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The recent successful prediction of the triton binding energy, E„with the static Bonn potential is
examined. Modified versions of the potential are introduced to isolate separately the effects of the
deuteron D-state admixture and the 'So scattering length on E,. Within this model study we find a
monotonic relation between E, and the So scattering length and a strict linear dependence of E, on
the D-state admixture, in accordance with general well-known trends and earlier separable-potential
model studies. The mechanism through which the weaker tensor force (lower D-state admixture)
leads to a stronger binding of the triton is investigated by the introduction and study of effective
energy-dependent central potentials.

Recently, successful microscopic predictions of the tri-
ton binding energy (E, ) based only upon realistic two-
body forces have been reported. ' These predictions,
obtained with energy-independent parametrizations of
the full meson-theoretic Bonn interaction, are important
because they mark a departure from previous indications
that microscopic two-body forces are fundamentally
inadequate to describe the triton binding. The difference
between these recent predictions and previous ones
reflects an uncertainty in our ability to predict E, due to
ambiguities in the character of the two-body nucleon-
nucleon (NN) input. A key issue, then, is the degree to
which crucial features of the NN input are constrained
by data and the extent to which unconstrained model
dependencies internal to the two-body system can affect
predictions of the triton binding energy. In order to ad-
dress this issue, a precise characterization of the essential
mechanisms which govern the triton binding is required.
We need to know what aspect of the interaction is re-
sponsible for variations in predictions, and whether or
not this feature of the NN interaction is a direct conse-
quence of the NN data and of the basic assumptions of
the theoretical model. In this paper we report the results
of several numerical studies which we have performed to
address these questions.

As a preliminary, we show in Table I the results of cal-
culations of the triton binding energy with some of the
"standard" realistic NN interactions, ' along with our
own recent results. ' The "realistic" two-body interac-
tions presented in Table I all provide accurate representa-
tions of the NN data. " ' Without this common pre-
requisite, it would, of course, be meaningless to compare
their trinucleon predictions. Nevertheless, there are
differences among these models, even on-shell. We sum-
marize the bound-state and some low-energy scattering
observables in Table I along with the deuteron S-D ad-
mixture, the so-called deuteron percent D state (PD ), pre-

dieted by the various models. Although the asymptotic
deuteron D/S ratio ri and the deuteron quadrupole mo-
ment are experimental observables which do constrain
PD, the percent D state is not directly observable and
varies for reasonable models of the NN interaction from
perhaps 4 to 7%. That this is a principal ambiguity in
the description of the NN interaction, which also has a
strong effect in the trinucleon system, has long been
known. In fact it is this PD ambiguity, which is closely
related to ambiguities in the characterization of the NN
tensor force, that is commonly accepted as the most im-
portant NN source of uncertainty in triton binding pre-
dictions. The main purpose of what follows is to clarify
and further quantify the close relationship between the
predicted values of PD and E, as well as the mechanisms
responsible for this relationship.

The static momentum-space Bonn interaction of Ref. 4
(OBEPQ) forms the basis for the studies in this paper. As
may be seen from Table I, this potential provides an ex-
cellent description of the important low-energy NN ob-
servables. It also yields a good description of low-energy
phase-shift data as well as a faithful (on-shell) representa-
tion of the full Bonn interaction up to about 150 MeV
(see Ref. 4, Sec. 9.3). Beyond about 150 MeV both of the
static Bonn interactions, OBEPQ and its local r-space
counterpart OBEPR, deviate appreciably from the full in-
teraction in predictions for some partial waves, particu-
larly for the e, mixing parameter. The 325-MeV E'& pre-
diction of the full Bonn interaction itself lies considerably
below the commonly accepted value, although it may be
argued that the empirical value of E'& is uncertain at least
to this extent. ' The static Bonn interactions substantial-
ly underpredict the full interaction above 150 MeV [e.g.,

(325 MeV) =0.47 and —0.84', for OBEPQ and
OBEPR, respectively]. However, it is not yet known
what signi6cance to attach to these high-energy devia-
tions in relation to low-energy trinucleon applications.
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TABLE I. Two- and three-body system parameters calculated from the static momentum-space Bonn potential and from various

static configuration-space potentials. Experimental deuteron and NN scattering parameters are from Refs. 12—15.

