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The elastic scattering of intermediate energy polarized protons from polarized "C is studied
within the framework of the relativistic distorted wave Born approximation using the relativistic
impulse approximation to describe the projectile-target nucleon interaction. Sensitivities of ob-
servables to (1) the upper and lower components of the valence nucleon wave function, (2) the
Lorentz form of the two-body interaction, (3) isoscalar three-vector currents, and (4) the individual

strengths of the separate Lorentz terms in the two-body interaction are calculated and discussed.
The bound state wave functions for the 1pl&2 valence neutron used in the calculations are taken
from relativistic mean field theory and from traditional, nonrelativistic Woods-Saxon eigenstate
solutions. Predictions obtained using either pseudoscalar or pseudovector projectile-nucleon cou-
pling forms are compared. Possible effects on the p+ "C polarized target spin observables due to
contributions of the core nucleons to the effective isoscalar three-vector current are discussed and
investigated using a simple model. What can be learned from normal (i.e., perpendicular to
scattering plane) and transverse (i.e., approximately perpendicular to beam, in the scattering
plane) polarized target spin observables, as well as unpolarized p+ "C elastic scattering observ-
ables are discussed. The results suggest that new nuclear structure information, additional
effective interaction phenomenology, and further constraints on the Lorentz character of the
effective two-body interaction can in principle be obtained from analyses of p+ C elastic scatter-
ing data. Experiments to obtain such data are encouraged.

I. INTRODUCTION

Spin-dependent observables for intermediate energy
nucleon-nucleus (NA) scattering processes are invaluable
for studying scattering dynamics, nuclear structure, and
nucleon-nucleon (NN) effective interactions. For exam-
ple, pA elastic analyzing power ( A ) and spin-rotation
(Q) data were recently used to show the importance of
relativistic, virtual (NN) pair effects in the scattering
process. ' The excellent overall agreement between
data and predictions of the relativistic impulse
approximation —(RIA} Dirac equation model' con-
trasted sharply with the results of nonrelativistic (NR}
multiple scattering approaches. Spin-dependent observ-
ables have also been exploited in inelastic scattering
studies at intermediate energies. For example, deter-
minations of (P —As ), D;J, and the spin-flip probabili-
ty (S) (Ref. 7) have provided useful information with
respect to the single and double spin-Hip components of
the nucleon-nucleon (NN) effective interaction, exchange
contributions, spin currents and densities, M1 strength,
etc.

Preliminary investigations of the possible new physics
to be learned from spin observables associated with in-
termediate energy polarized proton and pion scattering
from polarized nuclear targets have been made. ' Such
studies introduce a new degree of freedom into inter-
mediate energy hadronic physics and open up many new
areas for investigation, both experimental and theoreti-
cal.

With respect to experimental developments, a number
of odd Z (proton number) and/or odd N (neutron num-
ber} nuclei can, in principle, be polarized. ' Recently, a
sample of ethylene glycol with 99% '3C enrichment
(C2H602} was polarized to 28% using dynamic nuclear
polarization. " Experiments' which require polarized
' C targets have recently been proposed at the Los
Alamos Meson Physics Facility (LAMPF) and will be
done over the next several years.

On the theoretical side, scattering data obtained using
a polarized ' C target may prove useful for detailed stud-
ies of the valence nucleon wave function, further deter-
mination of the Lorentz form of the NN effective in-
teraction, and investigation of the strengths and ranges
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of those parts of the NN interaction which cannot be
readily studied with even-even targets or are poorly
determined by analyses of inelastic scattering data.

In anticipation of high quality data from the p+' C
experiment, it is important to develop theoretical models
which predict realistic spin observables for polarized odd
nuclear targets. In the present work the relativistic im-
pulse approximation —Dirac equation model' is used to
describe pA elastic scattering, the independent particle
model is assumed for the target wave function, and the
relativistic distorted wave Born approximation (DWBA)
(Ref. 13) is used to generate the scattering amplitude.
The model presented in Sec. II is fairly general but is, in
many respects, specific to the description of elastic
scattering of spin- —,

' projectiles from spin- —,
' targets. Ex-

tension of the RIA model to include other odd targets
and other reactions such as (p,p') or (p,n) is straightfor-
ward, however. '

In what follows, both the standard RIA interac-
tion' ' and the recently proposed pseudovector
form' ' are used to generate predictions for a variety
of polarized target elastic spin observables for p+ ' C at
500 MeU. RIA predictions for p+' C differential cross
section and analyzing powers at 547 MeV are also given
and compared with existing data. ' Sensitivities of the
observables to the 1p&&2 valence neutron wave function,
to the pseudoscalar versus pseudovector Lorentz form
for the NN effective interaction, to simple estimates of
the core nucleon contribution to the effective isoscalar
three-vector current, ' ' and to the individual strengths
of the various terms in the RIA interaction, are ex-
plored. Similar relativistic DWBA calculations for
p+' C elastic scattering were presented in Ref. 14. The
present work extends considerably both the study in Ref.
14 and the initial plane wave Born approximation calcu-
lation in Ref. 9.

The derivation of the elastic scattering amplitude us-

ing the proton —odd nucleus relativistic distorted wave

Born approximation is given in Sec. II. The model sen-

sitivities and predictions are shown and discussed in Sec.
III. A summary and conclusions with respect to the

physics potential ofFered by studies of intermediate ener-

gy proton elastic scattering from polarized nuclear tar-

gets are given in Sec. IV.

