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The longitudinal response function for quasielastic electron scattering is calculated in the ace
model of quantum hadrodynamics. We use meson fields and nucleon wave functions, as obtained in

mean-field theory of closed-shell nuclei, in relativistic random-phase approximation. The results for
"C and Ca are compared with those of a previous calculation, where the response function was

evaluated in local-density approximation. We find a shift in the position of the maximum which is

due to the inclusion of binding energy effects, and a slight broadening of the response function.
Comparing with the data, we find good agreement except for Ca at the highest momentum transfer

q =S50 MeV.

I. INTRODUCTION

Relativistic field theories of nucleons interacting with
scalar and vector mesons have attracted general interest
in recent years. ' Quantum hadrodynamics has been suc-
cessful in explaining the ground-state properties of nu-
clear matter and nuclei. It is therefore of interest to in-
vestigate the implications of this model for dynamical
processes like the interaction of nuclei with nucleons and
electrons. In this work we study quasielastic electron
scattering in the framework of the ocop model of quan-
tum hadrodynamics.

Measurements of the separated longitudinal and trans-
verse response functions became available some years ago
and have since been a challenge to any theory of nuc1ear
structure. In Refs. 3 and 4 the response functions for nu-
clear matter have been calculated in the ace model in
relativistic random-phase approximation (RPA). In Ref.
5 we have calculated the response functions for finite nu-
clei in local-density approximation using these results to-
gether with local nucleon densities and meson fields as
obtained from the solution of the mean-field equations of
this model. The RPA-correlations were found to reduce
the longitudinal response function significantly with
respect to the Hartree result, but the transverse response
function is almost unchanged. We obtained good agree-
ment with the data for both response functions using free
nucleon form factors.

While the local-density approximation is, in general, a
good approximation in the quasielastic region, it does,
e.g., not include the separation energy of the nucleons.
In the present work we therefore improve the previous
calculation by using the wave functions and binding ener-
gies of the nucleons as evaluated in the o.ep model in rel-
ativistic random-phase approximation for finite nuclei.
We use the same meson masses and coupling constants as
in Ref. 5, determined from the ground-state properties of
nuclear matter and closed-shell nuclei. As the authors
of Ref. 6, who calculate the response of nuclei in the

Hartree-approximation, we employ the Green's function
method. As noted above, Hartree- and RPA results al-
most agree with each other in the transverse channel.
Therefore, we restrict our calculations with the exact
one-body density to the longitudinal response function.

The calculation is fully consistent in the sense that the
wave functions of the nucleons and the RPA renormal-
ization are calculated within the same model. This is in
contrast to comparable nonrelativistic calculations,
where the wave functions are calculated in a harmonic
oscillator potential, while some phenomenological param-
etrization is chosen for the particle-hole interaction. '

Furthermore, by using the Green's function method, the
continuum, which is usually neglected, is fully included.

Employing the Green's function technique, the RPA
equations for a nontranslational invariant system can be
solved by iteration. We check for convergence carefully
by comparison with the exactly solvable local-density ap-
proach and find satisfactory convergence after the second
iteration.

In Sec. II we outline our method to solve the relativis-
tic RPA equations for finite nuclei. Section III contains
results for the two experimentally well studied nuclei ' C
and Ca, in comparison with previous local-density re-
sults and the measured response functions. Section IV
gives our conclusions.

II. RANDOM-PHASE APPROXIMATION

The longitudinal response function for quasielastic
electron scattering with momentum transfer q =

~ q ~

and
energy transfer ~ is given by'

Here jL is the zero component of the e8'ective baryon
current j„as given in Ref. 5 which includes the nucleon
Dirac and Pauli form factors. The polarization propaga-
gator II is defined by
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This equation is exact if %p and O„describe the ground state and excited states of the nucleus exactly. In the Hartree
approximation the ground state is approximated by the Slater determinant of occupied levels, the excited states by
particle-hole pairs. Thus, the interaction of the particle-hole pair which is created by the external field is neglected. In
random-phase approximation this interaction is taken into account by summing the ring diagrams to all orders. The
corresponding Dyson equation for the polarization propagator II in random-phase approximation in terms of the prop-
agator II in the Hartree approximation reads in momentum space (argument co omitted)

d3"
11(a,a;q, q')=II(A, B;q,q') —g f ",11(&,c;q,q")I'cD(q")11(D,&;q",q'),

(2m )

where V stands for the interaction, i.e., exchange of cr, co,
and p mesons. In nuclear matter this equation reduces to
the RPA matrix equation as given in Ref. 3 because of
translational invariance.

The effective current component jp has two parts; the
Dirac current and the anomalous current. For the
momentum and energy transfers considered here
(m & q & 550 MeV) the Dirac current gives the dominant
contribution to the total longitudinal response function,
while the anomalous current contributes less than 25%.
Therefore, we calculate the RPA corrections only for the
Dirac current and treat the contribution from the anoma-
lous current in the Hartree approximation. This reduces
the number of integral equations considerably. The nu-
cleon wave functions are evaluated in the ocop model
which includes the Coulomb interaction. In evaluating
the longitudinal response, however, we reduce the numer-

[~,=-,'(I+r3)] . (5)

(Here and in the following equations the nucleon form
factors are, in order to simplify the notation, not denoted
explicitly. ) For the evaluation of II, the following system
of integral equations has to be solved:

ical effort further by using the proton wave functions also
for the neutrons. This is a good approximation for the
symmetric nuclei considered (' C and Ca), especially
since the neutrons contribute only a little to the longitu-
dinal response.