Quantity Experiment Bonn (Ref. 4) Paris (Ref. 7) SSC (Ref. 8) RSC (Ref. 6) V14 (Ref. 9) TRS (Ref. 10)

Triton
E, (MeV) 8.48 8.35 7.64 7.53 7.35 7.67 7.56

Deuteron
Ed (Me&)
P~
Qd (fm')

I d(1 N)

As

rd (fm)

—2.224 575(9)

0.2859(3)
0.857 406(1)
0.8846(16)
0.0256(4)
1.9560(68)

—2.224 58
4.38
0 274'
0.8548'
0.8862
0.0262
1.9684

—2.2249
5.77
0.279'
0 853'
0.8869
0.0261
1.9716

—2.224
5.45
0.279'
0.858'
0.8969
0.0255
1.9915

—2.2246
6.47
0.2796'

0.8776
0.0262
1.9567

—2.2250
6.08
0.286'
0.845'
0.8911
0.0266
1.98

—2.2245
5.92
0.282'
0.854'
0.8884
0.0262
1.9754

'S& np scattering parameters
a, (fm) 5.424(4)
r, (fm) 1.759(5)

5.424
1.760

5.427
1.766

5.482
1 ~ 833

5.39
1.720

5.45
1.80

5.453
1.797

Sp NN scattering parameters

a„~ (fm) —23.75(1)
r„~ (fm) 2.75(5)

a' (fm) —17.1(2)
r' (fm) 2.84(3)

—23.74
2.70

—17.61
2.88

—17.1
2.80

—23.67
2.77

app (fm)

r„ ffm)

—7.828(8)
2.80(2)

—7.810
2.797

—7.818
2.713

—7.78
2.72

—7.823
2.729

' Does not include meson exchange current contribution.
Includes corrections for electromagnetic effects.

For example, it appears that an accurate representation
of both the full interaction and the experimental data at
low energies is more relevant for trinucleon bound-state
properties. This is supported by the fact that OBEPQ
and OBEPR predict' nearly identical triton binding en-
ergies despite the difFerences in their predictions for
high-energy NN scattering parameters. Thus, both be-
cause of its intimate relationship with the full Bonn in-
teraction and because of its excellent description of the
energy regime below about 150 MeV, we regard OBEPQ
as a "realistic" potential for our purposes.

The results of trinucleon calculations are conventional-
ly classified according to the channels which are incor-
porated in the calculations. A channel corresponds to
the coupling of a specific angular momentum state (LSJ}
of an interacting pair of nucleons to a specific angular
momentum state (Isj} of the spectator nucleon to pro-
duce, e.g., the triton 8=—,'. The choice of which channels
to include and which to omit is somewhat arbitrary, but
certain choices have become standard. Typically one
specifies a maximum value of J and decides whether or
not to include odd-parity NN states. For example, given
(J &1; n. =+), (J &2; m =+), (J &2; n=+), or (J &4;
m =4), one has 5, 9, 18, or 34 channels, respectively.
Table II contains the channels which comprise the five-
channel calculation. Of special interest here is the tmo-
channel case, which includes only channels 1 and 2 of
Table II. For the two-channel case under discussion only
the two-body T matrices tIL ~ ——t and tLI ——too contrib-

TABLE II. The three-body five-channel coupling scheme.

Channel
number

Pair
S

Spectator
S

0 0 0

0 1

0 1 1

2 1 1

2 1 1

1

2

1

2

ute. Note that this is not equivalent to setting the NN
tensor potential to zero, since the full triplet potential is
used to generate the NN T matrices.

