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Optical model for medium and high energy hadron-nucleus collisions
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The optical phase shift function is calculated to fifth order in a model in which center of mass
correlations in the nucleus are taken into account. Differential cross sections are calculated for elas-
tic scattering of protons by He, ' 0, "Ni, and Pb. The results are compared with exact Glauber
calculations and with a simple top-type approximation. The significance of the higher-order correc-
tions is assessed.

I. INTRODUCTION

In recent years there have been a number of medium-
and high-energy proton-nucleus elastic scattering mea-
surements in which the differential cross section varies
over many orders of magnitude, in some cases as many as
10.' In addition, the smallest cross sections measured
are likely to be as many as some 12 orders of magnitude
smaller than the nuclear cross section in the forward
direction. These types of collisions are often analyzed by
means of a microscopic optical potential which is used in
the Schrodinger equation or, more recently, in the Dirac
equation, which is then solved numerically. Usually the
optical potential used is obtained from a first-order or
tp-type approximation. On occasion some second-order
correlation effects are estimated using a variety of
methods. Another means of analysis is via Glauber-type
optical calculations in which an optical phase shift func-
tion is calculated microscopically and used in an eikonal
approximation. There, too, analyses generally employ a
first-order or tp approximation, and, on occasion,
second-order correlation effects are estimated. The first-
order results are not sensitive to correlation effects.
Hence, corrections to the first order results are sometimes
calculated or estimated solely from correlation effects.
However, even with wave functions with no dynamical
correlations, the first order or tp results are still only ap-
proximations to the full optical potential or full optical
phase shift function. Since the recent experiments have
been able to measure such small cross sections and such
large variations in the cross sections, it is perhaps
worthwhile to reexamine the first order or tp approxima-
tion and to ask how large corrections are to it, even in the
absence of dynamical correlations, and how such correc-
tions can be obtained. To this end we consider a model
whose exact result can be calculated, namely Glauber
theory. In Sec. II we develop a series for the optical
phase shift function (and hence for the optical potential}

and explicitly calculate the first-order through fifth-order
terms. In Sec. III we calculate the differential cross sec-
tions obtained from the various approximations and com-
pare them to the exact Glauber theory results for nuclei
with mass numbers 4, 16, 58, and 208.

II. OPTICAL PHASE SHIFT FUNCTION

In Glauber theory the hadron-nucleus elastic scattering
amplitude F(q) is given by the expectation value of a
scattering amplitude operator in the ground state of the
nucleus,

F(q)= Je' l —'P [1—I (b' —s, )]
j=1

j=1
with a form factor given by

—R q /4S„(q}=e (Zb)

In this case we can evaluate the effect of the delta func-
tion and obtain

A

x5 —g r, dr, . . dr„d b, .
j=1

where Aq is the momentum transferred to the nucleus, sj
is the projection of the jth target nucleon coordinate rj
onto the impact parameter plane, b' is the impact param-
eter vector, I ~. is the hadron-nucleon profile function, g„
is the nuclear wave function, A is the mass number of the
nucleus, and A'k is the incident momentum.

For simplicity, we assume that the nuclei can be de-
scribed by an independent particle model for f„,
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A

+}q}= }q(q}fe's |}e }—tt [}—]' (b' —s, }] de)deb,
j=1

where K (q) is a center of mass correlation function given by

E(q)= e

(T»s «suit also holds for the somewhat more general independent particle harmonic oscillator wave function. )

We define an optical phase shift function X, ,(b) hy4

F(q)= fd be'q' [1—e "' ]2'

(3)

=ik f Jo(qb)[1 e'—~' ]b db .
0

From Eqs. (3) and (5) we obtain

e "' =}qee} f d 6'd qe's' s)}q}q}(|}e 11 [}—];.(b' —s,. }] |}e
j=1

We define a function q}(b,}][,) by

qdb}} »},&ee}='f d'b d'qe""'"K}q}Ide tt [}—Al' (b' —s.}] de
j=1

We then expand q}(b,i, ) in a power series about A, =O,

(5h)