II. THEORETICAL MODEL

The 500 MeU p+' C elastic scattering observables
were calculated using the relativistic impulse approxima-
tion for the beam proton-target nucleon interaction"
and a four-component independent particle model for
the relativistic target wave function. ' As yet, a Dirac
equation computer program is not available which can
accommodate the full relativistic optical potential for an
odd target nucleus. The calculations, therefore, use the
relativistic distorted wave Born approximation for the
valence nucleon ( lp, &2 } portion of the p+ ' C elastic
scattering amplitude. The core contribution to the
scattering amplitude (see Sec. II A) is fully handled, with
respect to distortions, within the usual RIA mode1. '
Refinements to the calculations presented here arising

from full projectile wave function distortion due to in-

teraction with all 13 nucleons, core deformation effects,
multistep processes, particle-hole admixtures in the ' C
ground state, ' sophisticated meson exchange models
for the NN Lorentz invariant interaction, ' ' medium
effects, ' ' exchange' ' and other nonlocality effects,
and target nucleon correlation effects will be con-
sidered in the future.

In Sec. IIA- the relativistic distorted wave p+' C
elastic scattering amplitude is derived, followed in Sec.
II 8 by a delineation of the changes in the model arising

when pseudovector rather than pseudoscalar coupling is

assumed. In Sec. II C an elementary method for estimat-

ing the effects in elastic scattering due to the core contri-
bution to the isoscalar three-vector current is given,

while in Sec. IID the calculation of the p+' C scatter-

ing observables is briefly discussed. Finally, Sec. IIE
gives the various interaction and wave function in-

gredients in the calculations.

where to; is the projectile proton-ith target nucleon in-

teraction operator, "
~0' ~S+~PV0V'+Ivy OV'@+~A VoVo V' V'p+FT00 0 'p

5 5 p 5 p 5 pv

(Projectile and target nucleon are denoted by subscripts
0 and i =1,2, . . . , respectively. ) In Eq. (1) the quantum
numbers p and p' are the initial and final total angular
momentum projection for the target (equal to +—,

' for
' C), and

~ 0„) is the antisymmetrized target wave func-
tion given by the independent particle model:

A

~ 0„)= Detg u( ~(r, ),~! (3a)

where each member of the set of single particle states,
uI I, is expressed as

u„rr.„(r)=
rtnrl(&)

Ytj'(r) . (3b)

The large upper component and small lower component
are represented by y and A., respectively, and YI'(r) is
the spin-angle function. With this target wave function
the optical potential separates into the core (ls»z and

lp3/2 orbitals} and lp, i2 neutron contributions as fol-
lows:

A. p+ ' C elastic scattering amplitude
in the RIA-DWBA

The 500 MeU p+' C elastic scattering observables
were calculated using the first-order RIA optical poten-
tial' given by

Ug'„= y (o„, ir„~o„&, (1)
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A —1

U„'&'„(r)= g fd r'u (r')t(
~

r —r'
~

)u (r'}5„„,
a=I

+ fd r'u„ I J. „.(r')t „( (
r —r'

( )u„ I „.(r')

—= U""(r}5 + U'~ (r),PP p', p,
(4)

E+m
2m

' 1/2 Ai(kr) Y&i '(r)
y 4~i'

X(lml —,'m,
~
jm. )Y&' (k),

where u =u y and nb, Ib, and jb are the bound statef 0

quantum numbers of the valence nucleon. The core con-
tribution is approximately equal to the p+' C optical
potential and includes scalar, timelike vector, and (very
small) tensor terms.

In the relativistic distorted wave Born approximation
the p+A elastic scattering amplitude is' '

where the relations

m. m.
cr+Y '= —Y.'Ij fj

and

I =1+1 if j=1+—,
'

(6a)

(6b}

f, , (k, k') =f"," (k, k')5„„ were used for the lower components. From the Dirac
equation, col (kr) is given by

where f""is the exact scattering amplitude for U"", m
is the proton mass, and (m„k) [(m,', k')] is the initial
(final) spin projection and momentum of the projectile.
In Eq. (5) X, is the relativistic distorted wave function
for the p+' C system arising from U"" only. Also in

Eq. (5), (X' '
~

implies X' ' y—:X' ' in the integral
over projectile coordinates.

The contribution to the p+' C elastic scattering am-
plitude by the valence nucleon was evaluated using stan-
dard partial wave expansion techniques. The relativistic
distorted waves were expanded as' '

C
a)(, (kr) =

core coreE +m + Us, opt
—UO, opt Uc

r

d (o I)
X

d (i r ~ (7)

In Eq. (7) Us","„Uo;"„and U& are the scalar, timelike
vector, and Coulomb parts of the core optical potential,
respectively; E is the total projectile energy in the
proton-nucleus (pA) center-of-momentum (C.M.) system,
and ( cr I ) =j (j+ 1)—i (l + 1)——,'. The wave function
X' z,

' .(r} is given by'

' 1/2

4m&'(QIJ(k'r) Y&&
' (r},icuIJ(kr) Yp~' (r))(lmi 'm, '

~
jm—)Y& (k') . .