In Table III we show a channel decomposition of the
triton binding energy predictions of the various two-body
interactions. The bulk of the binding is already present
in the two-channel calculation, and, moreover, most of
the distinction between the predictions of the static Bonn
interaction and those of the other realistic interactions is
also already present in the two-channel Bonn calculation.
Although higher partial waves contribute somewhat
difFerently from one NN model to another, this is not the
qualitatively important distinction. Since the only input
to the two-channel triton calculation are the 'So and S&
two-body T matrices, the major difFerences between the
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TABLE III. The triton binding energy in MeV calculated for
2 through 34 channels for the potentials discussed in Table I.

Potential
Number of channels
5 9 18 34

Bonn'
RSCb
Paris'
SSCb
V14b

TRSb

8.16
6.59'

8.36
7.04'
7.30
7.46
7.44
7.49

8.44
7.21

7.52
7.57
7.56

8.32
7.23
7.38
7.49
7.57
7.52

8.35
7.35
7.64
7.53
7.67
7.56

'This work and Ref. 1.
Reference 27.' References 2 and 28.

TABLE IV. The two- and five-channel results for variations
of the Bonn potential and for the Reid soft-core potential.

Pg)

E, (MeV)
Two-channel Five-channel

Potential A'
Potential B
Potential C
RSC

4.38
5.03
5.60
6.47

8.16
7.87
7.62
6.59

8.36
8.14
7.94
7.04

'OBEPQ of Ref. 4; see Table V for parameters.
See Table V for parameters.

static Bonn model and the others evidently arise from
differences in these S-wave T matrices.

It has long been known that the triton binding energy
is sensitive to low-energy on-shell observables (particular-
ly the S, and 'So scattering lengths' ') and PD.
As displayed in Table I, there are small but significant
two-body differences among the various realistic potential
models, and these differences make it dificult to study the
dependence of E, on variations of an individual "observ-
able" in a realistic potential model. To avoid this compli-
cation, we found it expedient to generate several vari-
ants of the "static Bonn potential" which were as alike
as possible, differing either in PD or, alternatively, in the
'So scattering length, but fitting all other low-energy pa-
rameters to high accuracy. This approach also ensures
that the off-shell variations between different versions of
the potential are minimal. The momentum-space static
Bonn potential (OBEPQ) which forms the basis of this
work is discussed at length in Ref. 4. The two- and five-
channel predictions for the models with varying PD (with
'So scattering length, a„) and the corresponding param-
eter variations which give rise to the "new" potential
models are given in Tables IV and V, respectively.

The 'So part of the interaction can be characterized by
the 'So scattering length it produces, and the S, part of
the interaction by its PD prediction. In Fig. 1 we show
how the triton binding energy behaves as a function of
the PD for two values of the 'So scattering length. Since
this calculation, like its predecessors, ignores charge-
dependent effects, there is an ambiguity as to what value
should be used for the 'So scattering length. The two

straight lines in that figure correspond to a
~ ( 'So )

= —17. 1 fm and a„('So)=—23.75 fm. The difference
in the binding of the triton, corresponding to this
difference in the 'So scattering length, is E,(a „~)
—E,(a ) =+0.37 MeV. Further discussion of this
point will appear elsewhere in a treatment of charge
dependence. The linear dependence of the triton bind-
ing energy with respect to PD, when other variations are
minimized, is displayed in Fig. 1. We emphasize that the
only input to these two-channel calculations are the 'So
and S& parts of the NN Tmatrix.

In view of the fact that the bulk of the triton binding is
already given by the two-channel calculation, we expect
the same linear dependence on PD in the five-channel
case. The cognate results for the five-channel calculation
are plotted in Fig. 2. On this same figure we also show
the points corresponding to the other models. The
scatter represents a measure of the cumulative effect of
the other differences beyond PD in those models.

