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We present a general method to evaluate large amplitude time-dependent Hartree Fock dynam-

ics in a single mode and in the presence of a thermal bath. We apply the method in the small os-

cillation regime to isothermal and isentropic breathing mode oscillations. We employ realistic mi-

croscopic effective Hamiltonians with phenomenological extensions to large model spaces and ob-
tain thermodynamic coefficients for ' 0 and ~Ca. Coefficients for the incompressibilities, specific
heats, and thermal expansion are obtained along with breathing mode frequencies as a function of
temperature. A significant effect due to the nonlocality of the interaction on the collective mass is

obtained. The interaction produces a remarkably low value for the incompressibility while provid-

ing an adequate description of the breathing mode energy.

I. INTRODUCTION

The time evolution of hot nuclei has been investigated
within a variety of many-body methods. One set of
mean-field approaches based upon extending time-
dependent Hartree-Fock (TDHF) considers the time evo-
lution with assumed global thermodynamic equilibri-
um. ' This is closest in spirit to our own work. Other
time-dependent approaches begin with TDHF but move
closer to a hydrodynamic picture by including effects of
two-body scattering and viscosity and thermal conduc-
tion ' via classical approximations.

We have several major goals in the present work.
First, we will generalize the approach of Ref. 1 to arbi-
trary pairs of conjugate operators and demonstrate the
contact with TDHF. The approach is developed for
"mode-selected" large amplitude collective motion.
Second, we implement the method with realistic effective
Hamiltonians which, in principle, have more predictive
power than purely phenomenological Hamiltonians.
This is important in view of the demonstration by Co
and Speth that dynamical quantities, such as the breath-
ing mode frequency, vary widely with different phenome-
nological Hamiltonians whose parameters are fixed sole-
ly by ground state properties. Third, we will demon-
strate that many other thermodynamic coef5cients are
easily obtained and should serve to broaden the basis for

comparisons between theory and experiment and be-
tween different theories. Fourth, we will present results
for initial applications to ' 0 and Ca. These results are
obtained in the domain of small amplitude motion and
we reserve the large amplitude applications for future
efforts.

Since we anticipate eventual comparisons of the
present results with experimental data it is important to
keep in mind the chief limitations of our approach: we
only include mean-field dynamics, we select a single
mode and thereby preclude Landau damping, and we as-
sume global thermal equilibrium. With regards to the
last assumption we derive considerable encouragement
from the recent work of Nemeth et a/. where the re-
sults of local and global thermodynamic equilibrium as-
sumptions in a semiclassical approach were shown to be
comparable even for 1arge amplitude processes in nuclei.

The outline of the paper is as follows: in Sec. II we
review TDHF dynamics in a single mode and restricted
to zero temperature. In Sec. III we present the exten-
sion to finite temperatures. In Sec. IV we consider iso-
thermal and isentropic small oscillations and define the
thermodynamic coe%cients which we will evaluate. Sec-
tion V recounts the ingredients of our calculations: the
realistic effective Hamiltonian, its phenomenological ad-
justments, and the choice of conjugate operators for the
breathing mode. In Sec. VI we present our results for
' 0 and Ca while Sec. VII summarizes our conclusions.
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II. TDHF DYNAMICS IN ONE MODE: A REVIEW
OF THE T=o CONSTRAINED HARTREE-FOCK

THEORY WITH TWO CONJUGATE PARAMETERS

The time-dependent mean-field theory provides
currently the best microscopic description of nuclear dy-
namics at low energies. Viewed as an initial value prob-
lem it has proven reliable in explaining the evolution of
one-body observables in a wide range of nuclear phenom-
ena. In its adiabatic version, adiabatic time-dependent
Hartree-Fock (ATDHF), ' " it provides a self-consistent
way of adding kinetic energy terms to potential energy
surfaces. Finally, in its small amplitude limit it leads to
the random-phase approximation (RPA) which is the
standard way of studying the harmonic part of the nu-
clear spectrum near the ground state. This is a broad
subject with many subtleties and ramifications. As our
interests focus on the study of collective nuclear motion
under different thermal conditions we only consider here
the simplest case of TDHF motion in one predetermined
mode.

The purpose of this section is mainly pedagogical as
the theory is simple and well known. ' It will allow us
to introduce the notation and will set the stage for the
extension to finite temperature.

We consider two single-particle operators P, Q inter-
preted as a collective momentum and a collective coordi-
nate. Their nature depends on the kind of motion that
we want to focus upon and the formalism does not de-
pend on their precise form except for some general prop-
erties that allow a reasonable physical interpretation.
We require the following

to conditions Eq. (6) results in the usual CHF equation

[h —A, ,q —A,2p, p] =0,

where h is the HF Hamiltonian

where

g =h —A~q —X2p . (10)

The result of this procedure is a density matrix which is
a function of the constraining parameters p=p(A, „A,2).
The eigenvalue problem represented by Eq. (9) does not
have time-reversal invariance because, while h and q
have been assumed time-even, p is time-odd. This means
that the wave functions will be complex and that the
equilibrium density matrix p(l, i, A2) will have a time-odd
part representing a net collective current.

We now write down some relationships that follow
from the Feynmann-Hellman theorem. Let us call
G(A, „A2),H(Ai, k2), Q(A, „Az),P(Ai, kz) the functions ob-
tained by evaluating the functionals in Eqs. (2)—(5) at the
self-consistent density p(k, „iL2). Then these quantities
are related by

BG BG
BA 2

= —P.

h =t+tru p .

