebraic expression can be obtained for the terms in

Eq. (16) with bj~o and for higher seniority (v) states. In
fact, where the Hamiltonian admits only a single boson
associated with each J, the PBB state for v=2 has been
reported in Ref. 7.

It is obserued that only the first few terms of Eq. (16)
contribute to the matrix element of the two body interac
tion. This is the main advantage in expressing the PBB
states in the form of Eq. (16). As will be shown in Sec.
IV, only the first three terms, i.e., No, N~ and N~, con-

P
tribute to the matrix element of the pairing Hamiltonian.

IV. APPLICATION TO THE PAIRING HAMILTONIAN

The pairing Hamiltonian between the identical nu-
cleons is written as

HF = g—e,j,(C, C, )o gJ',j & A oo(aa) Moo(bb),

(20)

where a, denotes the single particle energies and 6 hav-

ing the dimensions of energy is quoted as the strength of
the pairing interaction. Using the mapping [Eqs.
(8a)—(gc)], the pairing Hamiltonian takes the following
form in the boson space:

J Ji'(J )Htt= g e,Xg~(ab}est(ab)bJgbz~ —g—j,j&Xtoo(aa)Xtoo(bb) s„—g r ' ' ' [(bj 'Xbz ')J Xb~']oo
abJM

pv
1P1 I

s

The ground state wave function for p pairs of identical
valence nucleons is given by

(21)

I

lowing normalization prescription is adopted ' for the
biorthonormal basis states:

I
ko)=NR(s o} I

0} .

The bar state obtained using Eq. (8b) is

(22} 1

[(0
I
s$(sot }r

I
0)]'~

(25)

(4'o I =NL, (0
I
(so }

As is clear from Eqs. (22) and (23) we have

[ I 40)]'&(4o
I

(23)
1

NL(0
I
s((s o}t'

I
0)

The ground state energy is given by
(24)

Due to this nonunitary character of the basis states, it is
required to use the biorthonormal basis states. The fol-

I

Eo(p»}=(ko IHa I(bo) .

Using Eqs. (14), (21), and (25) in (26) we obtain

(26)

Eo(p) =g e, 5gs ——J,Js pX, Xs+2X,P ) (b} QX,XsX,P—t(c)
4

C

+——„X, p(p —l)X,Xt, +(p —1)X,Pf(b)+(p —1)XbPr(a)+4P('t(ba)
Ja

+gX, —(p —1)X&X,Pf (c) 2X,P('t(bd) 2—X&Pit(ca )+Q—X,X&XdPz(cd ) (27}

and the occupation probability

($0 I
( —)E (aa)

I y, )
+a=

Ja
pX,

2X,P ~
(a) QX,Xt,Pr, (b)— (28)

In Eqs. (27) and (28), the following notation has been
used:

X, =Xoo(aa),

From Eqs. (27) and (28), the following points can be not-
ed: (a} the coefficients of one the first three terms of Eq.
(16), i.e., N$, N~, and N~ appear in Eqs. (27) and (28);
(b) the ground state energy [Eq. (27)] depends only on
the collective coef5cients X, even though the ground
state wave function depends on all X's; (c) for p =2, the
expressions are exactly the same as those of Li. '

The ground state parameters X, can be obtained in
the fermion space' as well as in the boson space. In the
boson space these can be obtained through the variation-
al procedure

Pf (a ) =QXOO(aa )N~, (29)

P2(ab) =QXOO(aa)Xtoo(bb)N~~ . Eo(p) =0,
a

(30)
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subject to the constraint

QX, =2. (31)
a

The minimization condition, Eq. (30), results in a set of
nonlinear coupled equations. The Newton-Ramp son
method has been employed for solving these equations.

Numerical calculations have been carried out for Sn
and Ni isotopes. In the case of Sn isotopes the single
particle energies used are 2d 5&2

——0.0, 1g7&z
——0.22,

3s, /2 ——1.90, 213/g 2.20, and 1h»/z ——2.80 MeV. The
strength 6=0.187 MeV has been used. In the case of
Ni isotopes the input parameters used are 2@3&&

——0.0,
1fs/2

—0.78, 2p, /2
—l. 56, lg9/z 4.52 MeV, and

6 =0.331 MeV. The results of calculations are shown in
Tables I a.nd II for Sn and Ni isotopes, respectively. The
results labeled P%' are obtained in the present work us-

ing Eq. (30). The results obtained by Li' and by exact
shell model calculations are designated by Li and ESM,
respectively. As is clear from the Table I, the occupa-
tion probabilities for 2ds/z and 1g7/z exceed unity" in

the case of Li which is a gross violation of the Pauli
principle. This violation occurs because Li has em-

ployed an approximate PBB state. In fact, Li has taken
only the first two terms of the PBB state into considera-
tion. As mentioned before, for p =2 our expressions for
the ground state energy, Eq. (27), and the occupation
probability, Eq. (28), are exactly identical to Li s corre-
sponding expressions. This is also evident from the nu-
merical results presented in Tables I and II. The results
of the present work (PW) have been carried out with the
full PBB states. Therefore, the present work can be con-
sidered as an improvement of the work of Li. It is evi-
dent from Tables I and II that the results PW are more
than 90%%uo in agreement with the ESM and there is no
violation of the Pauli principle.

