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The standard, three-body model of deuteron-nucleus elastic scattering and breakup is described
by a Hamiltonian consisting of the neutron and proton binding interaction and their kinetic ener-
gy operators, while the interaction of each nucleon with the (unexcited) target nucleus is represent-
ed by an absorptive, optical-type potential at fixed energy. The standard method for solving this
model involves expanding the three-body wave function in states of the neutron-proton system and
then truncating some or all of the continuum states in the expansion. Within such an approxima-
tion technique, it is not possible to determine the importance of (the neglected) high-lying continu-
um states. Their contribution can in principle be estimated, however, by employing a solution al-
gorithm which avoids the eigenstate expansion technique. This is done in the present paper by
means of the finite element method, applied to the solution in coordinate space. Two different
models for the potentials were investigated: that of Farrell, Vincent, and Austern, in which all
form factors are of Gaussian type; and a second in which Woods-Saxon form factors were used for
the absorptive potentials. The only stable results obtained were for elastic S-matrix elements of
the model of Farrell, Vincent, and Austern. These results were in good agreement with the elastic
S-matirx elements S; as calculated using an L? discretization (“variational”) procedure and via the
continuum, discretized, coupled-channels method, at an incident energy of 22.9 MeV. This agree-
ment confirms that neglect of the high-lying, neutron-proton continuum states is a valid approxi-
mation for determining elastic S-matrix elements. The persistent instability of the numerically
determined, finite-element-method elastic S;’s for the Woods-Saxon case and of the breakup S-
matrix elements is an example of the inappropriate application of the asymptotic boundary condi-
tions, recently discussed by Kuruoglu and Levin.
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I. INTRODUCTION

It is standard practice to describe deuteron-nucleus
elastic scattering and elastic breakup—the processes
A(d,d)A and A(d,np)A—in terms of a three-body model.
Most numerical analyses are based on an effective Ham-
iltonian of the form!

Hy=Kp+K,,+ Vo +Vo+Y,, (1.1)
where Ky is the kinetic energy operator for the relative
motion between the deuteron center of mass and the tar-
get center of mass, K, is the kinetic energy operator for
the relative motion between the neutron and proton, Vy,
is the neutron-proton interaction which binds the deute-
ron, and V, (V) is usually assumed to be the neutron-
nucleus (proton-nucleus) optical potential evaluated at
an energy E, /2, where E4=E —€4—¢€y, With €4(€p) the
deuteron (target nucleus) binding energy.

H,, is an approximation to the three-body Hamiltoni-
an H, which provides an exact description of the two
elastic processes (d,d) and (d,np). In a recent paper® we
have shown that the general form taken by H3 is

Hy=Kp+K,,+Vop+VPHUE —€0—K,)

+VPUE —€0—Ky)+Wyp (1.2)

which is the form originally inferred by Austern and
Richards. Here, V' (V') is the antisymmetrized
complex (“‘optical”’) potential well describing neutron-
nucleus (proton-nucleus) elastic scattering but evaluated
at the shifted “energy” E —€o—K(E —€y—K,), where
€, is the target nucleus ground state energy and K, (K )
is the kinetic energy operator for the spectator proton
(neutron). The quantity W,, is an effective three-body
interaction. Although W, is too complicated to evalu-
ate exactly, we have been able to show that it contains
no terms which, when combined with the V., term in
(1.2), ultimately yields an interaction of the form QV
or V,,Q, where Q is a Pauli-blocking operator.*

To go from (1.2) to (1.1) requires two approximations,
viz., that W, be neglected and that the energy depen-
dence E —eq—K;, i =n or p, be replaced by E /2. The
former approximation will be valid if W, is small; the
latter has been argued, on the one hand, to result from a
“suitable” averaging process® and on the other to be valid
if the neutron and the proton in the (d,np) process are each
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detected at scattering angles that are not too large.’ We
note that the E —eq—K; —E 4 /2 replacement changes the
basic physics associated with the H 4 ,— H; reduction.
That is, H3 not only describes deuteron elastic scattering
and elastic breakup, it also describes those neutron and
proton stripping processes in which the target ground
state is the only parent for the residual nuclear state (see
the Appendix for further comments on this). H,,, on the
other hand, by forcing the energy dependence of V' and
VP to be a positive constant, does not allow for flux go-
ing into stripping channels (i.e., for rearrangement): it is a
model for elastic scattering and breakup only. This fol-
lows from the fact that a complex potential cannot in gen-
eral produce a particle-stable state.