With Eq. (1), the Dirac contribution SL D to the longi-
tudinal response function in random-phase approxima-
tion reads

1
SL D(q, co) = —ImII(y prz, y p7 'q q 'co)

d3 tt
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(2'�)
Here X„Xz,and 7 are de6ned by
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where g„gv, and g are the coupling constants of the cr, m, and p mesons, and m„m z, and m are their masses. For
these parameters we use the same values as in Ref. 5, determined in Ref. 2 from the saturation properties of nuclear
matter and the rms charge radius of Ca.

The isospin factors are easily evaluated. The propagator II(A, B) given in Eq. (3} can be rewritten in terms of the
Green's matrix G:

q) (xW (y) +p(y)+p(x)
II( A (x),8 (y);co) =g %„(x)I „tg I %'h(y}+Vh(y)I „g . I t)p„(x)E —Eh+co —(
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the full Careen's matrix is reduced to the radial Green's
matrix, which is a solution of the inhomogeneous Dirac
equation

Here, Po(x), Vo(x), and bo(x) are the expectation values
of the fields of the 0, co, and p mesons, and A 0 is the
Coulomb field. Together with the nucleon wave func-
tions, they are obtained from the solution of the mean-
field equations of the o.ep model for closed-shell nuclei as
given in Ref. 2. The radial Green's matrix is calculated
numerically as a proper combination of the regular and
irregular solutions of the homogeneous part of Eq. (11)."
Since H and H are not very different, we solve the system
Eq. (6}iteratively. With the notation

g11 g12

~++ V E gZ1 g22

—1 0
=|)(x—y) 0 1

with

V(x) =gv Vo(x)+ —,'g bo(x)r3+ —,'(1+r3)Ao(x)

~~L,D ~ L,D ~L, D

ll„,.(q), q2) =11(r„r,r.r, ;q(, q2) ~

11„.(q) q»= II( ir„r.r„'q), q2},

Il„,(q(, q2) =II(y„r, lr;q„q2),
11„(q),q2) =II( leap, lr;q), q&),

(12) the first two iterations read

(14)
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The further calculation proceeds as follows. The wave
functions 4'h of the nucleons are, analogously to the
Green's matrix, decomposed into angular and radial
parts. The angular integrations in Eq. (2) can then be
done analytically; the radial integrals are evaluated nu-
merically. The results for II(q&, q2) are inserted in Eqs.
(15) and (16). Again, the angular integrations are per-
formed analytically; the radial integrations with respect
to q" and q"', numerically.

II(1'pr 1' 7;q, q', ro ) = III, ~ ( q, q
'

)

at fixed q and co as a function of q' for different nuclei.
The maximum approaches q'=q, and the function be-
comes narrower with the increasing size of the nucleus.
This rejects the decrease of nonlocality in momentum
space as translational invariance tends to be restored.
Similar behavior is also observed in nonrelativistic calcu-
lations of the polarization propagator for finite nuclei.

III. RESULTS

In Fig. 1 we show, for q'~~q, the imaginary part of the
polarization propagator
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FIG. 1. Imaginary part of the polarization propagator
11(yo.yo'q. q ro) = II&,D(q q ) for q )~q and q =400 MeV co= 50
MeV as a function of q'. The dashed, solid, and dotted lines
show this function for ' C, Ca, and Pb, respectively, normal-
ized by its value at q' =q.

FIG. 2. RPA correction for the Dirac contribution to the
longitudinal response function, in Arst order of the iterative
solution, for ' C at q =400 MeV. The solid (dot-dashed) line
shows the contribution from the scalar o. meson, evaluated with
the exact one-body density (in local-density approximation).
The same is shown for the vector co meson by the dashed (dot-
ted) lines, and for the vector isovector p meson by the dashed-
two dotted line (there the results from the exact calculation and
from local-density approximation are indistinguishable on this
scale).
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FIG. 3. Total RPA correction for the Dirac contribution to
the longitudinal response function in first and second order of
the iterative solution, for '~C at q =400 MeV. The dashed

(solid) line shows the result of the exact calculation in first

(second) order; the dotted-dashed line the result for the exact
matrix inversion in local-density approximation.