V. CONCLUSIONS

The major obstacle in carrying out the explicit calcu-
lations in the boson space using the Dyson boson map-
ping is the construction of the basis states. There are
essentially two ways of performing the calculations. One

is to employ the boson basis states and the other is to
use the physical boson basis states. The boson basis
states are overcomplete and therefore contain the spuri-
ous states. The physical boson basis (PBB) states are ob-
tained by replacing each bifermion operator appearing in
the fermion basis by the corresponding boson image us-

ing the Dyson boson mapping. These PBB states have a
very complex structure, ' thereby nullifying any advan-
tage in working in the boson representation.

Many attempts have been made to obtain the PBB
states in an approximate way. ' '" These various ap-
proximate methods have been shown to be inadequate. "
In these investigations, the occupation probabilities
exceed unity. In the present work an algorithm has been
developed for obtaining the explicit expressions of the
PBB states. The algorithm is illustrated for the ground
state wave function.

It is observed that only the first few terms of the PBB
state, expressed in the present form, contribute to the
matrix element. In fact, in the case of the pairing in-
teraction only the first three terms of the PBB state [Eq.
(14}] contribute to the matrix element. Therefore, one
needs to derive the algebraic expressions of only the first
few expansion coeScients appearing in the PBB state.

The present formulation has been applied to Sn and
Ni isotopes with the pairing Hamiltonian as the model
interaction. The results of the present investigations
have been compared with those of Li. ' It is shown in
Table I that for p =8 (16 particles}, the occupation prob-
ability exceeds unity in the case of Li. This is a gross
violation of the Pauli principle. The results of the
present work do not suffer from this drawback. The
present formulation can be straightaway used to obtain
the higher seniority PBB states. This work is now un-
derway.
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TABLE I. Calculated ground state energies Eo and occupation probabilities for the tin isotopes.
The strength 6 of the pairing Hamiltonian and single particle energies used are 6 =0.187 MeV and
c, =0.22, 1.90, 2.20, and 2.80 MeV for 1d5/2, 1g7/2, 3s1/2, 2d3/2 and 1h»/2, respectively.

—2.623
—2.623
—2.624

—3.080
—3.085
—3.084

—0.673
—0.741
—0.700

2.180
1.506
2.150

v2
2d 5/2

0.325
0.325
0.325

0.714
0.712
0.715

0.935
0.913
0.936

0.932
1.030
0.931

v2
87/2

0.214
0.214
0.214

0.608
0.609
0.607

0.910
0.912
0.909

0.919
1.010
0.914

v2
1/2

0.029
0.029
0.029

0.078
0.078
0.078

0.119
0.127
0.120

0.380
0.208
0.370

v2
2d 3/2

0.023
0.023
0.023

0.060
0.060
0.060

0.083
0.090
0.085

0.240
0.135
0.249

v2
11/2

0.016
0.016
0.016

0.038
0.038
0.038

0.046
0.051
0.048

0.103
0.067
0.115

Source

PW
Li

ESM

PW
Li

ESM

PW
Li

ESM

PW
Li

ESM



1300 J. A. SHEIKH 37

TABLE II. Calculated ground state energies Eo and occupation probabilities for the nickel iso-

topes. The parameters used for the pairing Hamiltonian are the following: 6=0.331 MeV, and

e, =0.0, 0.78, 1.56, and 4.52 MeV for 2p, ~„ 1f,~z, 2p, ~2, and lg9/2 respectively.

Eo

—2.090
—2.090
—2.100

2p i

0.624
0.624
0.629

'fsn

0.201
0.201
0.198

2p

0.081
0.081
0.081

g9/2

0.013
0.013
0.013

Source

PW
Li

ESM

—1.745
—1.770
—1.750

0.762
0.801
0.764

0.407
0.383
0.404

0.155
0.148
0.153

0.021
0.020
0.021

PW
Li

ESM

1.723
1.720
1.700

0.932
0.925
0.934

0.855
0.866
0.856

0.413
0.395
0.408

0.031
0.031
0.031

PW
Li

ESM

APPENDIX

Here, the relevant commutation relations used in the present work are listed.

n![s,st ]= '
s " for n )m,

(n —m)! ' (A 1)

S ~ S
i=1

(A2}

[bjsr(ab), b z(cd)]=Pz(cd} 5JJ5srsr 55bd'PJ(ab)5, &

1 )
J'+I"+M .

Ja Jb J' J J"
j J' J" M' —M M —M' J M —M'
. d

(A3)

[Eqsr', (so)"]= 2nj b 'Xb—bq~(ab)(so)" (A4)

[so,b Jsr(cd)]=2n[5zo5sro5, dX, so '+P~(cd)j d 'XdEJsr(cd)so ' (n —1)(——1) j, 'j d 'X,XdbJ M(cd}so ],

where

PJ(ab)=1 —( —1)' ' a~b .

(A5)
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