Because of the above limitation, Hy, defines a special
three-body model, viz., one in which the solution can be
obtained without use of the Faddeev equations,® as we
show in the Appendix. Even with this simplification, the
fact that one is still dealing with a three-body problem
means that numerical solutions remain nontrivial to ob-
tain since the Schrodinger equation involves two vector
variables, rather than one (as in a two-body problem).

A variety of approximations have been used previous-
ly to obtain elastic and breakup amplitudes for the H,,
problem. These approximations can be generally charac-
terized as reducing the three-body problem of Eq. (1.1)
to a set of effective, two-body, coupled-channel equa-
tions. This is typically done by first employing the
eigenstates of the internal deuteron Hamiltonian
H,,=K,,+V,, as an expansion basis for the model
wave function ¥,,. These eigenstates obey

ba(r)
Hon | gite) | =

where ¢, is the deuteron bound state with binding ener-
gy €4, while {¢™] is the set of neutron-proton continu-
um states whose energies are €, =#%k2/M, and r is the
neutron-proton relative separation. The relevant expan-

sion is then

U (LR) =dy(DX(R)+ [ dk $iH (X, (R)

(1.3)

€404(r) '

Ekd’)(.(t)(r)

=Py (r,R)+ Q¢ (r,R), (1.4)

where P+ Q =1, P projects onto ¢4, and R is the deute-
ron c.m. coordinate. The scattering coefficients X4 and
Xy yield, respectively, the elastic scattering amplitude
and the breakup amplitude associated with a n-p relative
motion state of momentum k.

Substitution of (1.4) into

(E —€g—Hp Wy =0 , (1.5)

followed by projection onto ¢4 and ¢{*’ yields an infinite

set of coupled equations for the X’s. They are solved in
practice by one or another truncation/discretization ap-
proximation. The simplest approximation is to assume
Oy, =0, which leads to the Watanabe (WAT) or folding
model.” The Watanabe model totally neglects breakup
and therefore underestimates absorption from the elastic

channel. The next simplest method is to assume that only
lower-energy continuum states are important in Eq. (1.5)
and that their energy can be set equal to the deuteron
binding energy. This approximation is known as the adia-
batic (AD) or Johnson-Soper model®® and results in a
one-variable equation in R in which r appears as a param-
eter.

More sophisticated approximation techniques involve
replacing the single equation (1.5) by a set of coupled
equations in R. In one, known as the variational (VAR)
method,!® the deuteron continuum is replaced by a
discrete set of L? basis functions, with the deuteron Ham-
iltonian H,, being diagonalized within this limited set. In
the most sophisticated one, the integral over k in Eq. (1.4)
is given a finite cutoff and then broken up into intervals
(bins), with an “‘average” wave function being computed
for each interval.!""!> This method is referred to as the
continuum discretized coupled channels (CDCC) method.
Convergence of the CDCC method with respect to varia-
tion of the cutoff and the width of the bins has been stud-
ied and obtained.!’* In addition, test calculations have
shown that the CDCC and VAR methods give similar re-
sults,’ and that the AD model agrees with them for in-
cident deuteron energies above about 40 MeV.