The standard way to solve Eq. (7) is to solve the eigen-
value problem

(9)

p —+-
' under time reversal

[P Q]%0

(la)

(lb)

A Legendre transformation with respect to the variables
P and Q provides the complementary relationships

(12)

The next step is to set up a constrained Hartree-Fock
(CHF) calculation using P and Q as constraining opera-
tors. This is done formally by minimizing the following
functional

G [p]=K [p]—A. ig [p]—A2P [p],
where

H [p]=trtp+ ,'tr trpv "p, —

Q[p]=trqp,

(2)

(3)

(4)

trp= A, p =p2 (6)

force the trial wave function to be a determinant of 3
particles. In this case the functionals defined above are
simply the mean values of the operators in the CHF
Slater determinant. Variation of Eq. (2), with due regard

In Eq. (3) t is the kinetic energy operator, v" the an-
tisymmetrized two-body interaction, q and p are the
single-particle constraining operators, and p is the one-
body density operator. The usual requirements on p

For the latter we have assumed that the functions
Q(A, , A2) and P(A, A2) can be inverted everywhere.
This poses some convexity requirements on the functions
6 and H which are related to the stability of the CHF
minimum. We will not, at this stage, elaborate further
on these requirements and assume that the Jacobian
[B(Q,P)/B(A, „A2)] is nonsingular.

The equations of motion are obtained by requiring
that the Heisenberg equations for the operators
P, Q be satisfied in mean value, i.e., we require that

d
irt—trpq =trpi [h, q],

(13)
A'—trpp =trpi [h,p] .

dt

These equations are also easily derived from a time-
dependent variational principle where the density matrix
is constrained to depend on time only through the pa-
rameters A, &, A, 2.

Although we have chosen to look at Eq. (13) as aver-
aged Heisenberg equations for P and Q they can also, of
course, be considered as equations for the density ma-
trix. If we rewrite them as
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trq (if' —[h,p])=0,
trp (i') —[h,p])=0,

(13a)
One important consequence of Eq. (15) is that, as in

ordinary TDHF, the energy is conserved. Similarly
these equations are not restricted to small amplitudes.

g(P, Q),
(15}

we can also interpret them as an attempt to satisfy the
full time-dependent Hartree-Fock equations iQ=[h, p]
in the special "directions" specified by p and q. Viewed
in this light, we have simply selected a particular mode
of the more general TDHF dynamics and have forced
the system in this mode. Of course, whether the pro-
cedure is at all justified depends on the residual cou-
plings that our selected mode has with the rest.

It is worthwhile at this point to comment on the
physical meaning of this procedure. The operators P, Q
are independent of the Harniltonian and are used to
define a "collective path"' in the many-dimensional
phase space of density matrices. There is a large amount
of literature on attempts to relate this collective path
back to the dynamics of the Harniltonia. At small arn-
plitudes this leads to the identification of P and Q to a
low frequency collective RPA mode. ' In the adiabatic
approximation it leads to linking the P operator to 8/BQ
and to the extraction of a collective mass of the
Thouless-Valatin form. In the truly large amplitude re-
gime one has to face squarely the fact that extracting a
low-dimensional invariant collective manifold decoupled
from the noncollective degrees of freedom is a very
diScult and, many times, impossible task. Results on
how to follow the RPA modes to large amplitudes in an

optimal way have been discussed by Marumori' and
collaborators. In our present effort we will be concerned
with the small amplitude response of nuclei.

We can combine Eqs. (13a) and (7) and use again the
cyclic invariance of the trace to obtain

=dQ =—trpq =Attrpi[p, q]/fi,
dt

(14)
P =—trpp =A, &trpi[q, p]/A' .

dt

Using Eq. (12) to replace A,
&

and 3,2 we finally obtain the
equations of motion

III. FINITE TEMPERATURE FORMALISM

II[p l =G [p ] TS [p] p—N [p]—
where G [p] is defined in Eq. (2) and

S [p]= —tr {plnp+ (1—p)ln(1 —p) I,
N[p]=trp .

(17}

(19)

Variation of 0 yields immediately the constrained finite-
temperature Hartree-Fock (FTHF) equation

p= ']+exp
h —p —A, ,q —A,2 p

T (20)

This is solved as usual by requiring the simultaneous di-
agonalization of p and g =h —A, &q

—A,2p. Notice that
again, when self-consistency is achieved

The extension to finite temperature of the results in
the preceding section follows in a standard and straight-
forward manner.

The method that we develop here extends the ap-
proach of Sagawa and Bertsch' which was applied to
study the vaporization of hot nuclei. We show that the
method is applicable to the study of any collective mode
and emphasize the need to specify the thermodynamic
conditions under which it happens. This is important
because the readily calculated isothermal coeScients are
not necessarily those applicable to realistic situations.
This point has been stressed by Goodman' in connec-
tion with calculations of moments of inertia and collec-
tive rotational bands in nuclei at T&0. We explore
below the isothermal and isentropic regimes with a fixed
number of particles but the methods can be readily
adapted to other situations such as the case of a fixed
chemical potential.

Instead of the energy we minimize the grand potential
with the temperature and the chemical potential con-
straining the values of the entropy and the particle num-
ber. Thus we consider variations of the functional

P = — g(P, Q), [h —A, ,q —A2p, p] =0 . (21)

where

((P,Q) =trpi [p, q]/A' .

Except for the common factor g these are canonical
equations for the conjugate pair P, Q. The motion is
governed by the Hamiltonian function H, which is just
the mean value of the Hamiltonian expressed as a func-
tion of the mean values of the constraining operators.

The factor g(P, Q) is not very important in what fol-
lows. Notice that it would just disappear if the opera-
tors P, Q were canonically conjugate. It can be scaled
away by a renorrnalization of the p, q operators or more
practically by a rescaling of the time variable, as is obvi-
ous from Eq. (15). In what follows, we just carry this
factor along and compute it when necessary.

H(A, „Az, T,p) =trtp+ ,'tr trpv "p, —

N(A, „A,z, T,p) =trp,
S (A, „A2, T,p}= —tr{p lnp+(1 —p)ln( 1 —p) J,
Q(A, &, A2, T,p) =trqp,

p (A, „A.„T,p, ) =trpp,

Q=H pN —TS —A. ,Q —A—,2P .

