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Lorentz scalar and four-vector optical potentials are obtained for protons elastically scattered
from !0, “°Ca, *¥Ca, *Zr, and 2®®Pb. It is demonstrated that Dirac optical potentials constrained by
relativistic Hartree theory are capable of producing good agreement with experiment.

I. INTRODUCTION

The rapid development of relativistic treatments of nu-
clear reactions and nuclear structure over the past few
years has increased the interest in phenomenological opti-
cal potentials appropriate for use in the Dirac equation.
In this paper we present the results of an analysis of a
large body of experimental data for proton-nucleus elastic
scattering. The resulting optical potentials are consistent
with the theoretical ideas behind the use of the Dirac
equation as the relevant wave equation for describing nu-
clear reactions. In particular, we constrain the real parts
of the optical potentials by relativistic Dirac-Hartree cal-
culations.!~* The analysis presented here provides a test
of this constraint for a wide range of projectile energies
and for a number of spin-zero targets. We also seek evi-
dence for global parametrizations of the Dirac potentials
by studying the energy dependence of the potential pa-
rameters.

In the next section we describe the construction of the
relativistic Hartree optical model potentials. Section III
gives the results of our analysis of elastic scattering cross
sections and spin observables, together with a discussion
of the characteristic features of the scalar and vector
Dirac optical potentials and the Schrodinger equivalent
potentials obtained from them.? In Sec. IV we present
our conclusions and suggestions for further work.

II. CALCULATION OF THE REAL PART
OF THE OPTICAL POTENTIAL

The real part of the nucleon-nucleus optical potential is
calculated using the Dirac-Hartree approach of Ref. 1.
The reader is referred to that work for details; here we
summarize briefly the results as they pertain to the
present calculation.

The Dirac-Hartree equations for a finite nucleus may
be derived from a model relativistic Lagrangian density
using either Green’s function techniques' or a product of
single-particle Dirac wave functions as the ground state.*
As a prototype, consider the model of Walecka,’ for
which

L=Lo+8gbbp—g, Py V", (1)

where L, is the noninteracting Lagrangian density for
baryon (), scalar meson (¢), and vector meson (V“)
fields. (The results presented below use an extended mod-
el that includes additional boson degrees of freedom.®) In
the Green’s function approach, the Hartree approxima-
tion includes self-consistently the iterated direct (“tad-
pole”) interactions between nucleons in the baryon and
meson propagators and the energy density. This is illus-
trated in Fig. 1. In the wave-function approach, one be-
gins with the field equations derived from (1) and replaces
the meson field operators with static, classical fields. In
addition, the baryon densities (which serve as source
terms in the meson field equations) are evaluated approxi-
mately as sums over single-particle wave functions.

Both of the preceding techniques lead to a set of cou-
pled, nonlinear differential equations for the classical
meson fields and single-nucleon wave functions. If we
write the static four-component Dirac wave functions as’

Gptl)
0,
Vo X) =Y (X) = Fou(r) ) ()

- —7_¢—xm 7

where ®,,, are spin-} spherical harmonics labeled by «
and m, and 7, are isospinors labeled by ¢, one finds
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%Ga(r)+%Ga(r)—[Ea—Uo(r)—Vc(r)+M+Us(r)]Fa(r)=0 , (3a)
%Fa(r)—fFa(r)+[Ea—U0(r)— Vr)—M —U,(r)]G,(r)=0. (3b)

Here U,, V., and U; are the four vector, coulomb, and scalar potentials, respectively, and we have assumed spherical
symmetry, as appropriate for a doubly magic nucleus. The meson potentials are determined self-consistently by solving
additional differential equations driven by the baryon densities. For example, the scalar meson field U satisfies

Ly o+ 2y () —m2U. () =glp, (=gt S
dr2 Sr+rdr s\P)—mgU\r)=8;ps\r)=g; 2

a

where m is the scalar meson mass. The vector potential
U, contains contributions from both isoscalar (w) and
isovector (p) mesons, as determined by similar equations
driven by the baryon density (proportional to
|Gy |%+ | Fy|Y. The coulomb potential V, satisfies
Poisson’s equation, of course. (For the full set of equa-
tions in the present model, see Ref. 1.)

