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Mean field effects in hot compressed nuclear matter
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We study effects of the mean field in hot compressed nuclear matter in the context of the Vlasov
Uehling-Uhlenbeck theory. The expansion of a spherical distribution at different temperatures is
studied along with collisions of Nb+Nb and Au+Au at lab energies from 50 to 1050
MeV/nucleon. In both the expansion and the actual heavy ion collision simulation, a transition be-
havior is seen only at the lowest temperature (T&10 MeV) or bombarding energy (E=50
MeV/nucleon), where the attractive part of the mean field is able to bind the expanding matter. At
the lowest energy one thus sees the formation of a central residue, whereas at higher bombarding
energies there is complete disintegration of the centrally colliding nuclei. The spectrum of emitted
nucleons is found to be much hotter than the kinetic energy spectrum of the central emitting region.
The extracted temperature slope parameters are in agreement with recent data.

The idea of a liquid gas phase transition in nuclear
physics has been discussed by many authors, both
theoretically and experimentally. The models used in-
clude hydrodynamic and thermodynamic' applications
of the Fisher drop model, a field theoretic model, and
percolation theory.

Nuclear matter, like a van der Waals gas, consists of
particles interacting with repulsive cores and long range
attractive forces. The nature of the nuclear force as re-
vealed in nucleon-nucleon scattering is rather complex.
To study the many body system one thus makes approxi-
mations such as that of the nuclear Quid. In the Quid dy-
namic model, the pressure-density diagram (T =const) of
infinite nuclear matter exhibits the maximum-minimum
structure typical for matter with long range attraction
and short range repulsion. The nuclear equation of state
exhibits a critical point at p, =0.4 po and T, =18 MeV,
depending on the type of interactions assumed and on the
details of the model. The critical temperature is lower
with a softer equation of state. '

Phase transitions only rigorously occur in this thermo-
dynamic limit with an infinite number of particles. The
finite system may have a critical neighborhood rather
than a critical point. ' For example, the finite system
specific heat has a large peak at T, whereas the infinite
system has a sharp singularity. "The critical temperature
and density are also lowered in the finite size system: the
inclusion of Coulomb and surface effects is expected to
lower the critical temperature. '

Physically, in a nucleus-nucleus collision, a high densi-
ty and temperature interaction zone is formed in central
events. The expansion of this hot matter can lead to
lower densities and possibly a liquid gas phase transition.

The study of fragment yields thus offers the possibility of
studying the nuclear equation of state at higher tempera-
tures and lower densities than the ground state. The usu-
al first order phase transition (a discontinuous change in
one or more of the first derivatives of the relevant ther-
modynamic potentials) requires slow enough processes
for there to be equilibrium across a phase boundary. This
is distinct from the fragmentation induced by ultrarela-
tivistic protons' where the density does not vary much
from the ground state density.

The task of observing and understanding such a phase
transition is not clear cut. For example, if the tempera-
ture of a decidedly macroscopic substance-like water is
lowered, then it may be advantageous for clusters of mol-
ecules to combine into droplets and for the droplets to
combine further. A macroscopic droplet then represents
the liquid phase and the critical point is where the
differences between the two distinct phases vanish.
However, for the nuclear world, this distinction between
microscopic and macroscopic does not exist so clearly.
We do not yet know if it makes sense to speak of a nu-
clear gas and liquid and the formation of droplets for a
relatively small number of quantum mechanical nucleons.
It is thus a challenging experimental task to find unambi-
guous signatures of such a nuclear phase transition.

Experimentally, it was first proposed that in analogy to
the Fisher liquid drop model, there might be a critical
exponent ~ which could be extracted from the fragment
distributions. ' ' Recall the theoretical reason for such
a critical exponent. The probability for the formation of
an A cluster in the Fisher model depends exponentially
on the cluster Helmholtz free energy F„and on the
chemical potential p: '
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P(A)~ A 'e

where ~&1 depends principally on the dimensionality.
The rate of falloff of the fragment distribution changes
with the temperature. At the critical point, the terms in
the exponential cancel leaving only a power law. '

Note that experimentally an apparent exponent ~'—
which does vary with temperature since it must include
the effects of the exponential in Eq. (1)-was extracted
from fitting the fragment distributions (see Panagiotou
et al. in Ref. 14). The early experimental claim' of a
possible nuclear critical. temperature T, =10 MeV is now
cast in doubt by more complete data and problems with
the treatment of the data. '

The mechanism of complex fragment production in
high energy heavy ion collisions is thus of interest: Is a
liquid gas phase transition a possible mechanism? The
questions of equilibration and entropy production are re-
lated to this fragmentation problem. Fluid dynamical

I

models assume an arbitrary freeze out at a time t * where
the density falls to half of the normal density. Then the
light fragment composition is determined from a statisti-
cal model' by assuming that the baryon number and en-

ergy per particle of the interacting nuclear fluid are con-
served. We do not know, however, that the mean free
path of nucleons is short enough for fluid models to be
applicable. In fact, one estimate from the Vlasov-
Uehling-Uhlenbeck approach finds a large mean free
path (2.6 fm} at 85 MeV/nucleon. ' Another class of
model, the intranuclear cascade, ' generally lacks binding
and so is unable to dynamically describe the formation of
fragments.