(6)

q}(b,&)= g, q]'"](b,O}A,",
n=1

where

(„](b g)
a"q}(b,A, )

7

and where we have used q2(b, O) =0. From Eqs. (6), (7), and (g} we have

iX»,(b)=q}(b, 1)
OO ] (}})(b0)1n.I

(10}

= g iX„(b),
n=1

(12)

where we have defined the nth order optical phase shift function X„(b)by Eq. (12). To evaluate the series (11)we note

(1)(b g)
'Blp(b}A ) (13)

= —e e' '(qee} fd ' qe'bs d'}q}(q}„|}''X]' }b'—s } tt [}—kt'„}b'—s }] d )j=1 k&j
(14)

+(2)(b g) [+(])(b g)]2+ }]}[b,2. )(2 }
—2—

A

X fd b'd qe's' '}q(q}(}} X X }' (b' —s }}'e(b'—se} rt [}—Al'itb' —si}] de
j=1 k&j l&j,k

(15)

[3](b g) 3 [1) (2) [ (1)]3 y(b, is)(2 )
—2—

&& f d2b d2q eiq. (b' —b]g (q)

A

X I b' —s I 1'—s I, b' —s, 1 —kI b' —s
j=1 k~j J~j,k m~j, k, l

(16)
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(4)(b g) 4 (1) (3) 3[ (2)]2 6[ (1)]2 (2) [ ())]e)+e—g(b, k)(2 )
—2

X jd b d''qe s' ''K(q)(q„x Z Z Z I', I'„I', I' 11 (I —II„) sbe),
j =1 k&j l&j, k m&j, k, l n&j, k, l, m

(5)(b g) 5 (1) (4) lp (2) (3) 15 (1)[ (2)]2 lp[ (1)]2 (3) lp[ (1)]3 (2) [ () )]5

Ip(bk)(277)2 f d2bed2qei q(bb)/(q)

(17)

Ax, rjr„r, r r„
j =1 k&j l&j, k m&j, k, l n~j, k, l, m

and so on. Consequently, with k =0 we have

v&j, k, l, m, n

(I —br, ) d„), (18)

q"'(bO)= —, (2ee) Jd'b'd'qe's' 'Iq(q)(sbe Z I', (b —s, ) de)j =1
(19)

A

q's'(bO)= —[ , q'( b))'O-( , b)2eesf deb d'qe's' '~)q(q)(de Z Z I', (b' —s, )l'„(b' —ss) sb„
J =1 k+j

q&' '(b 0)= 3q)'"—(b 0)q)' '(b 0)—[q) "(b 0)] —(2~)

(20)

X fd b'd qe'q' 'K(q) P„g g g I~(b' —sj)I k(b' —s), )ri(b' —si) P„
j =1 k&jl&j, k

«4)(b p} 4+())(b p)«3)(b 0) 3[«»(b p)]2 6[«1)(b p)]2+(2)(b p) [+())(b 0}]4

A

+(2ee) s Jd b dqe' ' '')q(q)(de Z Z Z Z r)rs~rr (be
j =1 k~J' l~j, k m~j, k, l

(21)

(22)

q)' '(b, p)= —5((()'"(b,p)q)' '(b, p) —lpq)' '(b, p}q)' (b, p) —15q) "(b,p)[q) '(b 0)]

1()[~(1)(b ())]2~(3)(b ()) 1()[~(1)(b ())]3q)(2)(b ()) [q)(1)(b ())]5

A

(2n)f—d b. 'd q e'q' 'K(q) (((„
j = 1 k &j I&j,k m &j,k, I n &j,k, I, m

(23)

C(b)=(g„~ I, (b —s, )

Then the expectation value in Eq. (19) for q)" ' is written

(24}

d„Z r, (b —.) d„)=dc(b ).
J

(25)