These field equations determine the meson potentials
and single-particle nucleon wave functions in this model
and depend on four parameters: g,g,,8, (the rho meson
coupling to nucleons), and m,. We consider the parame-
ters M =939 MeV, m,=m =783 MeV, m, =770 MeV,
and a=e?/4m~ ;.. fixed at their experimental values.
The remaining four free parameters are normalized as far
as possible to the bulk properties of nuclear matter, as
discussed in Ref. 1, and take the values g’>=109.63,
g7 =190.43, g2=65.226, and m;=520 MeV. These
values lead to an accurate description of charge densities,
neutron densities, rms radii, and single-nucleon energy
levels for doubly magic nuclei throughout the periodic

occupied
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table.

To utilize the preceding results in the relativistic opti-
cal model formalism, we assume that the geometries of
the real parts of the nucleon-nucleus optical potential for
medium- and high-energy incident nucleons are given by
the bound-state Dirac-Hartree solutions Uy, U, and V.
Since the Hartree approximation results in state- (or
energy-) independent potentials, the energy dependence is
specified in the present work by overall scale parameters
determined by the fitting procedure, as discussed below.
More sophisticated approximations for the nuclear
ground state lead naturally to state-dependent meson po-
tentials.* In addition, to account for the finite-size effects
of the nucleons themselves (which are also neglected in
the Hartree approximation), we determine the optical po-
tentials by folding over a suitable single-nucleon form
factor. This is done in the following fashion.

Consider the scalar optical potential U generated
from the folding integral

U;’p'(r)=fdr'dr,dr,pb( [r—r1' | (| £' =1y | Jpp( | 1y —1, | JpHiartres(r,) | (5)

X X iG°(x,2)
iGu(x,y) = 4 iG°(x,y) + z ' TriGu(z,2)]
iD°(z-z)
g y iGu(z,y)
y
iD%(x-2) Tr[iGH(Z',Z')]
: = ivvvn +
B vy rtaty
iD(x-y)  iD°(x-y) Tr[iG2,2] iD°(z-y)

FIG. 1. Diagrammatic Dirac-Hartree representation for the
baryon and meson propagators. Here G° is the noninteracting
baryon propagator at finite density and G is the Hartree prop-
agator. Thus, the first set of diagrams represents an integral
equation for Gy. Results are shown here for scalar mesons;
there is a corresponding contribution for each exchanged boson.
Note that the Hartree propagator G is defined using the nonin-
teracting boson propagator D°. The corresponding ‘“‘tadpole”
contributions are to be included in the Dirac-Hartree energy
density.

This is pictorially illustrated in Fig. 2(a), which shows the
incident nucleon interaction with all nucleons in the tar-
get nucleus. Here p, and p,. are single-nucleon form fac-
tors, v (r) is the static Yukawa meson propagator, and

pHartree(y) s the scalar meson density generated by the

r~' Vs(l.Il‘.[ll)L,

(a) ug(n- i

) s \r Xz Pb(IL-,!Il) Tr[lGH(rg,rz)]
PullLrra)

 usr')

(b) U= @ VX

~ Pb“L—L 1)

FIG. 2. Diagrammatic representation of the nucleon-nucleus
optical potential for scalar meson exchange [Eq. (5)]. In (a), the
blobs represent single-nucleon form factors, v,(r) is the static
Yukawa meson propagator, and the loop containing Gy gen-
erates the scalar density of baryons. The integral over the scalar
propagator and density gives the Hartree potential, as indicated
in (b).
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tadpole loop [or, equivalently, the sum on single-nucleon
wave functions in Eq. (4)]. This folding procedure is
slightly different from that used in Ref. 3, but allows us to
separate the effects of incident and target nucleons more
easily. Relations analogous to (5) define the Lorentz vec-
tor optical potential U§P* and, of course, these lowest-
order potentials are summed to all orders by solving the
Dirac equation for the four-component scattering-state
wave function.

In principle, the form factors p, and p,- should be used
in the static calculation of the Hartree potentials for
bound nucleons. Instead, since the Hartree potentials are
calculated self-consistently with no form factors, we set
pp(r)=83)r). 1t is likely that including additional form
factors will have only a small effect on the Hartree poten-
tials or the optical-model analysis, for reasons discussed
below. With the preceding replacement, the scalar and
vector optical potentials may be written

UR (= [drdrp,(|r—1' ool [1'—r; | )piE™(r,)
= [drp,(|1—r' WU, r"), 6)

where the last line follows from the solution to Eq. (4)
and is represented in Fig. 2(b). The nucleon-nucleus opti-
cal potential is therefore determined by folding the calcu-
lated Hartree potentials with a suitable form factor for
the projectile nucleon. The detailed form of p, is unim-
portant, as long as the nucleon rms radius is approxi-
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FIG. 3. The Hartree potential U (dashed) and scalar optical
potential U2 (solid) for **Ca. The latter is evaluated with the
exponential form factor in Eq. (7a). Results calculated with the
Gaussian form factor (7b) are too similar to be distinguished on
this graph.