Imi jm ~

Following Shepard, Rost, and Piekarewicz, ' the NN
interaction in Eq. (2) is rewritten as

4

tz ——g [a„(
~

r —r'
~
)+b„(

~

r —r'
(
)o' 'o "]r"'r"

In Eq. (9a) the superscripts (0} and (i) refer to the pro-
jectile and target nucleon, respectively. Expanding the
radial parts of the interaction a„and b„ in multipoles
T„(r,r') for S =0 and 1, respectively, yields

n=1

1 0
0 1

0 1

1 0

1 0
I2 0 —1

0 1

—1 0

and, using Eq. (2},

where (for n = 1,2, 3,4}

(9a)

(9b)

T„p(r,r')
to; =4m g g g Y~(r)Y~(r')

n=15=0, 1 pq ~+

X g( —1) 'mrs, M~os, M—
s

(9d)

The o&~ are spherical Pauli matrices. Finally, usingS
Eq. (6b), the valence nucleon wave function is expressed
as

a 1
—FS, a2 —Fv, a3 —Fp, a4 —F„,

bl ——2FT, b2 ———Fz, b3 ——2FT, b4= Fv .
(9c)

y(, (r) Yt', (r)

iAI
~

(r) Yt'. (r} (10)
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Equations (4), (6), (8), (9d), and (10) are substituted
into Eq. (5) to evaluate the valence nucleon contribution
to the p+' C elastic scattering amplitude. In so doing
the upper and lower component matrix products for the

projectile partial wave functions for each component of
the NN interaction are expanded as follows (suppressing
functional arguments):

mg . m g (p)
AJ Yij' I

(QI. 'Y& Jl, icosi J'Y& J.). I„=g YI, ' , (r).XIJtj'(r) YI '1(r) .
l1) y. n'=1 2

(1 la)

Those for the valence target nucleon are similarly written as
r

+Ib Jb 'b Jb
. Y~.

bjb bib

Yt' (r')Z&" (r')Yt' (r') .
nn"

b

(1 lb)

The values of /„„, I„'„,1b, lb, X, and Z are given in Table I.
nn nn

The projectile matrix element,
I

& proj ) —= g f dr YI, j™(r ) Y~(r }ossr Y'~ ',J (r )X&&I ~'(r),
n'=1, 2 nn S nn'J

is evaluated using standard Racah algebra together with the relation.

X .os' X =f( ,'m, SMs
I

—,'m—,') .
S

The resulting expression is

(proj) = g Xljl''(&) p ( —1)' '+ I„„.jpS J
n'=l, 2

(12)X(i„„,OpOIi.''0)(jmJJ, q+Mz Ij'm, ')(pqSM+I J,q+Mz) I„'„. —,
' j

p S J
where I—:&2l +1 and t I denotes the 9-j symbol. A similar expression results for the valence target nucleon matrix
elements.

Substituting these results into Eq. (5) yields, after some further algebra, the following partial wave expansion for the
p+ ' C elastic scattering amplitude:

f, (k')=f" (k')5„„+gC( ' ' '
Yi, ,(k'),

1' I
(13a)

TABLE I. Angular momentum quantum numbers and wave functions used in the projectile and
valence target neutron matrix elements.

n=1
n=2
n =3
n=4

n'=1

(1',1)
(1',1)
(T', 1)
( T', i)

Values of (1„'„,inn )

n =2

(T', T)
(T', T)
(I', T)
(!',T)

n"=1

(lb, lb )

(lb, lb)
(Tb, lb)
(Tb, lb)

Values of (lb „,lb „)nn" nn"

n =2

(Tb, Tb)

(Tb Tb)

(&b, Tb )

(&b»b )

n'=1
Values of Xljl"J-

n =2 n"=1
Values of Z&"",

n =2

n=1
n =2
n =3
n=4

& ~I'j'kg

j~Wt&'
+I'j'+lj

~
IPl Fi'j'~IJ

l VI'J'~IJ

lA,
bjb bjb

—lA, 'b Jb+'b jb

—
I ~i,), I'

l A,
b jb bjb

l A,
b jb

blab
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t g

g I&1'zi' '( —1)" "+1 1 j jb(2J+1)1(1'ml' ,'m—,' Ij ', m/'+m, ')(10,'m—,
I jm, )

(iiic } 4m

X(Jm,»i I '—
I

j' mI'+m')(jbN p' p —I jhow')
I ( ),(„„)mI —(m, —m, )+(p—p )

(13b)

and the quantization axis was chosen to lie along the incident beam momentum. The radial distorted wave integral is
defined according to

4

1j)l'j 'J ~ ~ Xljl'j ' (13c}

where

FI""I, , (r)= g g g ( —1)P+ (2S+1)l& F „„-(r)(l„„.OpO I
1„'„.0)

nn' nn» n"=1,2S=0, 1 p

b„„,. I Jb

x ( &b ,.Op0
I lb 0) I„'„. I' j Ib„„,. 2 Jb

S J & S

(13d)

and the bound state form factor, Fs„„-(r},is defined as

F „„-(r)= r' dr'T„(r, r')ZI""J (r') . (13e)
0 nP & Ib Jb

The required multipoles for p+' C elastic scattering and the spin transfer components of the NN interaction are list-
ed in Table II. A breakdown of the relevant multipoles, spin, and total angular momentum quantum numbers for
each component of the NN interaction, along with the corresponding bound state wave function information required
in evaluating Eqs. (13d) and (13e), are given in Table III.

B. Pseudovector coupling

TABLE II. Required multipoles of the NN interaction,
T„~(r,r') (these values apply for Ib ——1, jb ——-' only; both S=O
and 1 values are implied here).

n"=1 ll =2

If pseudovector (PV) coupling is assumed for the dom-
inant one- ion exchange portion of the NN interaction,
Horowitz' and Tjon and Wallace'7 have shown that the
predictions of relativistic proton-nucleus scattering mod-
els are in much better agreement with data at lower en-

ergies, and a more consistent interpretation in terms of
meson exchange theory results. This alternative Lorentz
coupling form, together with an explicit separation of
direct and exchange parts of the NN interaction, while
vastly improving agreement with data at energies of a
few hundred MeV, ' ' have negligible consequences on
the scalar and timelike vector parts of the optical poten-
tial (direct plus exchange parts} at energies & 500
MeV. ' ' ' The alternative pseudovector coupling form
can, however, directly affect the valence target nucleon
contribution to the p+' C elastic scattering amplitude at

u, (p')y u (p)=u, (p')r u (p),5( — ')
(14)

it is seen that Fpv =Fp. In Eq. (14) u (p) is the four-

component Dirac spinor with spin projection m, . The
remaining components of the NN interaction are
unaffected.