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

These quantities are related by the analogs of Eq. (11)

Now the self-consistent density will be a function of
k&, A.2, T,p and the value of the corresponding functional
will yield the following functions
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an an an an
a& aT ax,

(23)

which may be relevant to astrophysical applications. In
that case we use Eq. (26) instead of Eq. (24) in comput-
ing A,

&
and A, 2. Then the isothermal motion is given by

the equations

A Legendre transformation with respect to all variables
yields the equivalent of Eq. (12)

~ BF

BH
~

BH
~

BH T BH
a

—— 1, ap
——2, as

= aNP (24)
P=—aF

(29)

F =H —TS =n+l |Q+A2P+pN (25)

These relations assume that H has been rewritten as a
function of Q, P,S,N by inversion of Eqs. (22b) —(22e).

Other partial Legendre transforms are, of course, pos-
sible and will be relevant in different situations. For ex-
ample, at constant T and N we want to consider the free
energy

In this case it is the free energy that plays the role of a
Hamiltonian for the collective motion. To keep the tem-
perature constant energy has to be exchanged with the
thermal bath and this will be done following the lines of
constant free energy. The energy at any point on the
trajectory can be computed as

which gives E=F—T
T

' (30)

aF aF aF aF
aQ

' ap ' aT '
aN

(26)

~ ()H

aQ s,x

(27)

In Eq. (27) we have indicated explicitly which variables
are held constant in the partial derivative. The conse-
quence of Eq. (27) is that the motion occurs at constant
energy and without heat exchange with the environment.
Of course, the internal energy is shifted between kinetic
and potential during the motion. The temperature is not
constant and can be computed using Eq. (24) as

For the dynamical equations to be derived below the im-
portant part of Eqs. (24) and (26) is that A,

&
and A, 2 are

derivatives of the energy (or free energy).
Again we will not analyze the conditions for the ex-

istence of the various Legendre transforms although it
should be realized that important phenomena related to
phase transitions may cause these transforms to become
singular.

The establishment of the dynamical equations
proceeds exactly as before. All the manipulations lead-
ing up to Eq. (14) carry through unaltered except, of
course, that now p is the solution of the FTHF Eq. (20).

However, the step that leads from Eq. (14) to (15) de-
pends on what thermal conditions we want to explore.
If the oscil1ation occurs at constant entropy, i.e., without
exchange of heat energy with the thermal bath, then it is
appropriate to use Eq. (24) for A, , and A, 2. In that case
we obtain equations formally similar to Eq. (15).

The fluctuating term T(aF/aT) is the thermal energy
exchanged with the heat bath.

In both cases above we have considered that the num-
ber of particles is held fixed (while the chemical potential
changes). A straightforward extension can be done to
consider the motion at constant chemical potential.

IV. ISOTHERMAL AND ISENTROPIC
SMALL OSCILLATIONS

P=0, Q=qo (31)

for a certain value of T,p then the relevant surface (H or
F) can be expanded in its neighborhood up to quadratic
terms as

The study of large amplitude collective motion at
finite temperature is now reduced to the study of an en-
ergy surface obtained from a constrained Hartree-Fock
(HF) calculation with at least four Lagrange parameters.
Two of them (A. &, A, z) are of dynamical nature and
represent the force and velocity fields needed to describe
collective motion in a given mode. The other two (T,p)
embody the thermal constraints on the motion. The nu-
rnerical determination of these surfaces is quite feasible
with realistic Hamiltonians. It is a rather large under-
taking involving thousands of standard HF calculations.
The output of such a computation is, for example, the
function H(P, Q, S,N) which for constant S,N yields the
trajectory of isentropic motion as the line of constant H
in the phase space of P and Q. In a similar way the free
energy F(P, Q, T, N) for constant T, N yields the trajecto-
ry of isothermal motion as the line of constant F.

In what follows we study the small amplitude limit of
these surfaces near an equilibrium point. If such a point
exists with values

BH
aS PQN

(28) H(P, Q, S,N)= ,'k~(S, N)(Q —qo) +—,'B~(S,N)P—
In this case, then, the energy H computed at constant
entropy provides the Harniltonian function for the col-
lective motion.

It is also possible to explore the isothermal regime

(32a)

F(P, Q, T,N) = —,'kz-(T, N)(Q —qo)2+ ,'BT(T,N)P~, —

(32b)
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where

a'0 ax,
ks ——ag', ag, „
Bs=

S,X

aFkT= ag' , ag ,„
a2F

BT——

aP r~ aP TN

No cross terms are present because P is time odd. The
equations of motion following from Eq. (27} or Eq. (29)
become

Thermodynamic coefficients are obtained from the
difterentials

dg = dA, , + dA2+ dT,

dP = dA]+ dA2+ dTap ap ap

dS = dl, , + dl2+ dT .as as as

(37)

ap aQ as aQ as ap
ax =a~ ' ax =aT' w =aT (38)

If we specialize the calculation at A, 2
——0, the tirne-

reversal properties assumed for P and Q imply

The matrix of partial derivatives is symmetric because of
Eq. (23). Thus, in Eq. (37) we have

dt
—(Q —qo }= BPg, —

P
d,

=keg —eo»
(34)

as ag =0 at A2
——0.

ak2 ak2

The matrix in Eq. (37) therefore simplifies to

(39)

where 8 and k have the subscript appropriate to isentro-
pic or isothermal conditions and g is calculated at the
equilibrium point.

From Eq. (34) we obtain immediately harmonic
motion with frequency

k, ' 0 a

Y= 0 BT' 0

0 C

where kr and Br are defined in Eq. (33) and where

(40)

s =k&ksBs

oir g+krBr ——.
(35)

ag

(41)

Q =Q(A, A, 2, T},
P =P(A, „A2,T),
S =S(A,„A2, T)

(36}

are therefore obtained and their partial derivatives can
be calculated numerically. We omit the p (or N) depen-
dence as we will always consider motion at constant N.

The calculation above is a simple example of how
thermodynamic coefficients can be obtained from con-
strained FTHF calculations. These coefficients are
defined in general as second derivatives of energy (or free
energy} at an equilibrium point. Here k and B have the
meaning of a generalized spring constant and mass pa-
rameter. The precise physical significance of these
coefficients will depend on the nature of the operators P
and Q. Symmetry and positivity requirements will re-
strict them.