TABLE I. Values of C, and C, determined by the fitting procedure and the volume integrals of the
real and imaginary effective central and spin-orbit potentials.

Central (MeV fm?) SO (MeV fm?®)
A T,(MeV) C, C, Re(J/A) Im(J/A) Re(K/A'7?) Im(K/A'?)
16 200.0 0.736  0.763 —122.1 —161.2 —80.3 7.6
16 613.0 0.510  0.600 95.3 —219.8 —36.6 13.3
16 800.0 0.498  0.652 64.2 —451.8 —45.9 9.6
40 26.3 0.663  0.695 —377.9 —94.1 —98.0 3.2
40 40.0 0.662  0.698 —360.8 —93.9 —96.1 9.8
40 181.3 0.603  0.635 —118.2 —142.9 —69.6 18.6
40 200.0 0.606  0.638 —93.9 —149.8 —68.8 6.3
40 300.0 0.537  0.602 —49.5 —200.9 —54.9 8.5
40 400.0 0.480  0.579 —43.7 —250.8 —435 4.1
40 497.5 0.493  0.595 39.7 —252.5 —41.2 13.8
40 613.0 0.388  0.463 95.5 —252.2 —28.1 11.6
40 800.0 0402  0.537 106.9 —340.1 —26.2 10.2
48 30.0 0.678  0.710 —363.6 —96.7 —100.1 2.9
48 40.0 0.597  0.641 —3479 —97.7 —86.5 2.6
48 497.5 0.454  0.545 46.5 —242.1 —37.2 16.3
48 800.0 0.365  0.488 103.4 —338.6 —23.6 8.8
90 160.0 0.617  0.654 —138.0 —147.5 —73.6 27.6
90 182.0 0.467  0.520 —1449 —150.0 —54.9 15.6
90 500.0 0.517  0.621 74.4 —219.3 —43.0 13.7
90 800.0 0.328  0.446 91.4 —371.6 —21.3 6.6
208 182.0 0.596  0.634 —105.4 —131.7 —70.2 13.7
208 300.0 0.534  0.580 7.6 —156.0 —53.9 4.1
208 400.0 0.508  0.582 442 —187.7 —46.5 6.5
208 497.5 0414  0.479 85.0 —2252 —33.6 5.2
208 613.0 0.355  0.440 81.6 —240.6 —26.1 11.1
208 800.0 0412  0.556 138.6 —338.3 —26.7 7.6
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FIG. 4. Calculated observables for 800 MeV protons scat-
tered elastically from '%0. See Ref. 10 for the references to ex-
perimental data.

FIG. 5. Calculated observables for 800 MeV protons scat-
tered elastically from *°Ca. See Ref. 10 for the references to ex-

perimental data.
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FIG. 6. Calculated observables for 800 MeV protons scat-
tered elastically from *®Ca. See Ref. 10 for the references to ex-
perimental data.

FIG. 7. Calculated observables for 800 MeV protons scat-
tered elastically from *Zr. See Ref. 10 for the references to ex-
perimental data.
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FIG. 8. Calculated observables for 800 MeV protons scat-
tered elastically from 2%*Pb. See Ref. 10 for the references to ex-
perimental data.

mately 0.7-0.9 fm, and similar results were obtained with
an exponential form

3
p},”(x)zjgi;e‘“'” ) (7a)

and a Gaussian form

3
(2)( v e~ v2x? , (7b)

Pb

X)=
72

with u=4.2701 fm~! and v=1.5309 fm~!, yielding rms
nucleon radii of 0.81 and 0.80 fm, respectively. Results
for the scalar potential for “°Ca are shown in Fig. 3. As
further justification for this procedure, note that once de-
tails in Ug9 on the scale of =1 fm have been “smoothed
out” by folding at the projectile vertex, it is unlikely that
further “smoothing” at the target vertex will lead to
significant changes.