The expectation values of the higher order terms involv-

ing products of profile functions may be expressed in
terms of multiparticle densities, as in Ref. 6. For un-
correlated nuclear wave functions, g„, all the expecta-
tion values in Eqs. (20)—(23) are easily expressed in terms
of C(b'),

and so on. We assume, for simplicity, that the hadron-
nucleon profile functions I are identical, which is ap-
proximately true at high energies. (The generalization of
our results to the case I „+I is straightforward, but
tedious. ) We define

rjr, r, r
= A ( dI —1)( A —2)( A —3)C, (26c)

zzzzz r, r„r,r. I „)
=& (& —1)(A —2)(A —3)(A —4)C3, (26d)

f (q)= fd be'q I (b), (27)

and so on.
In ader to relate the optical phase shift function to the

experimentally measured hadron-nucleon amplitudes, f,
for hadron-nucleon scattering we have

y y r, r„=~(~—1)c',jj k&j

(yory. r, r„r, ) =a(a —1)(~ —2)c',

(26a)

(26b)

which, upon Fourier inversion, leads to

r, (b)=(21rik) ' fd q e ' f, (q) . (28)

For the hadron-nucleon amplitudes f, (q) we shall take



1100 VICTOR FRANCO AND AMOUZOU TEKOU 37

the usual high energy parametrization
4

f (q)= (1—(p)e
4~

(29)

From Eqs. (2a), (2b), (24), (28}, and (29} we obtain for
C (b } the result

with

(T(1 i—p)
2n.(R „+2(2}

(31)

—b /(R ~ +2a)
C(b)=ye (30)

The functions (I()"(b,O} given by Eqs. (19}—(23) may now

be explicitly evaluated to yield

( —)"A („")y"(R„+2(2)
,
y'")(b, O) = exp

A (R„+2a) n—R„
nAb

,
[~")(b,O}]"(1-S„)}

A (R„+2a) nR—„

where

,
(1 —b„))(1—5„2)(I()"'{b,O)(p(" ')(b, 0}—,, {n ( A (32)

DI ——D2 ——D~ ——0,

D =6[g'"(b,O)] y' '(b 0)+3[p' '(b 0))

D=»10[q)'"(,b 0)] y' '(b, O)+10[p'("(b, O)] y' '(b, O)+15'&'"(b,O)[y( '(b, O)] +10' '({b,O}q( '(b, O),

(33)

(34)

(35)

and so on, and 5," is the Kronecker delta function. Thus
the optical phase shift function iX, , may be approximat-
ed by the explicit fifth order result

A a(1 ip)—
iX, p(b)= — exp

2~( A —1)R„
A b

A —1g„' (39)

5

iX,p, (b)= g, ((()'"'(b, O)
, n!

5
= g iX„(b)

n=1

(36a)

(36b)

—(A/A —1)(b IRq) 2~f (0)= —A e
A —1 gg„' ik

(40)

b
+exp R „(1—A ')+2(2

(37)

This is, in essence, the commonly used tp approximation.
It and its relativistic generalization are widely used in
analyses of hadron-nucleus scattering. Hence, we will use
the notation 7, interchangeably with 7, ,

with y'"'(b, O}/n 1 given by Eqs. (32)—(35). The higher or-
der terms may be obtained, if necessary, by a straightfor-
ward continuation of our expansion.

The commonly used first-order result (n = 1) is given by

Ao'(11p)
2n[R „(1—A . ')+2a]

6[ (1))2 (2) 3[ (2)]2 (41)

We should bear in mind that this top approximation is an
approximation to iX, (b) =iX, (b) which —in turn is an ap-
proximation to i X,~,(b )

We should caution that the results (32)—(35) hold only
for n (A. For n & A & 2, the first term in Eq. (32) is ab-
sent. For n ) A +1&3, the second term is also absent,
the coefficient of the third term is (A +1)/n! instead of
1/(n —1)!,and the integer coefficients in D4 and D» are
different from those shown in Eqs. (34) and (35). For ex-
ample, if A =3, the fourth-order phase shift function i 74
would be given by

24iX (b; A =3)=—[y "]—4(p"'p' '

X,p(b) —=X)(b) . (38) and the fifth-order phase shift function i75 would be
given by

Often in these analyses the hadron-nucleon scattering
amplitude is evaluated only in the forward direction and
the result is again called the tp approximation. We will
call that approximation the top approximation. It is ob-
tained here by setting a=0, yielding

120iX»(b; A =3 }=—4q&( )(p( ) —4[y( )] (p(

6[ (1)]2 (3)

12~(1)[ (2)]2 1() (2) (3) (42)
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The nth order result for the optical phase shift function
will be denoted by

F'"'(q) =ik I Jo(qb)[1 e—'r ' ']b db (44)

n

X'"'(b)= g X, (b) .
j=1

(43) and

iX, (b)
F ' (q) =ik J Jo(qb)[1 —e ' ]b db .