Isothermal and isentropic coefficients are connected by
Maxwell type relations as in ordinary thermodynamics.
As an example of practical importance below we now
show how to compute isentropic coefficients in terms of
isothermal ones. The constrained FTHF calculation is
performed at specified values of A, A.2, and T. The
values of p for the protons and neutrons are adjusted at
each iteration to satisfy particle number constraints.
After convergence, values of H, Q, P, S,F among others,
are calculated. The functions

C= s
k, ),A, i

It is now easy to invert Eq. (37) using Eq. (40)

kT a-'
dA, , = dQ+, dS,

1 —a 1 —a-'
d k2 BrdP, ——

—1 CdT= idg+ dS .
1 —a 1 —a

(42)

a is a dimensionless number which characterizes the
passage from isothermal to isentropic conditions

Q

C
(43)

aA, , kTs—ags 1 —a'
a~2~s= =BT .

(44)

Using Eq. (35) we find the ratio of the isothermal to
isentropic frequencies

cps/coT =(1—a) (45)

The thermodynamic coefficients at constant entropy can
now be read oif from Eq. (42)
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We can give a physical interpretation to a if we use
the last relation in Eq. (42) to write

as as=C(1—a)= (1—a) .
aT g aT

(46)

Considering now that aS/aT is proportional to a specific
heat we find

as as
dT dT

(47)

Thus a is related to a ratio of specific heats quite
analogous to the ratio C /C„of elementary thermo-
dynamics. In Sec. V B 2 we make this analogy precise.

V. INGREDIENTS OF THE CALCULATIONS

A. Realistic effective Hamiltonian

The full Hamiltonian acting on all A nucleons is
defined by

H = g h) —T„i+V+ V, , (48)

where we use a relative kinetic energy operator

(p —
pJ )

I (J
(49)

the realistic nucleon-nucleon potential V, and the
Coulomb potential V, . The quantities p and m signify
the single-nucleon momentum and mass, respectively.
From Eq. (48) we develop an effective Hamiltonian based
on the major assumption that the many-body method we
invoke is suitable to approximate the results of a shell-
rnodel diagonalization in a very large but finite basis. In
particular, we choose a no-core basis space in order to
avoid the calculation of core-polarization effects with
realistic effective interactions. %'e approximate the
temperature-independent effective no-core Hamiltonian
with

H.a = T..i+ V.a+ V. (50)

In the approximation we neglect renormalization effects
on T„& and on V, and we calculate only leading order
contributions to V,z. We anticipate that these approxi-
rnations become less severe as we increase the size of the
no-core model space and increase the dependence on the
adequacy of the many-body method. We do, however,
introduce certain phenornenological adjustments below
which are aimed at compensating for these approxirna-
tions and for deficiencies in the Hartree-Fock approxi-
mation. The method of calculating the leading term of
Veff which is the Brueckner G matrix ' based on the
Reid soft core potential, ' has been presented else-
where. ' ' We also include the lowest order folded dia-
gram in V,z which we find substantially reduces the
dependence of V,z on the energy gap between the model
space states and the reinaining (excluded) states.

Since we employ a large no-core model space, the Pau-
li operator in the G matrix excludes scattering to inter-

& H, rc& = & r„,&+rico& v,s &+&no& v, & . (51)

Here we signify the A- and %co-independent parts of the
matrix elements by lower case letters. The dependence
specified for the kinetic and Coulomb terms is exact
while that of V,z is approximate and is most accurate
for the largest matrix elements.

We have calculated H,z in a sequence of model spaces
abbreviated as the two-space (Os, Op, and ls-Od shells),
the three-space (two-space plus lp-Of shell), the four-
space (three-space plus 2s-ld-Og shell), and the five-space
(four-space plus 2p-1f-Oh shell). With these model
spaces we have evaluated the convergence rates of prop-
erties of ' 0 and Ca as a function of temperature.
We estimated that for both these systems, the thermo-
static properties were converged in the FTHF approxi-
mation for temperatures T S7 MeV when evaluated in
the five-space. For the current effort we are evaluating

mediate two-particle states where each particle is in a set
of major shells spanning the Fermi surface. Our basic
assumption of reliance upon the many-body dynamical
framework in a large but fixed basis space is equivalent
to assuming the important temperature dependent effects
are incorporated by that framework. That is, in contrast
with thermal Brueckner Hartree-Fock theory, we as-
sume H,& is temperature independent, as would be ap-
propriate, for example, in a microcanonical treatment,
It is possible to generate theoretical alternatives to our
approach which incorporate temperature dependent
corrections to H,z. However, due to our choice of parti-
tioning of the model space and our restricted application
to temperatures below 6 MeV we expect such correc-
tions will not alter our results in a significant way.

These effective Hamiltonians (in some cases prior to
including the folded diagram) have been employed in a
number of many-body studies with no-core methods. In
particular, we have used moment methods to obtain
spectral distributions ' and we have introduced and ap-
plied a coherent correlated pair method as well as a
dynamical basis generation scheme. Most relevant to
the current effort is a detailed study of the thermal prop-
erties of ' 0 and Ca in the spherical FTHF approxima-
tion. ' For more details on the effective Hamiltonian
one should consult Ref. 26.

We have also extended the FTHF calculations with
these effective Hamiltonians to include deformation.
In Mg we obtained results indicating that first order
deformed to deformed and that second order deformed
to spherical phase transitions occur at temperatures less
than 3 MeV.

For the sake of completeness we briefly summarize the
strategy and rationale of introducing model space depen-
dent phenomenological adjustments to the realistic
effective Hamiltonians. The matrix elements of each of
the operators in Eq. (50) are obtained in a harinonic os-
cillator basis with energy spacing fuu for a particular nu-
cleus consisting of A nucleons. We have found that, in a
given model space, the matrix elements of H, s (signified

by & &) are approximately dependent on fico and on A in
the following way
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thermodynamic coefficients for these systems near their
equilibrium configurations and for T56 MeV. Howev-
er, based on systematics of the breathing mode in ' 0
presented below we estimated that Ca calculations re-
quired one more major shell to be converged to the level
of less than a 10% error. We therefore adopted a phe-
nomenological extension of our effective Hamiltonian to
larger model spaces which we now describe.