The foregoing also demonstrates that, apart from vari-
ations induced by differing So scattering-length fits, we
can focus on the S& NN partial wave as the principal
source of the distinction between the new results and ear-
lier ones. That the bulk of the difference between models
is already present at the two-channel level implies that
the tensor part of the T matrix does not play a crucial
role. The essential conduit is the diagonal S& T matrix,
and the principal effects of different tensor-central poten-
tial admixtures of the various models evidently resides
therein. To clarify the mechanism through which this
proceeds, we observe that the central and tensor forces
are both attractive in the even parity J = 1 state, and that
different realistic forces achieve the same -2.2 MeV
binding energy of the deuteron through different relative
strengths of their central and tensor parts. A stronger
central force necessarily implies a weaker tensor force,
and vice versa, in order to achieve the observed deuteron
binding energy. This is illustrated in Fig. 3, where the
central and tensor parts of two different local potentials,
which fit the deuteron and low-energy triplet scattering
observables, are plotted. Such a local potential is dis-
cussed in Ref. 4. Although the properties of local poten-
tials are the most easily depicted, the properties we are
discussing are shared by a much wider class of static in-
teractions. From Fig. 3 it is evident that the model with
the stronger central force has the weaker tensor force
(lower PD ).

In the triton the tensor force apparently contributes
relatively less to the binding than does the central force
in order to produce the observed correlation: that a
lower PD leads to a more strongly bound triton. We want
to examine more closely the mechanism by which, all
other things being equal, a stronger tensor force implies a
weaker triton binding.

The NN S, T matrix, T (E), enters into the Faddeev
triton binding calculation for values of the parametric en-
ergy E = E, ——,'q Im, where E, ( -—8.0 MeV) is the tri-
ton binding energy, m is the nucleon mass, and q is the
magnitude of the momentum of the spectator nucleon rel-
ative to the interacting pair. In general the Faddeev cal-
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TABLE V. Parameters used to construct the three variants of the static momentum-space Bonn po-
tential used in this paper. Potential A is OBEPQ of Ref. 4; potentials Band C are from Ref. 24.

Meson IG( JPC) m. (MeV) Potential
Potential dependent parameters

g'/4e", (f Ig ) A (GeV) (n )'

1- (0-+) 138.03
T =1 parameters

A

B
C

14.6
14.4
14.2

1.3
1.7
3.0

1.0
1.0
1.0

0+ {0-+) 548.8 A

C

5.0
5.0
0.0

1.5
1.5
1.5

1.0
1.0
1.0

1+ (1--) 769.0
B
C

0.81; (6. 1)
0.90; (6.1)
1.00; (6.1)

2.0
1.63
1.7

2.0
1.5
2.0

0 (1 ) 782.6 A

B
C

20.0; (0.0)
20.0; (0.0)
22.0; (0.0)

1.5
1.5
1.5

1.0
1.0
1.0

1
—(0++ ) 983.0 1.1075

2.2246
4.6090

2.0
2.0
2.0

1.0
1.0
1.0

0+ {0++) 550.0 A

B
C

8.2797
8.0117
8.4806

2.0
2.0
1.8

1.0
1.0
1.0

0+(0++ )

T =0 parameters
same as for T=1, except for

720.0 A 16.9822
740.0 B 18.3251
720.0 C 17.6140

2.0
2.0
2.0

1.0
1.0
1.0

'Power of vertex form factor F [(lt)~]=[(A,—m )/(A +it )) '.

culation samples the T matrix far off-shell and at very
negative energies with the most important range being
perhaps —60 MeV&E & —10 MeV, in consonance with

typical nuclear bound-state behavior. Note that we leave

the energy range in which data constrain the various po-
tential models as soon as E decreases below the deuteron
binding. Below this point, the contributions to T (E)
from a tensor force may be expected to be weakened.

8.5

Paris

6,5 I I I I I I I

4
I I

l
I I I I I I I I I [

~ ~ I I ~ 7

PD (%)

FIG. 1. The two-channel E, as a function of PD. The solid
line corresponds to a„„and the dotted line corresponds to app.