Finite size effects and binding are essential to this prob-
lem. So we use here the Vlasov-Uehling-Uhlenbeck
(VUU} approach which includes the mean field, Pauli
blocking, and two-body collisions on a microscopic lev-
el. In the VUU model, one approximately solves the
equation

Bt Br Bp
+v VU. —= 1/(2m )J d p z d p ', d p z w [f'if z (1—f)( 1 fz ) —ff—z (1—f i )( 1 fz ))—

&&5 (p+pz —p'i —pz)5(E +Ez Ei Ez—)— (2)

in a Monte Carlo framework. The appropriate transition
probability w =w(p, pz, p'„pz) is the free transition ma-

trix ! (p, pz! r! p', , pz}! because of the strength of the
nuclear interaction (see Cugnon et al. in Ref. 20).

For individual two body scatterings, what is actually
done in the VUU computer program is to allow the parti-
cles to scatter and conserve energy as in the cascade mod-
el. Energy is also conserved for the ensemble average,
but not within each separate ensemble because of the cou-
pling between different ensembles. For a typical integra-
tion time step ht =0.25 fm/c, the final ensemble energy
differs from the initial ensemble energy by 6%.

The test particle also moves along a trajectory
influenced by the gradient of the mean field and the occu-
pation of the final state in a two particle scattering event.
This approach thus goes beyond that of Wong et al. in
Ref. 20 by including the Pauli principle and collisions.
The trajectory functions r, p are in the VUU model deter-
mined by the mean field, the Pauli principle, and two
body collisions. The density function p is evaluated from
the distribution function to generate the self-consistent
potential at each new time step. The interaction U is of
the effective Skyrme-type where the velocity dependence
of the force is ignored. Here we mainly use the hard
equation of state that has been successful in explaining
collective flow and the pion yields. This, then, is a
three-dimensional dynamic model of the nuclear collision
and disassembly.

First we study a system of 40 nucleons initialized at a
density p=1.5 po and with different temperatures T =5,
10, 15, and 20 MeV with a finite temperature Fermi-
Dirac distribution. The zero temperature Fermi gas ini-
tialization of the VUU model is thus changed to a finite

temperature Fermi gas. Recall that for a finite tempera-
ture Fermi gas, the density of particles in momentum

space is

dn/d p =46, V/(2nfi) (e' ."'~ +1), (3)
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FIG. 1. Density around the origin for an expanding initially
compressed (p/po ——1.50) system at T =5, 10, 15, and 20 MeV
initial temperatures in the VUU model.

where E is the total energy and p is the chemical poten-
tial. The initial compression p/po ——1.5 and temperature
T uniquely determine a chemical potential. This momen-

tum distribution is given to the test nucleons and they are
assigned positions in configuration space within a Fermi
sphere.

The system is then allowed to expand according to the



1022 MOLITORIS, BONASERA, WINER, AND STOECKER 37

VUU model. Even though the collision term is zero in

the initial equilibrium situation, the higher initial kinetic
energy (from the finite temperature Fermi-Dirac momen-
tum distribution) and the repulsive mean field drive the
system apart and there are scatterings as the fireball ex-
pands.

Even though the VUU approach includes binding
through the mean field, it is still a nontrivial problem to
extract the distribution of fragments and temperatures.
We therefore study the time evolution of the density in a
central region of radius 3 fm (Fig. 1). Just as in finite
temperature Hartree-Fock (FTHF) calculations, ' the
density rapidly decreases with the temperature. Observe
that for temperatures T) 10 MeV, there is no central
residue formed. However, for T =5 MeV, the mean field
is sti11 able to bind the nucleons together: from t =30
fm/c to 60 fm/e, nuclear matter is attracted back into the
central region (see Fig. 1). But at higher initial tempera-
tures, the larger momentum spread causes rapid expan-
sion and overstress: the density quickly falls to less than

po throughout space. The expansion here would not
necessarily be isentropic, as many Quid dynamic models
assume, since we have neither the collisionless limit of
mean field theory nor are collisions so frequent as to
maintain local thermal equilibrium.