For bound state matrix elements of this new operator
the relation

s V-X')
llnjlI X 2m +n(gI =&ntgI 7 1+

m nlj p (15)

results, where u„&.„is a solution of the bound state Dirac
equation:

any energy; it, therefore, should be considered in the
present calculation of polarized target spin observables.

To evaluate this effect, the second term in Eq. (2),
Fp y 0y, , is replaced with '

roVo —Po} r,'4; Ii )—
2m 2m

where P=p"y„. The evaluation of jF+,Fpv, F„,F„,
FrI proceeds exactly as in Ref. 15, and owing to the
identity

n=1
ll =2
7l =3
n=4

T10& T12
S S

T20 p T22
S S

31
S

T41
S

T10S

T20
S

T31
S

T41
S

(p —m —U~ )u„IJ„——0 . (16)

The binding potential U ——Us+@ U~ contains scalar
and timelike vector components. A relation similar to
Eq. (15) results for projectile matrix elenmnts, except
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TABLE III. Angular momentum quantum numbers' and corresponding valence nucleon wave

function information for the p, /2 ~p
& /, elastic transition for each Lorentz component of the NN

effective interaction.

Force
description

Scalar

Timelike
vector

Pseudoscalar

Timelike
axial vector

Proportional
valence nucleon

structure

I e I
'+

I
)t

I

'

(Vanishes)

Tensor;, .

Axial
three-vector

Tensoro;

Three-vector

I 9 I
'+ 3

I
~

I

'

pA,

(Vanishes)

(Vanishes)

S and p denote the spin and multipole quantum numbers of the two-body interaction, respectively, in

Eq. (9d) in the text. J is the total angular momentum transfer for the target nucleon introduced in

Eqs. (13b) and (13d).

that the factor (1+Us;"t /m) is obtained. Therefore, for
pseudovector coupling, the S =0, n =3 bound state form
factor F „„-(r)in Eq. (13e) is replaced with

0 SoPt ~ i2 i 0 i 3n"F 3„„(r)= 1+ r' dr'T3p(r, r'}Z& J
(r')

m 0 P bib

Us(&'}
X l+

m
(17)

Results of calculations using this y g/2m form are dis-
cussed in Sec. III.

C. Isoscalar three-vector currents

A long-standing failure of relativistic nuclear structure
models has been the large overestimate of the isoscalar
magnetic moments of odd nuclei due to enhancement
of the lower component of the relativistic wave function
of the odd nucleon (due to the strong scalar and vector
binding potentials). This difficulty has been addressed by
Furnstahl and Serot, ' and by McNeil et al. The au-
thors in Ref. 19 utilize a relativistic quantum field
theoretical approach and calculate, in first-order per-
turbation theory, the response of the core to the pres-
ence of the single valence nucleon; McNeil et al. as-
sume a Landau-Migdal quasiparticle approach to relativ-
istic nuclear matter. Both' ' show that the isoscalar
three-vector current of the odd A target (even-even core
plus one particle} can be represented by an eff'ective sin-
gle particle valence nucleon three-vector current in
which enhancement of the lower component of the

valence nucleon is suppressed to the weak binding poten-
tial (so-called "nonrelativistic" limit) value. These re-
sults are valid only for scattering from infinite nuclear
matter at zero-momentum transfer. How the core
response affects the isoscalar three-vector current at
nonzero momentum transfer in finite nuclei has recently
been studied and further analysis of this effect is in
progress. In the meantime, for the purposes of this sen-
sitivity study, we assume a simple model for the quench-
ing of the isoscalar three-vector current enhancement in
order to provide an estimate of possible effects on the
p+' C elastic scattering spin observables. The sensitivi-
ty of the predicted polarized target spin observables to
this quenching effect (see Sec. III) provides an impetus
for further experimental and theoretical studies of this
scattering system.

In the present model, the isoscalar portion of Fp4„„(r)
in Eq. (13e) is computed assuming the weak relativistic
binding potential (WRBP) limit for the lower com-
ponent, A,„& (r), obtained froin the solution of the

bound state Dirac equation with vanishing binding po-
tentials, and is given by

A WRBP( „) AC

2m —c I . dr"bib jb

&cr I,).
q„ t,,(r), (lg)

where E'
I j is the valence nucleon binding energy. The

b bib

remaining form factors and the isovector portion of
Fp4„-(r) are computed as before using a relativistic A(r).
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(19)

where (0) and (1) refer to the projectile and target nu-
cleus, respectively, X denotes a Pauli spinor, o„=cr x,
n=( k&&k') /I k&(k' I, l=(k+k')/I k+k' I, and s=(k'
—k}/I k' —k I. All scattering observables required to
predict the n, s, and 1 polarizations of the scattered pro-
tons were evaluated for all possible spin orientations of
the beam and target. Observables which depend on the

TABLE IV. Summary of p+' C elastic scattering observ-
ables.

do /dQ

0P
A ooNo

~DNONO

&DLOSO

DSOLO

~asoso
&DLOLO

+ AOONN

+ AoooN

MNoNN

CrKNOON

+MLOLN

MSOSN

+MLOSN

&MSOLN

~KLoos
~ AooLs

Ksoos
~MLONS
o Aooss
~MNOLS

MNoss
MSONS

OMLoNL
o MNoLL
A oosL

~KLOOL

~MsoNL
o AooLL

+MNOSL

~K$00L

—,'(Ia I'+ Ib I'+ IC I'
+ Id I'+

I
e I'+ If I'}

Re(a e+b f)
P
—,'( I

a I'+ Ib I' —
I
c I'