In Figs. 2-5 we compare the RPA correction to the
Dirac part of the longitudinal response function

5SL"D ———Im5II L", D

as obtained from Eqs. (15) and (16), with that from the
corresponding iterative solution of the RPA equation in
nuclear matter, applied to nuclei in local-density approxi-
mation. The contributions from the o, co, and p mesons
to 5SL'D are shown separately in Fig. 2 for ' C at q =400
MeV. It can be seen that the result of the exact calcula-
tion is very close to the result in local-density approxima-
tion. On the other hand, the total first correction is the
sum of large and opposite contributions from the scalar
and vector mesons, and, therefore, small relative
differences in the individual contributions can result in
large differences in the total correction. In Figs. 3 and 4
we show the total corrections in first and second itera-
tion, for ' C at q =400 MeV and q =550 MeV, together
with local-density results. For q =550 MeV the iterative

0
0 &00 200

~ (Mev)

FIG. 5. Convergence of the iterative solution of the RPA
equations in local-density approximation for ' C, q =400 MeV.
The dashed, dotted-dashed, and dotted lines show the result in

first, second, and third order of the iteration. The solid line
shows the result obtained from exact matrix inversion.

S„(vev')

solution of the integral equations converges rapidly. For
q =400 MeV the convergence is slower and it would be
desirable to also calculate the third order 5Sz' D. This is,
however, not feasible with the exact one-body density be-
cause of the aforementioned delicate cancellation of the
individual contributions which becomes more severe with
increasing order of the iteration. Nevertheless, the RPA
equations can be solved in higher orders of the iteration,
and exactly in local-density approximation. These results
are shown in Fig. 5 for ' C, q =400 MeV, which gives
first, second, third order, and the results from exact ma-
trix inversion. The higher iterations and the exact results
are quite close to each other. As shown in Fig. 4, the
iteration series converges even faster for q =550 MeV.
Thus, we have reason to believe that the second order of
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FIG. 4. Same as Fig. 3, but for ' C at q =550 MeV. The ad-
ditional dotted line shows the result of the second order of the
iterative solution in local-density approximation.

FIG. 6. Longitudinal response function for ' C at q =400
MeV. The solid (dashed) line shows the result of the calculation
using the exact one-body density with (without) the RPA corre-
lations. The dotted-dashed (dotted) line shows the correspond-
ing results in local-density approximation. The data are from
Ref. 12.
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FIG. 7. Same as Fig. 6, but for ' C at q =550 MeV. 0
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FIG. 8. Same as Fig. 6, but for Ca at q =410 MeV. The
data are from Ref. 13.

the iterative solution is sufficient for q &400 MeV. We
do not show results for q =300 MeV, because there the
convergence is quite slow and the second-order result
may not be reliable. The same remarks also hold for

Ca.
We compare our results for ' C, q =400 MeV (Fig. 6)

and q =550 MeV (Fig. 7), and Ca, q =410 MeV (Fig. 8)
and q =550 MeV (Fig. 9), with the data. ' ' First of all,
we reproduce the results of Ref. 6 for the longitudinal
response function in the Hartree approximation, includ-
ing both the Dirac- and the anomalous current, and using
the exact one-body density. Comparing with the corre-
sponding Hartree result in local-density approximation,
the maximum is shifted towards a larger energy transfer,
due to the inclusion of binding energy effects, and slightly
broadened. We obtain our final result for the longitudi-
nal response function in random-phase approximation by
adding the RPA correction for the Dirac contribution of
the longitudinal response to the Hartree result, both cal-
culated with the exact one-body density. For ' C the
agreement with the data is, compared with the local-
density approximation, slightly better for q =400 MeV
and slightly worse for q =550 MeV, but quite good for
both values of the momentum transfer. For Ca we ob-
tain good agreement at q =410 MeV, but the response is

u) (MeV)

FIG. 9. Same as Fig. 6, but for Ca at q =550 MeV.

overestimated at large values of the energy transfer. This
feature becomes more pronounced for q =550 MeV,
where the maximum of the response is shifted with
respect to the data to a higher energy transfer.

IV. CONCI. USION

We have calculated the longitudinal response function
for quasielastic electron scattering on ' C and Ca in the
framework of the o.cop model of quantum hadrodynam-
ics. By using the wave functions and binding energies of
the nucleons as obtained from mean-field theory of
closed-shell nuclei, the structure of the nucleus is taken
fully into account. Ground-state correlations are includ-
ed in relativistic random-phase approximation which was
developed for nuclear matter in Ref. 3 and is here gen-
eralized to finite nuclei. The integral equations of the rel-
ativistic random-phase approximation were solved itera-
tively for the dominant Dirac contribution to the longitu-
dinal response.

Comparing with the results of a previous calculation
we find a shift in the position of the maximum due to the
inclusion of binding energy effects. The response func-
tion evaluated with the exact one-body density is also
slightly broader than that in local-density approximation.
For Ca the high energy shoulder is overestimated, espe-
cially at high momentum transfers. This may be due to a
somewhat too small effective mass. We remind the
reader in this connection of the fact that the Landau pa-
rameters of the self-consistent o.cop model in its present
form are not in agreement with observations, ' leading,
e.g., to a much too high compressibility.

The overall agreement with the data is, however, as
good as in local-density approximations. Considering
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also the results for the transverse response function as
given in Refs. 6 and 5, we conclude that the cr~p model
of quantum hadrodynamics is capable of describing both
the longitudinal and the transversal response for quasi-
elastic electron scattering. Since this good agreement is

obtained using the free nucleon form factors, we find no
evidence for medium-modified form factors.
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