FTHF calculations ' for T & 5 MeV take the inhuence
of excitation energy of the nucleus into account. Howev-
er, FTHF is equilibrium thermodynamics without an ex-
plicit treatment of the evaporation of nucleons. Here we
have applied the VUU method for T ) 5 MeV where the
occupation probabilities are significant for unbound
states. The evaporation of nucleons into the continuum
is thus treated.

At normal conditions, nuclear matter is a Fermi liquid,
being in a metastable superheated state for moderate tem-
peratures. The density of nuclear matter decreases with
T, whereas both the energy per particle and the entropy
naturally increase. ' Unlike in low temperature FTHF
calculations, we see in the VUU approach that the densi-
ty of nuclear matter does not tend to vanish outside of
the nucleus: some of the expanding matter must form
fragments. In fact, for the highest temperatures, there is
no nucleus, all of the nucleons are evaporated.

We have side-stepped the quantum mechanical ques-
tion of fragment formation by looking at the density. In
order to have a rough idea of the fragment mass distribu-
tion, one could look at the density throughout phase
space and assign a mass number to a fragment based
upon that density. This has been done by others. We
prefer not to do this for two reasons: (1) in some regions
of phase space, there will then be a fraction of a frag-
ment, (2) one will then also have to model the quantum
mechanical decay of fragments. Models of the VUU type
are thus presently unable to provide a believable distribu-
tion of final state fragments.

What can be expected for higher initial compressions
and temperatures is that the system will rapidly disassem-
ble. For low excitation energies or temperatures the sys-
tem of nucleons would yield a highly excited compound
nucleus or binary fragmentation. At the highest temper-
atures studied here, we clearly see a transition to a gase-

or =Ed'o /dp'=d'o /p dE dQ (4)

—K/To
at 90' (by assuming that o~/E =e ') are equal to 19
and 35 Me V, respectively. The actual temperature
achieved in a central region will be less than these
values. ' For example, the 19 MeV exponential tail can
be attributed largely to the finite (p ) whereas within a
real fragment ( p ) =0.

One may also obtain a classical temperature from the
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FICi. 2. Central density vs time for Au+ Au at b =3 fm and
El,l,

——50 and 250 MeV/nucleon in the VUU model.

ous phase where the average interparticle distance is
much larger (Fig. 1).

Calculations done by others for the Vlasov equation
and with the full VUU equation are consistent with the
above results. At low temperature, small compressions
simply result in the oscillation of the nucleus and the
slow evaporation of particles. Neutral nuclei break up
even at T =0 for p))po. The conclusions do not change
appreciably when a Coulomb interaction and an isospin
dependent term is added to the mean field. For an iso-
lated compressed nucleus, the effect of the collision term
is to cause particle loss to be somewhat larger at low ini-
tial densities.

The situation of interest is that of an actual heavy ion
collision, which is not spherically symmetric. In Fig. 2
we show the density in a central region of radius 2 fm
from a simulation using the VUU model for Au + Au at
two different energies E»b ——50 and 250 MeV/nucleon,
respectively. Values for the density obtained with a
larger radius of 3 fm differ by less than 10%. Further-
more, the time evolution of this central density is practi-
cally identical for 1 fm &6 &7 fm; for more peripheral
collisions, the maximum density will, of course, fall.
Note in Fig. 2 the same transition behavior of the time
dependence of the central density as in the ideal spherical
case (Fig. 1). At the lower energy (50 MeV/nucleon), the
attractive part of the mean field is still able to bind a cen-
tral residue, whereas at the higher energy none is left.

The slope parameters To extracted from the final state
invariant proton cross sections
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FIG. 3. Temperature from Au+ Au collisions in the VUU
model extracted from the invariant cross section at 90' and from
the kinetic energy of a central region.
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equipartition theorem: the kinetic energy from the x and

y components of the nucleons momentum within a small
central sphere of radius 2 fm may then be associated with
a temperature. This temperature then rises from zero
(since there are no particles in the central region initially)
to a maximum value and then falls again. We find that
the maximum of (p, /2m ) is less than 15% larger than

(p„/2m ) at all the energies studied. Since there is natu-
rally some liow energy (mainly due to p, },we simply as-

sign a T value based upon 2 (p2/2m ).
We show in Fig. 3 the difference between the slope pa-

rameter and this maximum classical temperature for
Au+ Au collisions from E~,b

——50 to 1050 MeV/nucleon
in the VUU model. Note that such a classical tempera-
ture of the equilibrated central region is generally less
than the slope parameter. We thus see in Fig. 3 the im-
portant result that the spectrum of emitted nucleons is
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much hotter than the kinetic energy spectrum of the cen-
tral emitting region (see also Vicentini et al. in Ref. 9 for
a discussion of the problem from the point of view of
molecular dynamics). This classical kinetic energy does
not give the "true" temperature since classically a T =0
Fermi gas has an apparent temperature because of the
nonzero kinetic energy.