I I I I I I I I
l

I I I I I I I I I
l

I I I I I I I I I

5 6
PD (%)

FIG. 2. Same as Fig. 1 for the five-channel calculations.
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0

I —10

0.4 0.6
I

I I I
I

0.8 1
r (fm)

1.4

FIG. 3. The central and 'S, -'D& tensor forces for two local
coordinate-space potentials, one with Pz ——5. 3%%uo (solid line) and
the other with Pz ——4.8% (dotted line).

where V is the diagonal S potential (which is purely
central since the tensor force cannot contribute), V is
the S to D transition potential (necessarily the tensor po-
tential Vr ), so that Eq. (2) can be expressed as

Ts(E) Vs+ VsG (E)T (E)+ V G (E)T (E) (3a)

The reason for this is that the T matrix satisfies the
Lippmann-Schwinger equation

T(E)= V+ VGo(E)T(E),

where V denotes the underlying potential, the Green's
function Go is (E —ho+i@), and ho denotes the kinetic
energy operator. Thus, if we project out the diagonal
S, T matrix, T =( S

~

T(E)
~

S) or simply
(S

~

T(E)
( S), we find

T (E)=V +V G (E)T (E)+V G (E)T (E) (2)

Thus while there is a constant, energy-independent con-
tribution to T (E) from the central potential, its lowest-
order tensor contribution contains an explicit energy
dependence. Moreover, for the negative parametric ener-
gies of relevance to the triton binding, there is no pole in
Go(E) and this tensor contribution progressively weakens
as E increases. This candidate mechanism for explaining
the correlation between weaker tensor forces and
stronger triton binding energies is not new and has long
been recognized, especially in the context of nuclear
matter.

To verify and further quantify this mechanism, we
have made several numerical studies. The most obvious
check is to look directly at the behavior of T (E) as a
function of E. One such case is shown in Fig. 4. Here we
examine the behavior of T (k, k; —k /2m ) and observe
the expected correlation between the strength of the ten-
sor force and the weakening of T . However, the S1 T
matrix is a function of three independent variables and its
behavior for different models and difFerent surfaces (in
the space of its independent variables) is rather compli-
cated. Thus, although a sympathetic eye can discern the
desired correlations in plots such as that of Fig. 4, this
cannot really be considered conclusive. Another possibil-
ity is to examine the unique energy-dependent, effective
central potential Us(E)=(S

~

U(E)
~
S) which exactly

reproduces T (E) via

T (E)=U (E)+U (E)Go(E)T (E)

or

U (E)=T (E) T(E)Go(E—)U (E) .

The rationale for introducing U (E) is simply that our
intuition is better attuned to potentials than to T-matrix
structure. Note from Eq. (3a) that if Vr =0, then U (E)
is just V, and is energy independent. In k space it is, in

(3b)

where V is just the diagonal D-wave interaction.
To see this qualitively, we expand Eq. (3a), and observe

that the lowest-order central and tensor contributions to
T (E) are

T (E)=V +V G (E)V (4a)

The associated transition T-matrix element T (E)
satis6es

TDS(E) VDs+ VDSG (E)Ts(E)+ VDG (E)TDs(E)

0.5

0
I

WQ

—0.5

—1

2
~ —1.5

or in momentum space,

T~(, )(k', k;E)=Vs(k', k)+ f Vrs (k', k")Go(k",E)

y VD'(k", k)d'k", (4b)

—2 l

—125 —100

E (MeV)

I

—25

where

k ll2
Go(k",E)= E — +i e

2m

FIG. 4. The quantity
~

E Ed
~

T (k, k, E) plott—ed vs
E = —k /2m. The factor

~

E Ed
~

is included to e—liminate
the deuteron pole. The solid line represents potential A, the
dotted line represents potential B, and the dashed line
represents potential C, all as given in Table V.
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fact, a very simple matter to obtain this effective poten-
tial, Us(E), numerically. Given the solution T (E) of
Eq. (3a), one can solve Eq. (7) to find U (E). One may
then examine U (k', k;E) in an effort to understand the
observed correlation between tensor strength and triton
binding. Unfortunately one again encounters the same
difficulty as in the case of T (k', k;E), namely, that
U (k', k; E) is a complicated function of three variables.