—
I
d

I
'+

I
e

I
'+ If I

'}
Im(b e+a f)
—DL.oso
Re(a b+c d e f)—
Re(a b —c d e f)—
—,'(

I
a I'-

I
b I'-

I
C I'

+ I
d

I
'+

I
e

I

' —
I f I

'}
Re(ae bf )—
AoooN

—,'(
I
a

I

' —
I

b I'+
I

C I'
—

I
d

I
'+

I
e

I

' —
I f I

'}
Re(b e —a f)
MLoLN
—Im(a b+c d+f e)
Im(a b —c d e f)—
Im(c e+d f)
—Im(d e+c f)
Re(a*c +b d )
—Im(a c+b d )

Re(a d+b c)
Im(a d+b c)
Re(de +cf )

Re(ce*+df )

Re(c e d f)—
—Re(d e c f)——A ooLs
Re(a c —b d )

Im(a c —b d )
—Re(a d —b c)
Im(a d —b *c)

Im(ce df)—

D. Calculation of scattering observables

It is convenient to recast the p+ ' C elastic scattering
amplitude into a more conventional form. This is
achieved by requiring that at each value of momentum
transfer.

Xt(0)Xt(1) 1 [(a +b)+(a b)~(0)~(1)
mp'mp m I n n

+ (C +d)N(0)N(1)+ (C d—)N(0)N(1)

+(e+f)rr' '+(e f)rJ'"—]X'"X' '

polarization of the recoil ' C were not considered. The
notation for observables is that of Ref. 35 where, for
X,"kI, i, j, k, and I refer to the measured spin orientation
of the scattered proton, recoil target (not used), beam
proton, and target ' C, respectively. The observables in
the p+' C center-of-momentum (C.M.) frame in terms
of the (s,n, l } coordinate system were evaluated by stan-
dard methods and are given in Table IV in terms of the
Ia, b, c,d, e,f I amplitudes. Observables with spin com-
ponents in the directions s, n, and I are denoted by sub-

scripts S, N, and L, respectively, in Table IV, in the
figures, and in the discussion which follows. The observ-
ables shown in the figures are C.M. quantities.

E. Ingredients in the calculations

po

1+ exp[(r —c, )/z0]
(20}

where po and po normalized each Fermi function to six
neutrons, and co and zo were selected to reproduce the
surface region of pv co«(r) I,h«,„,given by

P v «re( r )
I theory PP core( r ) + [P„(r ) —Pz( r ) ]HFB . (2 1)

The empirical proton-vector core density is PP««(r),
while the proton and neutron densities, labeled HFB, are
the ' C mean field Hartree-Fock-Bogoliubov (HBF) dis-
tributions of Decharge and Gogny. The reference den-
sity parameters, co and zo, are 2.265 and 0.36 fm, respec-
tively. The variable surface geometry parameters, c and
z, were adjusted to optimize the fit of the RIA model to
preliminary 500 MeV p+' C elastic differential cross
section data. ' Values of 2.243 and 0.34 fm for c and z,
respectively, were obtained. The scalar densities for the
core were taken as

Ps core(r) =Pv core(r)+[Ps (r) Pv (r)]aMFr—(22)

where (i) represents protons or neutrons and the densi-
ties in square brackets are the relativistic mean Geld
theory (RMFT) ' C core densities of Horowitz and
Serot. ' The core distorted waves 7, and the core con-

The distorted waves and the core contribution to the
full scattering amplitude were computed as follows. The
sp82 NN phase shift solution of Amdt provided the
on-shell amplitudes used to generate the five t matrices
in Eq. (2); the transformation from Pauli two-component
spin matrix representation to Dirac four-component y-
matrix representation and Breit frame relativistic kine-
matics was done as described in Refs. 2 and 15. The
proton-vector density due to the 1s&&2 and 1p3/2 core
wave functions was determined from the empirical ' C
charge density by unfolding the single nucleon electric
form factor and correcting for the nucleon magnetic
form factors. ' The core neutron vector density was

parametrized as

pV, core(r)=pV core(r} I theory

+ Po

1+ exp[(r —c)/z]
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d
X (23)

which was obtained from solution of the Dirac equation.
In Eq. (23) Us(r) and Ur(r) are single particle binding
potentials. Calculations employing the weak binding
limit lower component 1p»z wave function demonstrate
the model sensitivity to the large relativistic binding po-
tentials. In this work, to simplify sensitivity studies, we
chose the simple parametrizations for Uz and Uz given
by

Vs
Us(r) =

1+ exp[(r —cs )/zs ]

and

Vv
U, (r)= 1+ exp[(r —c~)/zv]

(24)

0.4

eu 0.3—
I

0.2

CL
0.1

neutron in C
13

0.0
0 1 2 3 4 5 6 7

FIG. 1. Single particle bound state radial wave function for
a 1p, /2 neutron in "C. Solid curve corresponds to the upper
component of the RMFT wave function from Ref. 21. The
dashed curve is the Woods-Saxon eigenstate of the single parti-
cle Schrodinger equation.

tribution to the p+ ' C scattering amplitude f"," (k'),

were then computed using the RIA-Dirac equation mod-
el of Ref. 2 and p+ ' C relativistic kinematics.