0

The exact Glauber theory result is we11 known,

The various approximate results for g, , lead to corre-
sponding approximate results for the scattering ampli-
tude,

(45)

F(G)( )
iko(1 ip—) + ( —)" o'(1 ip—)

4~ „=) ~ " 2n(R „+2a)

n —1

exp
Rq+2a R2

4n 43 (46)

The corresponding differential cross sections for the vari-
ous approximations are obtained using

do'

dt (fk)21 q I
(47)

with A q = —t and with the corresponding approximate
scattering amplitude for F(q).

We might point out that the results (32)—(35) we have
obtained with both the special forms of wave function
and the hadron-nucleon scattering amplitude we have
used could have been obtained more directly by Fourier
transforming the exact result F' ' of Eq. (46) and then ex-
panding the logarithm of unity diminished by 2n/ik
times the Fourier transform. We chose not to do it this
way since the method we have presented is more general
and may be used with other kinds of wave functions or
scattering amplitudes.

approximations have often been used even for nuclei as
light as He. To compare the various approximations, we
present in Fig. 1 the differential cross section do /dt for
p- He elastic scattering as a function of —t, using the
various approximations (top, X"~=tp, 7' ', 7' ', g' ', and
X' ') and the exact Glauber theory result. The top ap-
proximation, Eq. (40), is seen to be a poor approximation
for p- He collisions. The first order result (I"', or the tp
approximation), given by Eq. (37), represents a significant
improvement over the top approximation for the forward
peak, but away from the forward peak it decreases too
rapidly. The higher order results represent substantial
improvements over the first order result. The fifth order
(I' ') result is the best of the approximations shown. At
the secondary maxima it is 1% and —10% too low.

In Fig. 2 we show the differential cross sections for p-
' 0 elastic scattering as a function of —t. In the forward

III. COMPARISON OF APPROXIMATE
DIFFERENTIAL CROSS SECTIONS

In this section we calculate the differential cross sec-
tion do /dt for hadron-nucleus elastic scattering by four
target nuclei; He, '60, Ni, and Pb. For definiteness
we use the proton-proton scattering parameters used in
Ref. 6 for 2.1 GeV nucleons, namely cr =42.7 mb,
p= —0.28, and g=0.24142 fm . The parameter 8 in
Eq. (2b) is obtained from

&' =—,'[(r„' &
—(r'&]/(1 —3 ') .

e use R4=1.805 fm ~,6=4.671 fm ~ —9 116 f
and Rzos ——19.759 fm, corresponding to the measured
rms radii (r4&'~ =1.675 fm, (r&6&'~ =2.71 fm,
(r&s &' =3.77 fm, and (rzos &'~ =5.502 fm, with
(r &'~ =0.88 fm. Since our aim is to compare various
approximate theoretical results with the exact Glauber
theory result, the precise values of the input parameters
are of minor significance, provided they are not grossly
different from the generally accepted values.

The optical phase shift method is expected to be most
accurate for 3 &~ I. Nevertheless 7, and the tp and top

p-4He elastic scattering cross section ( 2.1 GeV)

103)i 01 Q2 0.3 04 0.5 06 07 QS 09 1 11 1.2 1.3 14 1.5
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FIG. 1. Theoretical differential cross sections for p- He elas-
tic scattering. The solid curve is the exact Glauber theory re-
sults. The dash-crossed curve is the top approximation de-
scribed in the text. The dashed curve is the result obtained from
the first order phase shift function, g"'. The dotted curve is the
result obtained from g' ' which includes the second order phase
shift function. The dashed-dotted curve is obtained from X' '.
The dashed-double-dotted curve is obtained from 7' '. The
crossed curve is obtained from 7' '.
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p-' 0 elastic scattering cross section ( 2.1 GeV)