I.et us nevertheless pursue the idea of an effective
energy-dependent central potential somewhat further. If
we use Eq. (3b) to eliminate T (E) from Eq. (3a) and
then solve Eq. (3a), we find that U (E) as defined by Eq.
(6) is just

U'(E) = V'+ V'DG,(E), VP .
1 —V Go(E)

(8)

(12)

Thus p(E) is a direct ineasure of the strength of the
effective potential approximately weighted by the deute-
ron momentum distribution, and p(E) p(Ed) is a mea-—
sure of the weakening of the effective central force as the

Notice that taking the Born approximation in Eq. (6) and
neglecting the diagonal D-wave scattering [setting VD =0
in Eq. (8)] we obtain the same approximation as in Eq.
(4a). The advantage of U (E) is that the implicit energy
dependence associated with the tensor force has been
made manifest and is thus available for direct manipula-
tion. This allows us to obtain a direct measure of the
weakening of the effective interaction between two nu-
cleons as the parametric energy decreases, as follows.
One may employ the effective central potential Us(E),
with E treated simply as a parameter, to calculate the en-
ergy, p(E) at which the two-nucleon system would bind
for a variety of parameter choices E.

The quantity p(E) can be understood as

P(E)=(P
I
H (E)

I
1()l(/if)

= &0 I
[ko+U'«)I

I W&l&&
I

&&

With the physical deuteron energy Ed as a reference
point,

P(E)= I &q
I
[I,+ U'(E, }]

I
q&

+&lp I
[U'(E)—U'(E, )] I q) I I(q I q&

=& Iq IH'(E, )
I

q&

+(Q
I
[U (E) U(Ed)]

I Q))—l(g I
Q) . (10)

In Eqs. (9}and (10) above ho is the kinetic-energy opera-
tor and JitI ) is defined through the eigenvalue equation
H (E)

I
g(E)) =P(E)

I
P(E)). If

I g) in Eqs. (9) and (10)
may be considered to be normalized and may be reason-
ably closely approximated by I P(Ed ) ), then we may ap-
proximate Eq. (10) as

p(E)=p(E, )+(g
I
[U (E) U(Ed)]

I
g)—

so that

P(E) P(E )=—(t((E )
I
[—U (E)—U (E )] I

y(E ))

parametric energy decreases below Ed. The results of
this study are plotted in Fig. 5 for our typical examples of
variable tensor forces. All of the curves converge to the
correct value of p when E =Ed, as they must to yield the
physical deuteron binding in the various models [i.e.,
U (Ed ) necessarily correctly yields Ed].

We have also made similar studies in which we have
used the low-order, energy-dependent T matrix T~, ~(E)
in place of T (E}. If, however, T~&~(E) is substituted for
T (E) in Eq. (7) to give U f (E), we find that the predicted
values of p(E) for E =Ed (the deuteron bound-state ener-

gy) for the various models already deviated from E~ by as
much as 0.5 MeV. Thus, although the first-order argu-
ment as to the contribution of the tensor force to the en-
ergy dependence of T (E) is qualitatively correct, the
neglected higher-order terms [T (E)—Tf(E)] are essen-
tial to the observed effect.

The striking features of Fig. 5 are twofold. First, for
each of the models for energies below Ed, the effective
strength of the interaction decreases monotonically with
E. Thus T (E) represents a T matrix which corresponds
to an ever-weakening potential U (E) as the parametric
energy E decreases over its range of allowed values in the
triton calculation. This implies, of course, that as the
momentum of the spectator nucleon relative to the in-
teracting pair increases, the contribution to the triton
binding becomes weakened. The decrease in average po-
tential strength as E moves from Ed to about —100 MeV
is about 1.5 to 2.0 MeV for the range of models (4-7% D
state) under consideration. Second, as the PD associated
with the various static potentials increases, the effective
strength of the interaction decreases monotonically, for
all E & Ed, i.e., the curves in Fig. 5 do not cross.