In order to approximately include the effects of higher
oscillator states we add a phenomenological single-
particle Hamiltonian which acts between all shells and
those above the first six shells. Thus, it does not act be-
tween two oscillator single-particle states both of which
are within the first six shells. This phenomenological
Hamiltonian consists of the single-particle kinetic energy
operator, a Woods-Saxon potential (strength = —60
MeV, diffuseness=0. 6 fm, and radius= 1.1A '~ fm) and
a Coulomb potential of a uniform charge sphere of ra-
dius 1.1A ' fm. In addition, to achieve a smooth
matching of the added self-consistent states with the HF
spectrum at T=O, an additional overall positive shift of
20 MeV was added to the oscillator diagonal terms of
the phenomenological Hamiltonian. The need for this
shift can be traced to the use of a two-body relative ki-
netic energy operator for the lowest six shells. Since the
overall effects of this additional single-particle Hamil-
tonian are not large for these light nuclei we felt these
approximations were adequate.

We also continue with the philosophy of making phe-
nomenological adjustments to H, z in order to cure the
well-known problem that it does not reproduce simul-
taneously the ground state binding and rms radii of nu-
clei within the Brueckner-Hartree-Fock approximation.
In our previous efforts ' we varied fico in Eq. (51) and
introduced overall strength parameters for T„& and V,ff

which we will call A, , and A.„ for purposes of the present
work. We adjusted %co, A.„and A., within the spherical
Hartree-Fock (SHF) approximation to obtain reasonable
ground state properties. A detailed study of these pa-
rameters, the underlying rationale, the model space
dependence, the nuclear dependence, and the resulting
values have already been presented. Since we are ex-
tending the Hamiltonian to larger spaces we have con-
ducted a new study to determine optimum values for
these parameters. Note that A, , and A,„only multiply the
two-body terms associated with the realistic H,z of the
first six shells. We present in Table I a listing of the pa-
rameters and resulting ground state properties of ' 0
and Ca in the SHF approximation. The values of the
parameters for four and five shell calculations have been
chosen to give reasonable ground state properties in
those spaces. However, for larger spaces a parameter set
which gives good results in the largest space is selected
for study. Then Table I shows the slow trend for in-
creased binding and smaller rms radius that results. Un-
less otherwise specified we now adopt the 10-shell oscil-
lator space for ' 0 and the 11-shell oscillator space for
~Ca.

Q=-
A

A

g r,2, (52)

2A
g(p, r, +r, p, ). (53)

Q measures the mean square radius and is used as collec-

B. Choice of P and Q for the breathing mode

To describe isoscalar monopole motion we use for P
and Q the operators

TABLE I. Parameters of the effective Hamiltonian and resulting SHF properties of ' 0 and Ca as
a function of the number of oscillator shells in which the calculation is performed. The rms radii
quoted here are the point mass radii without corrections for spurious center of mass effects. For com-
parison the experimental binding of ' 0 ( Ca) is 127.6 (342.1) MeV and the charge rms of ' 0 ( Ca) is
2.75 (3.45) fm.

Nucleus

160

Model
space

No.
shells

4
5

6
7
8
9

10

flCO

(MeV)

8.520
8.628
8.650
8.650
8.650
8.650
8.650

0.889
0.902
0.977
0.991
0.991
0.991
0.991

1.189
1.253
1.350
1.350
1.350
1.350
1.350

E~F
(MeV)

—127.8
—127.6
—124.9
—125 ~ 1

—127.3
—127.3
—127.7

rms
(fm)

2.74
2.70
2.62
2.62
2.59
2.58
2.56

"Ca 5

6
7
8
9

10
11

7.950
7.610
7.610
7.610
7.610
7.610
7.610

0.980
1.000
1.000
1.000
1.000
1.000
1.000

1.220
1.290
1.290
1.290
1.290
1.290
1.290

—342.6
—320.7'

—338.5
—338.8
—342.5
—342.6
—343.2

3.41
3.48
3.39
3.38
3.30
3.30
3.28
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tive coordinate, while P is proportional to the radial flow
and is used as collective momentum. The commutator is

In our units these are pure numbers and their ratio is
given by Eq. (47)

(=[iP,Q]lfi= (54)
Cg =1—a.
CA,

(61)

l. Incompressibility

It is customary to define the finite nucleus in-
compressibility as

d'
K„=ro (ElA)

I „
dr 0

(55)

Having made a choice for Q and P we can now assign a
physical meaning to the thermodynamic coefficients
defined in Eqs. (33) and (41). The fact that the operator
Q is the mean square radius of the nucleus and therefore
determines its volume allows the interpretation of A,

&
as

an external pressure parameter which forces the system
to have a given size. The term X~Q is therefore analo-
gous to pV in ordinary thermodynamics. Quantities cal-
culated at constant A,

&
can thus be loosely said to be at

constant pressure, while constant Q means that volume
is held fixed. With this in mind we now proceed to re-
late the partial derivatives studied in Sec. IV to quanti-
ties with a more physical interpretation.

3. Thermal expansion coe+cient

It is customary to define the volumetric thermal ex-
pansion coefficient as

1av
V BT

(62)

3 1 B&r')
2 (r2) BT

(63)

Then, using Eq. (41)

31BQ3a
2QBT z, 2Q (64)

If the expansion occurs isentropically the coefficient is

where V is the volume as a function of T,p. In analogy,
we define

where ro is the rms radius of the nucleus. In our case
' 1/2

3 1 BQ~'=z g aT, (65)

ro —— —trpr
1

g 1/2
The ratio obtained from Eq. (42)

K„ is related to k defined in Eq. (33) by

4(r2)2 Bk] 4g2
ag= ~'

—1=1—a

4. The quantity a

(66)

( 2)2 BA. )
I T s g gg

(57)

Both quantities are equal at T=O and they are related
by Eq. (44)

At temperature T we can then define the isothermal (or
isentropic) incompressibility as

kTa g p2T
9 ~ I r (67)

In terms of specific heats a is given by

According to Eq. (43), a is the dimensionless parame-
ter that characterizes passage from isothermal to isentro-
pic conditions. It can be related to the quantities defined
above using Eq. (43)

&~
I s

(58) C; —Cg
(6&)

where a will be computed below.