104)( 01 0.2 03 04 0.5 06 07 OS 09 1 l1 1.2 1.3 14 1.5

p- Pb elastic scattering cross section ( 2.1 GeV )
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FIG. 2. Same as Fig. 1 for p-' 0 elastic scattering.
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FIG. 4. Same as Fig. 1 for p-' 'Pb elastic scattering.

p- Ni elastic scattering cross section ( 2.1 GeV )
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FIG. 3. Same as Fig. 1 for p-' Ni elastic scattering.

diffraction peak the top approximation is the poorest one,
being as much as a factor of 2 too large. The first order
result differs from the exact Glauber results by only
2 —8% over the entire forward peak. The higher order
results are even better. The relatively simple fifth-order
result differs by 510% as the cross section decreases by
14 orders of magnitude over the range 0( —t (1.8
(GeV/c) . We also note that since the top approximation
generally yields larger cross sections than the P"' or tp
approximation, except near t=O, and since the 7"' ap-
proxirnation is generally too low, numerically the top ap-
proxirnation is better than the tp approximation for

t &0.3 (G—eV/c), although it is not terribly good over
most of the range shown. (An approximation to an ap-
proxirnation sometimes yields better numerical results
than the original approximation. )

In Fig. 3 we show the differential cross sections for p-
Ni elastic scattering, as a function of —t. In the for-

ward diffraction peak the top approximation is the
poorest one (although it is certainly not too bad),
differing from the exact Glauber result by as much as
32% for 0 & t & 0.03 (GeV—/c) . On the other hand, the
first order result differs from the exact Glauber result by
no more than 9% for 0 & t & 0.03 (GeV—/c) . The
higher order results are even better. The fifth order re-
sults differ by & 0.3% as the cross section decreases by 18
orders of magnitude over the range 0(—t & 1.8
(GeV/c) .

In Fig. 4 we show the differential cross sections for p-
Pb elastic scattering, as a function of —t. In the for-

ward diffraction peak the top approximation is the
poorest one, being 4% too low at t=0 On t.he other
hand, the first order result (X"') is only 1% too low at
t=O. The higher order results are even better. The fifth
order results differ by &0 1% as. the cross section de-
creases by some 26 orders of magnitude over the range
0& t & 1.8 (G—eV/c) .

A note of caution should be added to the consideration
of the theoretical validity of the numerical results
presented at the largest values of —t. It is dificult to es-
tablish the angular validity of Glauber theory, especially
when employed in terms of the basic hadron-nucleon
scattering amplitudes rather than in terms of potentials.
Studies have shown the existence of cancellations of
higher order contributions to the basic theory, extending
the range of validity to angles larger (by unknown
amounts) than that arrived at by simple order of magni-
tude estimates. In addition, applications of Glauber
theory have often been successful at angles larger than
would be considered justified. Nevertheless, we should
point out that these simple order of magnitude estimates,
using potential descriptions, would require the scattering
angle to be less than —10' in our calculations; the largest
angle for which we have shown cross sections in the
figures is -24'.

We have seen that for light nuclei, such as He, the top
approximation is poor everywhere, and the tp (or I, ) ap-
proximation is poor everywhere except for the forward
diffraction peak. The higher order approximations im-

prove the results substantially. The accuracy of the tp
(or I"') approximation improves with increasing mass
number. But even for Pb it is a factor of 1.4 too small
at scattering angles for which the cross section has de-
creased by 9 orders of magnitude relative to the cross sec-
tion at 0'. (This occurs at a scattering angle of —10. )

On the other hand, the second order results for Pb are
quite accurate, being only 1% too low when the cross
section has decreased by 9 orders of magnitude. Our cal-
culations indicate that higher order corrections to the op-
tical phase shift function are necessary in order to obtain
a reliable approximation in analyses of cross sections
which decrease by several orders of magnitude.
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