Thus, in the calculation of the triton binding energy, as
T (E) is sampled over its parametric dependence on E,
the stronger the tensor force of the model, the weaker the
effective potential associated with T (E) for all E
relevant to the triton calculation. Hence, one is justified
in inaking the simple statements: (1) the energy-

1.5—
(I)

I I I
/

I I I
t

I I I
(

I I I
/

I I I0
—100 -80 —60 -40 —20

E (Mev)

FIG. 5. The binding energy of the "deuteron" as calculated
with the effective potential U (E) plotted versus the energy pa-
rameter E. The curves are coded as in Fig. 4.
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dependent effective potentials associated with stronger
tensor forces are weaker and (2) triton S, channels
everywhere "see" weaker forces for stronger tensor po-
tentials.

These conclusions are further illustrated by the two-
channel calculation of the triton binding energy displayed
in Fig. 6. There we have used the effective potential
U (E) at a fixed value of the parametric energy E, along
with the energy-independent singlet S potential, to obtain
the triton binding energy. We show three curves charac-
terized by different values of PD. Along the abscissa are
the values of the parameter E in the effective interaction
U (E), now treated as a static interaction; the ordinates
are the calculated triton binding energies. Figure 6 is the
three-body analog to Fig. 5. The particular "average"
values of E that yield the identical values of E, to those
in Table IV are marked. For these cases we see that this
average energy is just above —20 MeV and increases with
increasing PD. The similarity of the curves in Fig. 6 to
those in Fig. 5 illustrates the close connection between
the role of the tensor force in 13(E) and in the binding en-

ergy of the triton.
In summary, we have recently shown that the energy-

independent approximation to the full Bonn interaction
successfully predicts the triton binding energy. In order
to dissect the reasons for this departure from previous
failures by two-body forces, we have manufactured
several variants of the static Bonn interaction whose pri-
mary differences lie in differing tensor strengths, as
reflected by differing predictions of PD (the deuteron per-
cent D state). It turns out that the main distinction be-
tween the static Bonn interaction and other realistic in-
teractions is already reflected in the results for a two-
channel (S-wave pair interaction) Faddeev calculation.
Variations in the So contribution to the triton binding
were characterized and reveal that it is the difference in
the S& contribution which provides the essential new as-

pect. We find a linear relationship between E, and PD, a
more precise version of a well-known correlation. We
then investigate the way in which the S& T matrix

[T (E)] eleinent carries this information in a triton cal-
culation. By defining an energy-dependent, effective cen-
tral potential U (E), we replace the effect of the tensor
character of the underlying potential by an explicit ener-

gy dependence. This allows us to gauge the strength of
the potential which the triton calculation sees over the al-
lowed range of parametric energies E (—E, . Figure 5

10

6—

1

—40 —30 —20
E (MeV)

I

—10

FIG. 6. The two-channel E, for different effective interac-
tions U (E), used as static potentials, plotted versus the para-
metric energy E. The curves are coded as in Fig. 4.
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then illustrates graphically that (1) as E decreases the at-
traction decreases monotonically and (2) that stronger
tensor forces monotonically imply weaker effective at-
traction for all E ( —E, . Comparison of Figs. 5 and 6
shows that the value of E, for a given model scales with
the strength of U (E) at each E, though not uniformly,
and that E, and the strength of U (E) show essentially
identical dependences upon PD, demonstrating that
Us(E) serves as a conduit for the tensor-induced varia-
tions in E„a result expected on the basis of perturbative
considerations. This provides a clear picture of the
mechanism by which variations in the tensor/centra1
strength of potential models modify predicted values of
the triton binding energy, in general, and make manifest
the source of the success of the recent triton predictions
as the influence of the low Pn of the static Bonn potential
(4.38%) on the Si T matrix.
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