2. Specific heat

In terms of the entropy, the specific heat is defined as

as
Cpor v dT 7

porV

where the entropy is written as a function of p, V or V, T.
For our problem we use the correspondence of A, Q
with p, Vto define

Using this form and the general inequalities satisfied by
specific heats

CA, )CQ)0 (69)

we conclude that

0(a(1 . (70)

This in turn implies the following inequalities between
the coefFicients

as as
CA

——T, Cg ——T
BT A. BT

(60)
&~ IT«~ Is

NT )cog
(71)
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5. The collective mass

2 A

2/2
(73)

solves the doubly constrained problem

(5$
~

8—A, Q A.,P ~

P—) =0 . (74)

This result is not changed when we add the thermal con-
straints. This means that for local interactions the
dependence of all quantities on X2 comes from the
geometry of the monopole operators and need not be
computed. For example, using Eq. (73) we find

r

Q(Ai Az)=Q Ai+Az
qmA

2A
(75)

P(X„Az)=Az Q A, , Azz (76)

where Q with a single argument is the solution of Eq.
(72).

The consequence of Eq. (76) is that the collective mass
parameter is

dP mA

c
(77)

This result is only valid for local interactions, but it
has been shown to be true also for interactions of
Skyrme type by Bohigas.

In our case, the interaction described in detail in Sec.
VA is nonlocal and therefore Eq. (77) will not hold.
However we can define a ratio

fi dP
mAQ BAz

This ratio will be different from unity for nonlocal
forces. In terms of g we can write the collective mass
[Eq. (77)j for nonlocal forces as

a-'=~* Q,g2

where

(79)

M' =pm, (g0)

and therefore assign the nonlocality effects of the in-
teraction to an effective mass. We do not expect this
mass to be related to the effective nucleon mass calculat-
ed for infinite nuclear matter. Besides the nonlocality, it

If the Hamiltonian contains only local two-body in-
teractions the doubly constrained HF monopole problem
for 8' —A, ,Q —A, zP can be easily related to the singly con-
strained one for 8—A,Q. In fact using the commutation
relations of P, Q and the kinetic energy it is possible to
show that if

~
f(A, ) ) is the Slater determinant which is a

solution of the variational problem

(5$ i
8—A,Q i tP ) =0 .

Then the Slater determinant

incorporates in an essential way the finite nucleus effects
and the dynamics of the radial flow. Until a more de-
tailed study of this quantity is done we may just think of

as a convenient way of displaying the results for
aPyW,

VI. RESULTS AND DISCUSSION

We first present a compilation of the T =0 breathing
mode frequency and incompressibility for ' 0 and Ca.
We feel it is appropriate to present in some detail these
1'=0 properties and compare them with various other
methods and forces since this is the first major calcula-
tion of these quantities with a realistic effective Hamil-
tonian. The various methods with which our results are
compared include HF, symplectic shell model (SSM),
CHF, and RPA. Our results and those from phenome-
nological potentials are presented in Tables II and III
along with the available experimental information for
comparison. Note that most phenomenological Hamil-
tonians as well as our own Hamiltonian have been ad-
justed to reproduce certain bulk properties of either
finite nuclei or nuclear matter. Thus the agreement be-
tween experiment and calculations for binding energies
and rrns radii is not surprising.

In spite of the similarity of values for E/A and rms
radii it is well known that a wide range of results for the
breathing mode frequency, finite nucleus incompressibili-
ty and infinite matter incompressibility can nevertheless
result. This is clearly evident in Tables II and III. It
has also been demonstrated' that it is possible to gen-
erate phenornenological Hamiltonians which yield ap-
proximately the same binding, rms radius, and breathing
mode frequency but dramatically different values for
K„.

Our results for the breathing mode frequency fall
within the lower range of results from phenomenological
forces. Experimental information is sparse for these
light systems but, for Ca, where it is available, there is
good agreement with our results.

For the finite nucleus incompressibility K„a some-
what different picture emerges. In ' 0 our results for
K~ follow a general correlation pattern between K„and
%co found for these particular Hamiltonians. ' That is,
our K„ is also in the lower range of results from phe-
nomenological forces. However, in Ca our K„ is sub-
stantially lower than the results for all phenomenological
forces. The reason we can have such a low value for K„
while maintaining good agreement for Aco is due to the
role of an effective mass arising from the nonlocal
features of our Hamiltonian. We return to this major
point later.

The results for K„ from SSM are based on the third
moment of the monopole strength function. The values
of K~ we compute and the others we quote are based on
the first negative moment of the monopole strength func-
tion. The size of the difference for the same Hamiltoni-
an is an indicator of the breathing mode width. As
pointed out by Bohigas et al. and by Blaizot ' the
method for obtaining K„ from the first negative moment
of the monopole strength function gives the lower value.
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TABLE II. A compilation of T =0 results for ' O.

exp

aEy~ (MeV)

7.98

( &
2 ) I /2 (fm)a

2.71—2.73

Ace (MeV) (MeV) E„(MeV)

( 105'
210+30'
-350

This work 7.98 2.56' 24.7 98.2

Force HF SSMf HF SSM' RPA~ SSM RPA SSM' HF~ SSM'

B1
MDI
SkM
D1
Ska
SV
SIV
SII
SIII
SVI
Wong et al.

(CHF)

7 99"

8.19'
7.97"

8.00"
8.03"
7.89'

8.01"
7 99"
6.01

5.82
7.84
7.81
7.80
7.56
7.54
7.56
7.62
7.60
7.58

2.76"

2.76'
2.78'
2.67"
2.68"
2.75'

2.69"
2.70"

2.74
2.72
2.73
2.70
2.72
2.70
2.71
2.69
2.69
2.71

24.6
26.3

29.0

29.8

22.2

22.0

101
117

138

147

92

220
228
263

325

356

246

200
216

306

342

364

'Measured or calculated charge rms radius unless otherwise specified.
Reference 38.