The experimental slope paraineters for a variety of sys-
tems range from 25 MeV (at 200 MeV/nucleon) to 90
MeV (at 1050 MeV/nucleon). For the reaction Nb (400
MeV/nucleon) + Nb, we compare in Fig. 4, the experi-
mental data (for high multiplicity) to the results of the
VUU model at b =3 fm impact parameter. Note the ex-
ceptional agreement for the high energy tail. The experi-
mentalists Snd To ——65 MeV whereas the VUU model
predicts a value of 70 MeV. The low kinetic energy part
of the distribution might be better reproduced by averag-
ing over impact parameters. Such extracted To values
represent an upper limit for the temperature.

We have studied in more detail the Nb + Nb system at
various energies from 50 to 1050 MeV/nucleon (Fig. 5).
The time and impact parameter dependence of Nb + Nb
collisions before this late time has been discussed else-
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FIG. 4. Invariant cross section at 90 for Nb (400
MeV/nucleon)+ Nb in the VUU model and experimentally
from the Lawrence Berkeley Laboratory/Gesellschaft fiir
Schwerionenforschung plastic ball group.

FIG. 5. The results of 30 ensembles are superposed in order
to represent the distribution function in the final state in
configuration and momentum space for Nb + Nb collisions at
diFerent energies.
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FIG. 6. Isotropy vs energy for all the nucleons for Nb+ Nb
collisions in the VUU approach.

where. In Fig. 5 we show projections of the Wigner
function into the x -z plane in configuration and momen-
tum space for the final state. In the initial state, the tar-
get and projectile resided within their separate Fermi
spheres. Observe that at the lowest energy, there is some
central residue, just as was seen in the Au + Au case (Fig.
2).

The momentum distribution in the final state is basical-
ly spherical for Nb+ Nb at 50 MeV/nucleon. This can
be seen from using the ratio of transverse to longitudinal
momenta

R =2/srXpi/X (5)

where p~ and
p~~ are the momenta perpendicular to and

parallel to the beam (z) direction. This global quantity is
plotted versus the laboratory energy in Fig. 6.

The equilibration of the heavy remnant (see Fig. 5) is
the result of a complicated interplay between the mean
field, the Uehling-Uhlenbeck collision term, and the Pauli
principle. At the lowest energies, the Uehling-Uhlenbeck
collision term results in strong global equilibration, just
as for the lighter Ar+ Ca system. A substantial de-
grading of the initial momenta occurs due to the collision
term. At the energy E = 1050 MeV/nucleon, R does not
decrease drastically indicating equilibration of the parti-
cipants and some stopping even at this high energy. A

softer equation of state would result in less isotropy, e.g.,
smaller R values, because of the smaller repulsion from
the high density interaction region. The decrease of R
for the participants alone may be less than indicated by
Fig. 6 because we have calculated R globally: the specta-
tors have greater p~~

at the higher energies. With the
Pauli blocking turned o6; the R values would increase
due to the shorter mean free path.

If one analyzes the transverse momentum distribution,
one finds a negative value for the transverse momentum
transfer at 50 MeV/nucleon. Experimentally, light par-
ticles have been found to be emitted preferentially to neg-
ative angles. The attractive part of the nuclear poten-
tial and surface eff'ects are dominant at this low energy.
As the energy is increased, the final state momentum dis-
tribution becomes less isotropic (Figs. 5 and 6). There is
no central residue formed, the target and projectile com-
pletely disintegrate. Also, the matter at projectile rapidi, -

ty receives a positive transverse momentum transfer.
There is thus a change in sign of the momentum transfer
for the Nb + Nb system at around 100 MeV/nucleon.

Thus in heavy ion collisions, what one observes experi-
mentally as the energy increases is the loss of the ability
of the mean field to bind the hot expanding nuclear
matter and a change in the sign of the momentum
transfer from negative to positive. Certainly, not every
heavy ion interaction does result in such transition be-
havior. Peripheral collisions deposit little energy and re-
sult in a disassembly process via evaporation of nucleons
and composites. Peripheral collisions also result in little
momentum transfer from the nuclear equation of state.

In summary, we have studied the expansion of a hot
compressed system both from a Fermi-Dirac distribution
and in simulated heavy ion collisions. The mean field of
the VUU model exhibits a binding property that changes
with bombarding energy. Not only does the transverse
momentum transfer change from negative to positive but
also the nature of the central residue changes. More
theoretical and experimental work is necessary to under-
stand this transition behavior.
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