III. ANALYSIS OF EXPERIMENTAL DATA

The motivation for this work was to demonstrate that
acceptable fits to proton-nucleus elastic scattering data
could be obtained using the optical potentials described
in Sec. II. To do this we scale the real optical potentials
of Eq. (6) by factors C, and C; to include possible sources
of the energy dependence in the vector and scalar poten-
tials. The real optical potentials contain only these two
parameters; the radial dependence is fixed by the relativ-
istic Hartree calculation. The scalar and vector poten-
tials are given by

VEPUr)=C,UP (r)+iW,ofolr) (8a)
VoP(r)=C, U r)+iW,f,(r) , (8b)

where f(r) is a two-parameter Fermi shape. The model
contains a total of eight parameters which are varied to
obtain fits to experimental data for each energy and each
target.

Two different relativistic optical model programs,
CZENITH (Ref. 8 and RUNT,® were used in the
analysis. This provided a check on the searches and on
the numerical procedures. We found acceptable fits to
the data for all spin-zero, closed-shell targets appropriate
for the constraint. We considered '°0, *Ca, *8Ca, %Zr,
and 2°8Pb targets at intermediate energies, T, >200 MeV,
and “Ca and “Ca at a few lower energies. For the data
sets used in this work,!®!! the values of C, and C, deter-
mined by the fitting procedure and the volume integrals
of the real and imaginary effective central and spin-orbit
potentials are given in Table I. In Figs. 4—8 we show the
results for °0, ®Ca, *¥Ca, *Zr, and 28Pb at 800 MeV,
where experimental data exists for every target con-
sidered. These figures are representative of the quality of
the fits at all energies. The results show that the pro-
cedure used to constrain the optical potential is reason-
able. In addition, this work provides a link between the
phenomenology and the results of relativistic mean field
calculations.

The energy dependence of the effective potentials is
smooth, especially for the effective central potential.
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FIG. 9. Real and imaginary effective central volume integrals divided by A as a function of T, calculated from the scalar and vec-
tor Dirac potential determined by the analysis described in the text.

Essentially all of the 4 dependence can be removed by di-
viding the volume integral by 4 (or 473 for the spin-
orbit volume integral). Figures 9 and 10 show the results
graphically, and we note that the only significant depar-
ture from a smooth energy variation occurs for the spin-
orbit potential between 150 and 200 MeV. Such behavior

has been observed in several of analyses of medium-
energy data.'”

Because the energy dependence determined from the
single energy fits was, in general, quite reasonable, we
sought global parametrizations for the imaginary poten-
tial parameters and for C, and C,. It is surprising that
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FIG. 10. Real and imaginary effective spin-orbit volume integrals divided by 4'”* as a function of T, calculated from the scalar
and vector Dirac potential determined by the analysis described in the text.
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the imaginary effective volume integrals exhibit the
reasonable energy variation shown in Fig. 9, in view of
the change in the imaginary effective potential from
volume form to surface-peaked form as the projectile en-
ergy decreases. This behavior is accomplished by the
strong energy dependence of the imaginary geometry pa-
rameters. We conclude that a better parametrization
would be a combination of surface and volume
geometries. An analysis employing this more general
geometry is underway.

Next we examined the energy dependence of the eight
parameters varied in the fitting. The lowest energies
(T, <100 MeV) were excluded for the reason discussed
above. Several different parametrizations of the energy
dependence were considered; however, none of them pro-
duced acceptable results. Interpolation was unreliable
and extrapolation, as is usually the case for global fits,
was very poor. This failure arises from the strong corre-
lations which exist between the parameters. These corre-
lations make it difficult to find simple expressions for the
energy dependence of the potential parameters. Al-
though the energy dependence of an individual parameter
can be represented by a low order polynomial, when used
in conjunction with similar fits for the other parameters,
resulting potentials give only qualitative agreement with
experiment. This situation can be remedied by consider-
ing global fits that use the entire data set for all energies
simultaneously. The expansion of the data set from a few

hundred points to several thousand points, as well as in-
troducing the energy dependence at the outset, insures
the desired systematics. Work on this procedure is un-
derway, and the relativistic Hartree constraint is being
considered as one of the ways to parametrize the global
optical potentials.!?

IV. CONCLUSIONS

We have shown that Dirac optical model potentials
whose real parts are constrained by relativistic Hartree
calculations can be used to produce acceptable fits to
proton-nucleus data over a wide range of energies for a
number of spin-zero targets. This result provides a link
between the phenomenology and the relativistic mean-
field theory calculations, and indicates that the dominant
energy dependence of the real optical potentials occurs
simply as an overall scale. The model contains relatively
few parameters and exhibits, in general, smooth energy
dependence. These results also indicate that global pa-
rametrizations of the Dirac optical potential parameters
are possible, and work towards this end is in progress.'?
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