'References 31 and 32.
Reference 7.
Point mass radius including spurious c.m. motion.

'Reference 34; scaling incompressibility based on the third moment of the monopole strength function.
~Reference 31; based on Hartree-Fock and RPA calculations unless otherwise referenced.
"Reference 35.
'Reference 34; based on the extrapolation method of Ref. 32.
"Reference 28.
"Reference 36.
'Reference 37.

Reference 33; based on constrained Hartree-Fock (CHF).

There is great interest in obtaining E„ to characterize
the nuclear matter equation of state. As seen in Tables
II and III, various methods to extract the experimental
value of E„ from properties of finite nuclei yield quite
different estimates. Due to the limited model space for
the realistic H,z it is unreasonable to attempt calcula-
tions of Ez for heavy nuclei. Thus we cannot estimate a
value for E„. However, the trend of our E„ from ' 0
and Ca gives reason to believe that the E„ from our
Hamiltonian will be quite low compared to the results
for E„obtained from most phenomenological Hamil-
tonians.

We return to the intriguing issue of how such a low
value for E~, especially in Ca, can be compatible with
the experimental breathing mode energy. In terms of
the effective mass defined in Eq. (79) the monopole ener-

gy is given by

(81)

We have shown that M*=m for local and Skyrme-type
forces. For our nonlocal Hamiltonian at T=0 we ob-

tain M'=1.01m for ' 0 and M'=0. 75m for Ca. It is
this feature of our interaction that allows a good agree-
ment of the monopole energy in Ca with a substantial-
ly reduced incompressibility. This points to the fact that
nonlocality of the two-body interaction plays an impor-
tant role in softening the equation of state while retain-
ing agreement with breathing mode energies. While we
show below (see Table V) that M" is rather insensitive to
changes in temperature we have not obtained its depen-
dence on density since we have studied only small varia-
tions about equilibrium density. Later efforts will con-
centrate on the large amplitude behavior in order to
have greater contact will heavy ion experiments.

We now concentrate on the main results of the present
eftort —the T-dependent properties of ' 0 and Ca.
First, consider the T dependence of the breathing mode
itself. As noted in Sec. IV the monopole energy Ace de-
pends on the thermodynamic conditions. Note that this
distinction is generally absent in the literature. We
present in Table IV our results for the isothermal and
isentropic values of Ace as a function of T up to 6 MeV.
We see immediately how important is the distinction be-
tween the thermodynamic conditions since the Acoz falls
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TABLE III. A compilation of T =0 results for Ca.

(r')'" (fm)' K„{MeV}

exp 8.55
3.47 —3.49

3.42 205
& 105'

210+30
-350'

This work 8.56 3.42' 21.6 91.1

Force

B1
MDI
SkM
D1
Ska

SV
SIV

SII
SIII

SVI
Wong et al. '

(CHF)

HF

8.61"

8.67'

8.54'

g 57m

g 54m

8.40"
g 54m

g 52m

7.04

SSM~

8.44
8.37
8.34
8.20

8.10
8.09

8.13
8.08

8.03

HF

3.48"

3.47'

3.50'

3 44m

3 46m

3 49Il

3 4gm

3 4gm

SSM~

3.46
3.47
3.45
3.48

3.47
3.49

3.48
3.49

3.51

RPA"

19.1

22.2
23.0

25.3

26.3

23.9'

SSM~

19
21.8
21.7
22.4
23.5

25.3
26.0

26.5
27.0

27.3

RPA"

99

132
144

(165)'

171
(203)'

186
(227)'

SSM'

104
135
136
142
160

184
195

206
215

220

HF"

190

220
228
263

325

356

246

SSM'

200
216

306

342

364

'Measured or calculated charge rrns radius unless otherwise noted.
From a compilation of experimental results in Ref. 34.

'Reference 38.
References 31 and 32.

'Reference 7.
Point mass radius including spurious c.m. motion.
I'Reference 34, based on a syrnplectic shell model (SSM).
"Reference 31, based on Hartree-Fock and RPA calculations unless otherwise noted.
Reference 34; scaling incompressibility based on the third moment of the monopole strength function.

'Reference 34, based on the extrapolation method of Ref. 32.
"Reference 35.
'Reference 28.

Reference 36.
"Reference 37.
'Reference 33, based on constrained Hartree-Fock (CHF).

TABLE IV. Breathing mode energies (fico in MeV) for Ca. A variety of methods are employed
including constrained time-dependent Hartree-Fock (Ref. 1) (CTDHF} and modified random phase
approximation (Ref. 40) (MRPA).

ISOTHERMAL
This work
SGII interaction
CTDHF'
SkM interaction
MRPA

21.6

22.6

21.5

22.9

20.4

22

23.2

17.5

22.7

14.0

21.5

11.7

19.9

10.6

18.0

ISENTROPIC
This work
JMZ interaction '

TDHF2
Dissipative
Linear Response

21.6

-20.0

21.5 20.8

23.9'

19.0 16.9 15.5 14.7

23.7

'The actual temperature is 2.3 MeV for this result in Ref. 42.
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much faster than fico& with T. At 6 MeV Rco& is 40%o

larger than fico~ for Ca.
Where available we have preseoted results in Table IV

obtained with other Hamiltonians and other methods.
Considerable variation in the admittedly sparse set of re-
sults is observed. At T=6 MeV the Acoz for two similar
(Skyrme-type phenomenological forces) has very dif-
ferent values: 6 and 18 MeV. Our result of 10.6 MeV
falls between these cases. Note that the method used to
obtain the Acoz. ——6 MeV result' is essentially the same as
ours so that the difference from our value is due to the
choice of Hamiltonian.