For numerical evaluation of the valence neutron con-
tribution to the scattering amplitude, each term in the
Lorentz invariant interaction was parametrized by a sum
of five Yukawa functions with ranges corresponding to
physical meson masses. This was done to enable nu-
merical convenience in computing the multipoles
T„z(r,r') and to provide an analytic extrapolation of the
amplitudes to large q . A variety of forms were assumed
for the 1p I/z neutron wave function, including the
RMFT forms for y and k from Ref. 21, a nonrelativistic
bound state for y, and both the weak relativistic binding
potential limit for A, of Eq. (18) and a relativistic single
particle Dirac (RSPD) equation bound state form for
A, ,r (r) given by

gRsPD(r) f1c

2m e„(q+ U—s(r) Uv—(r)

O.

eutron in C
13

0.1 WRBP

RSPD

CL

o.o

I

2

FIG. 2. Lower components of the 1p&/2 neutron single par-
ticle wave function in ' C. The RMFT value (see Ref. 21) is

given by the solid curve. The dashed and dashed-dotted curves
denote those wave functions computed from the single particle
Dirac equation as in Eqs. (18) and (23), respectively.

where V&, c&, zz, V~, cz, and zz were assumed to have
values of —400 MeV, 1.95 fm, 0.52 fm, 350 MeV, 1.95
fm, and 0.52 fm, respectively. These strengths are typi-
cal of those of low energy scalar and vector optical po-
tentials. ' The different models for yI and A, ,

are shown in Figs. 1 and 2, respectively.

III. RESULTS AND DISCUSSION

In the following, model sensitivities to the lower com-
ponent of the valence nucleon wave function are exam-
ined, various predictions of p+ ' C spin observables are
shown, predictions of 547 MeV p+' C differential cross
section and analyzing powers are shown, pseudovector
coupling effects and quenched isoscalar three-vector
current effects are examined, and sensitivities of observ-
ables to the individual components of the NN interac-
tion are studied.

We first consider the valence neutron contributions to
unpolarized target observables. Figure 3 compares
der/dQ, P (polarization), Dl psp [essentially —Q(8) at
small momentum transfer, Ref. 45], Dspsp and D~p~p
for 500 MeV p+ ' C using the full amplitude in Eq. (13a)
(solid curves) and predictions obtained using just the
core amplitude, f"," (k') (dashed curves). For the full

p+' C case, the standard RIA interaction with pseudo-
scalar coupling was used along with the RMFT results
for g, and A.

&
. Isoscalar three-vector currents

~1/2 ~1/2

were computed assuming full enhancement of A, I~ . In~ 1/2

the following discussion this p+' C calculation will be
referred to as the "standard RIA calculation. "

Generally, the valence neutron effects are very small;
the structure features show slight inward shifts to small-
er angles owing to the small increase in overall size due
to the additional nucleon. The departure of D&ohio from
unity indicates the presence of total angular momentum
transfer J = 1 contributions to the elastic scattering
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channel. These arise from the valence neutron scatter-
ing amplitude through the J =1 parts (primarily the
pseudoscalar) of the NN interaction (see Table III). We
also note that for each observable shown in Fig. 3, other
than D~oNO, little sensitivity to different models for
lp ]p or At ]p exists. These observables are also insens-

P 1/2 P 1/2

itive to the choice of pseudoscalar or pseudovector cou-
pling, quenching of the isoscalar three-vector current,
and parts of the NN interaction other than the scalar
and timelike vector terms. Nonetheless, such data are
required because they will help determine the core
scattering amplitude.

In Fig. 4, standard RIA model predictions are com-
pared with cross section and analyzing power data' for
547 MeV p+' C (NN amplitudes evaluated at 547 MeV
were used). The curves qualitatively describe the data;
however, inclusion of core deformation and multistep
effects would probably improve the agreement. The re-
suits shown in Figs. 3 and 4 suggest that a successful

0 MeV

10

b 10

10

0.5-
0
ca' 0.0

c -0.5-

-1.0
0

I

10

I I

20 30

8, (deg)
40

10
2

~$

10'

R1A FIG. 4. Standard RIA elastic scattering differentia cross
section and analyzing power predictions (see text) compared
with data for 547 MeV p+' C.
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I o.o

-05-
-1.0

0.5-
0.0

-0.5-

0.95

0.90
0

I

10

(deg)

FIG. 3. Standard RIA predictions (see text) for unpolarized
target observables for 500 MeV p+ "C (solid curves) compared
to the observables computed assuming only the contribution of
the core nucleons (dashed curves).

description of the unpolarized target observables mainly
requires a realistic treatment of the core portion of the
scattering amplitude; the theoretical treatment of the
valence neutron contribution to the scattering amplitude
is of lesser importance.

The discussion of polarized target observables begins
with an investigation of their dependence upon the vari-
ous terms in the Lorentz invariant NN amplitudes.
Typical of the n-target results are the analyzing powers,
Aooo~ and HOON&, shown in Fig. 5 (note the expanded
scale used here and in other figures showing polarized
target spin observables). The standard RIA results are
indicated by the solid curves, while the standard RIA re-
sults obtained using only the pseudoscalar (PS), tensor,
axial vector, or vector interactions individually for the
valence neutron contribution to the scattering amplitude
are indicated by the dashed, short-dashed-dot, long-
dashed-dot, and dotted curves, respectively. We see that
the spacelike vector interaction (associated with the
three-vector current) gives the largest contribution to
Aooo~ and Aoo&N, the axial vector and tensor contribu-
tions are also important, and the pseudoscalar contribu-
tion is negligible. The results for analyzing powers
BOOL+ and Moos+ (s-type polarized target) are shown in
Fig. 6, where the meaning of the curves is the same as in
Fig. 5. Here, however, the pseudosc alar interaction
gives the largest contribution, the tensor contribution is
non-negligible, and the axial vector and three-vector
contributions are small. For AOOLL (I-type polarized
target) Fig. 7 indicates that the axial-vector and tensor
contributions are dominant; the pseudosealar and vector
contributions are small. Since the spacelike vector and
pseudoscalar interactions dominate the valence neutron
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FIG. 5. n-type polarized target spin observable predictions

for 500 MeV p+' C using the standard RIA model (see text)
assuming for the valence neutron contribution the full RIA in-

teraction (solid curves), the pseudoscalar interaction only
(dashed curves), the vector interaction only (dotted curves), the
axial vector interaction only (long-dashed-dotted curves), and
the tensor interaction only (short-dashed-dotted curves). Note
the expanded scale used for the polarized target spin observ-
ables.
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FIG. 8. RIA predictions for oooo& and Boo~& assuming ei-
ther the RMFT (Ref. 21) (solid curves) or the Schrodinger
equation eigenstate (dashed curves) for the upper component of
the 1p&z& valence neutron wave function.
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FIG. 9. Predicted sensitivity in Dzozo to A, , (r) in the~ I /2

RIA model. The two curves were generated assuming either
the RMFT value (Ref. 21) for ~fp (solid curve), or the weak~ 1/2
binding potential limit from Eq. (18) (dashed curve) as ex-
plained in the text. Note the expanded scale.
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RMFT

C)
8 0.1 - ————wRBP

I I I

p+ C 500 QeV

0.0

—0.1

0.0
C)
C)~ -01-

contributions to the I- and s-type polarized target spin
observables, we see from Table III that the valence nu-
cleon structure enters the calculation as the product

(r)A, , (r); thus these observables are almost
~ 1/2 ~ 1/2

directly proportional to relativistic enhancement of
(r) due to the strong scalar and timelike vector~ 1/2

binding potentials in the nuclear medium. ' The
dependence of AooLL upon

~ p ~, ~

A. ~, and yA. renders
it less likely to demonstrate qualitative sensitivity to

(r). We point out, however, that these various lev-
~ 1/2

els of model sensitivity to A. , (r) are strongly depen-
'&1/2

dent on the assumed Lorentz coupling form and on the
estimated core contribution to the isoscalar three-vector
current (see the following discussion). The results in
Figs. 5-7 may serve to be useful for investigating the
contributions of the various invariant NN amplitudes to
n-, s-, and I-type polarized target spin observables.

We now examine polarized target observable sensitivi-
ty to the valence neutron wave function (in the standard
RIA model). The observables are directly dependent on

(r); however, for a reasonable range of variation,~ 1/2

such as that given by the differences between the RMFT
wave function and the nonrelativistic Woods-Saxon
bound state wave function (see Fig. l), small effects are
seen. Typical sensitivities are shown in Fig. 8 for Aoooz
and Aooz~, where the solid and dashed curves corre-
spond to the standard RIA calculations assuming the
RMFT (p& (r) and the NR y& (r), respectively. Sen-

~ 1/2

sitivity to other nuclear structure effects (e.g., particle-
hole admixtures '

) could possibly be greater.
Sensitivity to A, ,~ (r) is shown in Fig. 9 for DNo~o,

and in Figs. 10-12 for some of the polarized target ob-
servables. The solid curves are standard RIA results
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FIG. 12. Same as in Fig. 9, except for Aoo«.
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MSOEN.

FIG. 13. Demonstration of the predicted loss of sensitivity
to k 1p ( P } for DNp~o and A ooEs when Pseudovector rather~ 1/2

than pseudoscalar coupling is assumed in the RIA interaction.
Solid and dashed curves correspond to A, lp from Eqs. (23)P 1/2
and {18)in the text, respectively.
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FIG. 14. Demonstration of the predicted loss of sensitivity
to k Ip (r ) for D&ONO and A OOON when pseudovector coupling~ 1/2

and core suppression of the isoscalar three-vector current are
both assumed. Solid and dashed curves correspond to A, ]p'~1/2
from Eqs. (23) and (18) in the text, respectively.

where the RMFT value for X, (r} is assumed; the~ 1/2

dashed curves display the results of similar calculations
using A, , (r) discussed in Sec. II [see Eq. (18)] and

shown in Fig. 2. The level of sensitivity to A, , (r) is~ 1/2,

moderate for Dzpzp and the n- and s-target spin observ-
ables. This sensitivity is about one-half of that estimated
in Ref. 9 using the plane wave Born approximation.

However, when pseudovector coupling is assumed, as
discussed in Sec. II 8, the model sensitivity to A,

&
for~ 1/2

D~p~p and the s-type polarized target spin observables is
essentially eliminated as shown in Fig. 13. For these cal-
culations the Dirac equation bound state A, ", [see Eq.

(23)] and A,
&z

were used alternately. The sensitivity to

A, tz (r) in the n-target observables remains, since the~ 1/2

pseudoscalar contribution to these observables is negligi-
ble. If we additionally adopt both the pseudovector cou-
pling form and the estimated core contribution to the
isoscalar three-vector current as in Sec. II C, the remain-
ing sensitivity to iL, (r) in the n-type target observ-

ables is also eliminated as shown in Fig. 14. Here also
(r) was obtained either from Eq. (18) or (23).~ 1/2

Therefore, for the theoretically preferred pseudovector
model in which the core contributes to the isoscalar
three-vector current, very little sensitivity to relativistic
enhancement of the valence nucleon lower component is
predicted for any elastic scattering observable. Mixing
of pseudoscalar and pseudovector interaction contribu-
tions, and variations (from that assumed here) in the
core contribution to the effective isoscalar three-vector
current at finite momentum transfer for finite nuclei (see
Sec. IIC and Ref. 34) might restore some model sensi-
tivity to A, tp (1').~ 1/2

It is also worthwhile to directly investigate the model
sensitivity to pseudovector versus pseudoscalar coupling.
Results are shown in Fig. 15 for Dzpzp, AppLz, and

1.00-
C3

0.90

I f

p+ C 500 MeV

0.1

0.0

-0.2-
P. S.