The isentropic results for Ace are of greater physical
interest in relation to heavy ion experiments. However,
there is little theoretical information available for this
quantity from the previous literature. The very high
value of 23.7 MeV at T =6 MeV for the Jaquaman-
Mekjian-Zamick (JMZ) interaction may not be realistic
in view of the fact that this interaction overbinds Ca
by 3 MeV/nucleon and yields an rms radius of 3.08 fm
compared to the experimental rms radius of 3.48 fm.

In Table V we present a complete summary of our re-
sults for ' 0 and Ca as a function of T. As a general
feature we note that all properties change rather slowly
with the initial increase from T =0 to T=1 MeV. More
rapid changes are observed thereafter reflecting the de-
crease in the importance of the shell effects and the in-
crease in the importance of the vapor phase.

The first three columns contain properties previously
reported for 6-shell calculations. ' The minor
differences of these large space results from the 6-shell
results have been discussed in Ref. 43. We do not ex-
tend our calculations beyond 6 MeV where ' 0 is un-
bound since we do not include a dynamical treatment of
the gas phase. Methods for incorporating the gas phase
have been used in Refs. 1 and 2.

We now comment on the incompressibilities in Table
V. Again, it is important to specify the thermodynamic
condition under which the incompressibility is evaluated.
Since the ratio of the E„'s follows the square of the ra-
tios of the fico's as seen through Eqs. (44) and (45),
K„~ r falls much faster than I(.'„~ s with T.

The thermal expansion coefficients in Table V are seen
to increase by orders of magnitude from T= 1 to T=5
MeV which reflects the approaching transition to a gas
phase. In an infinite system these quantities would actu-
ally diverge at the liquid-gas phase transition. The fact
that the values for the thermal expansion coefficients of

Ca are generally lower than those of ' 0 at a given
temperature is explained by the fact that a greater per-
centage of the particles in ' 0 are in the last filled shell
at zero temperature. This point was previously dis-
cussed in the context of the rms radius vs T.

The specific heat at constant volume C& is an impor-
tant thermodynamic coefficient especially at low T. Up
to this point it has not appeared in discussions of
theoretical or experimental results with finite nuclei. On
the other hand specific heat defined as the simple deriva-
tive of the excitation energy with respect to temperature
(no quantities held fixed) and as the derivative at con-
stant angular momentum have been evaluated. At-
tempts to fully understand the nuclear equation of state
from laboratory experiments must determine all these
specific heats. We present our results for Cz/A and
C&/3 in Table V along with their ratio.

VII. CONCLUSIONS

We have described a general method for evaluating
large amplitude temperature-dependent TDHF dynamics
in a single mode and have presented illustrative results
in the small-amplitude regime. We have utilized a realis-

TABLE V. Thermodynamic coefficients for ' 0 and Ca.

T BE/A
(MeV) (MeV) S/A

Monopole
energy Incompressibility

&r &' aur ~s It'~
I r &A Is

(fm) (MeV) (MeV) (MeV) (MeV) (MeV)

Thermal
expansion

P,
(MeV)

Specific heats
Cq /A Cg /A Cg /Cg

16O 0 7.981 0.0
1 7.97 0.013
2 7.739 0.157
3 7.148 0.390
4 5.879 0.755
5 3.481 1.303

5.8' 0.575 1.871

2.558 24.73 24.73 98.2
2.558 24.64 24.69 97.6
2.576 22.30 23.21 81.0
2.645 15.86 18.68 43.0
2.841 10.61 15.14 21.8
3.258 7.87 13.47 14.9
3.787 6.80 13.32 13.8

98.2
97.9
87.7
61.0
44.5
43.5
52.9

0.0
0.5X10 '
0.4X 10

0.133
0.308
0.509
0.593

0.0
—0.2X 10-4
—0.33 X 10-'

—0.056
—0.319
—0.982
—1.68

0.0
0.069
0.38
0.86
1.80
3.24
4.22

0.0
0.069
0.35
0.61
0.88
1.11
1.10

1 1.016
1 1.016
1.08 1.016
1.42 1.014
2.03 0.995
2.93 0.936
3.84 0.860

Ca 8.579 0.0 3.283
8.550 0.0368 3.285
8.318 0.194 3.303
7.835 0.392 3.357
7.010 0.642 3.472
5.824 0.933 3.662
4.326 1.250 3.915

21.56 21.56 91.1
21.46 21.51 90.5
20.37 20.82 83.0
17.46 19.05 63.6
14.02 16.92 44.2
11.75 15.46 34.2
10.63 14.72 31.3

91.1
90.8
86.7
75.7
64.3
59.2
60.0

0.0
0.73 X 10—'
0.28 X 10
0.71 X 10

0.132
0.184
0.212

0.0
—0.31 X 10-4
—0. 13X 10-'
—0. 14X 10
—0.6X 10

—0.135
—0.194

0.0
0.126
0.35
0.67
1.09
1.53
1.95

0.0
0.125
0.33
0.57
0.75
0.88
1.02

1.0 0.752
1.0 0.753
1.04 0.759
1.19 0.767
1.46 0.772
1.73 0.765
1.92 0.748

'At T =5.9 MeV, ' 0 becomes unbound.
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tic microscopic effective Hamiltonian and have com-
pared with results from phenomenological Hamiltonians
where available. The nonlocality present in our Hamil-
tonian due to the Brueckner G matrix and higher-order
graphs gives rise to significant effects in the thermo-
dynamic coefficients in Ca.

It has been one of the major goals of this effort to in-
dicate the relative ease with which these coefficients can
be calculated in finite nuclei via thermal CHF calcula-
tions. Another goal has been to call attention to the
dependence of these coefficients on the thermodynamic
conditions. These coefficients probe the energy surface
in independent directions and therefore serve as a physi-
cal basis for defining the nuclear equation of state.
Furthermore, where results from other Hamiltonians are
available, we have shown they are sensitive to details of
the interaction. We strongly encourage attention to the
issue of the experimental determination of these thermo-
dynamic coefficients.

We close with the remark that the tendency we have
found for a low incompressibility relative to previous re-

suits may provide a basis for understanding supernova
explosions in certain models.
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