———P V

-0.3 I

10
i I

20 30

8, (deg)

I

40 50

FIG. 15. Predicted differences in Dzozo, AooLq, and Aooz&

between pseudoscalar (solid curves) and pseudovector (dashed
curves) coupling assuming the relativistic single particle lower
component wave function of Eq. (23) for )t,

&~ (r) as discussed~ 1/2

in the text.

g~ss, where the solid (dashed) curves correspond to
pseudoscalar (pseudovector) coupling, and the relativistic
single particle bound state wave function of Eq. (23) is
assumed for A, , (r). Considerable sensitivity to the

~1/2
choice of I.orentz form is evident in each case shown.

Sensitivity to the suppression of the effective valence
nucleon isoscalar three-vector current for n-target ob-
servables is, in the present model, similar to the sensitivi-

ty to A,
~~ (r ) in the standard RIA calculations

displayed in Fig. 10, since the isoscalar three-vector
current makes the dominant contribution to these ob-
servables. Likewise, since the vector interaction contri-
bution to D&pNp and the s-target observables is minimal,
little sensitivity to the core suppression of the isoscalar
three-vector current is found for these cases.

Finally, a summary of the model predictions for D~p~p
and several n- and 8-target observables for p+' C at 500
MeV is exhibited in Fig. 16. The solid curves are results
from the standard RIA calculation [i.e., RMFT p,~ (r)

'&1/2
and A, t (r) PS coupling]. Predictions obtained assum-

&1/2

ing pseudovector coupling with RMFT y, (r) and
'~1/2

(r) from Eq. (23) are indicated by the dashed
~1/2

curves. Results using PS coupling and the quenched iso-
scalar three-vector current (RMFT values for y,~ and~ 1/2

A,
&z ) are shown by the dashed-dotted lines. Finally,~1/2

the model results obtained assuming both pseudovector
coupling and quenching of the isoscalar three-vector
current [RMFT p, and A, , of Eq. (23}] are givenP 1/2 ~ 1/2

by the dotted curves. Comparison of these predictions
with data would be very interesting and mould challenge
the underlying theoretical models and assumptions.
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FIG. 16. Summary of the various predictions for D&0&0, AOOON, Aoozz, MzoL&, ADDLE, and Aoozz for p+ ' C elastic scattering at
500 MeV assuming either the standard RIA model (solid curves), pseudovector coupling (dashed curves), core suppression of the
isoscalar three-vector current (dashed-dotted curves), or both pseudovector coupling and core suppression of the isoscalar three-
vector current (dotted curves) as discussed in the text.

IV. SUMMARY AND CONCLUSIONS

Because of increasing interest in spin degrees of free-
dom and relativistic effects in intermediate energy
proton-nucleus scattering processes, and in anticipation
of forthcoming experimental data' from polarized nu-
clear targets, the relativistic distorted wave Born ap-
proximation and the RIA model for the Lorentz invari-
ant NN interaction were used to describe elastic scatter-
ing of polarized protons from a polarized odd-A nuclear
target, specifically ' C. Expressions for evaluating the
p+' C elastic scattering amplitude were given where
decomposition with respect to the individual Lorentz
components of the NN effective interaction was em-
phasized. Modifications (to the standard RIA model of
Refs. 1 and 2} which incorporate pseudovector coupling
and quenching of the valence nucleon isoscalar three-
vector current due to the response of the core nucleons
to the presence of a single valence nucleon were also in-
cluded.

The principal results of this study were the following:
(1) the unpolarized target observables (except for DNONO)

are primarily sensitive to only the scalar and timelike
vector portions of the core contribution to the scattering
amplitude; (2) significant sensitivity to relativistic
enhancement of )j., (r) exists for most n- and s-target~ 1/2

spin observables in the standard RIA model, but this
sensitivity disappears when the theoretically motivated
PV model with quenched isoscalar three-vector currents
is used; (3}sensitivity to PV versus PS coupling is amply
demonstrated in D&ONo and the s-target observables; and

(4) n-target observables are dominated by the isoscalar
three-vector current (spacelike vector contribution). Fi-
nally, a variety of predictions for several 500 MeV
p+' C elastic scattering spin observables were given.

'We conclude from this work that analyses of inter-
mediate energy polarized proton elastic scattering data
from lightweight, polarized nuclear targets should, in
principle, provide a wealth of new information related to
the following: (1) the Lorentz character of the NN
effective interaction, (2) spin saturated core contributions
to the total isoscalar three-vector current, (3) efFective
strengths and ranges of various parts of the NN interac-
tion, and (4) possible relativistic binding potential
enhancement of the lower component of the valence nu-

cleon wave function. However, when faced with the
analysis of actual p+' C elastic scattering data in the fu-
ture it should be realized that the physics which must be
ultimately dealt with in order to interpret the data is im-
mensely complex, entailing most of the intermediate en-

ergy reaction dynamics known to be important and re-
quiring very detailed relativistic and nonrelativistic nu-
clear structure calculations for a nucleus in a region of
the periodic table ~hose properties are notoriously
difficult to understand. Further progress in this theoreti-
cal investigation will most likely require (1) relativistic
coupled channels calculation, (2) sophisticated relativis-
tic NN interaction models based on meson exchange
theory, and (3) exchange, correlation, off-shell, and medi-
um effects, etc. %e hope that the interesting results ob-
tained in this work will stimulate the theoretical com-
munity to address these and other problems.
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