Although the above results increase one’s confidence in
the CDCC and VAR approaches, these methods are un-
able to assess the contribution from the neglected set of
high momentum components in the relative n-p motion.
It is thus desirable to test these approaches against a
method which does not employ low momentum approxi-
mations to the integral in Eq. (1.4). We have used such a

method in our numerical study of the H,, model, results
of which are reported in this article. The procedure we
use is known as the finite element method.'*!> In contrast
to the expansions of Eqgs. (1.3) and (1.4), the present appli-
cation of this method involves the reduction of the infinite
volume of the r,R coordinate space to a finite size, fol-
lowed by discretization of this finite domain into sub-
domains or elements, and then finally an expansion of 1,
via interpolation polynomials defined over one or at most
a few elements. The scattering boundary conditions are
imposed at the outer edges of the domain.

We describe this alternate procedure in Sec. II, while
in Sec. III we give a brief description of the boundary
conditions and of our choices for H,,. Pertinent details
of our calculation are discussed in Sec. IV and our re-
sults and their comparison with those from the other
methods, noted in the preceding, are presented in Sec. V.
A stability analysis is given in Sec. VI and a summary is
given in Sec. VII. The paper concludes with an Appen-
dix on the general behavior and description of the Hy,
problem.

II. THE FINITE ELEMENT METHOD

The first successful use of a configuration space ap-
proach to solve nuclear three-body problems was that of
Merkuriev, Gignoux, and Laverne, who employed a finite
difference method.'® More recently, Payne, Friar, Gibson,
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and collaborators'” have carried out position-space analy-
ses of the three-nucleon system using the method of or-
thogonal collocation.!® As noted above, our procedure for
determining numerical solutions to the three-body H),,
problem employs the finite element method (FEM), which
is closely related to the orthogonal collocation method. In
recent years, the finite element method has been applied to
a variety of bound-state and collision systems in chemistry
and physics, selected references to which can be found in
Refs. 18-21.

For simplicity we describe the FEM in one dimension,
as the generalization to higher dimensions is straightfor-
ward. To begin with, the line segment [xq,xy] is divid-
ed into a mesh {xg,x,...,xy}. These x;’s do not have
to be placed at regularly spaced intervals and, indeed, a
higher concentration of mesh points is normally used in
regions where the wave function is expected to vary
most. Once the mesh has been established a local basis
function w; is defined at each mesh point. The function
w; is called local because it is nonzero only in the inter-
val [x;_y, x; 1]. For the present study, we have chosen
the w;’s to be piecewise Hermite cubic polynomials.'’
The wave function is then expanded in terms of the basis
functions as

Y= 3 ciw;(x) (2.1)
j
(For this choice of w;, the derivative of ¢ is also expand-
ed in cubic Hermites.) If the original equation is of the
form (H —E Jy(x)=0, use of the expansion (2.1) leads to
the approximate equation

(H—E)3 cw;(x)=0. 2.2)
J

In the FEM, the scalar product of both sides of Eq. 2.2)
is formed for each basis function, resulting in the matrix
equation

2 [ dx w(x)(H —Ew 2.3)

2 4;¢;=0.

Once the behavior of ¢ at x, and xy has been
specified, standard matrix techniques can be used to
solve Eq. (2.3) for the unknown ¢;’s. If only local opera-
tors occur in (2.3), most of the matrlx elements A4;; are
zero (such as a matrix is called “banded”). This results
in a substantial savings of computer resources. For a
two-dimensional problem, the only modification in the
preceding analysis would be to expand 9 as

Y= 2 c[jwi(x)wj(y) 5 (2.4)
i

the rest of the procedure goes through as before.

The utility of the FEM has been well established as a
practical method for solving partial differential equa-
tions. In addition, the FEM has the virtue of being “nu-
merically exact,” i.e., it has been proved that the FEM
solution converges to the true solution as more and more
points are added to the mesh.!*

III. Hy MODELS AND BOUNDARY CONDITIONS

In order to compare our results with those of other
calculations, we must use the same potentials Viaps Vs
and YV, as employed in these calculations. For Vyp this
means assummg that it carries an angular momentum
projection operator which restricts the n-p relative
motion states to S waves (/ =0) only. This assumption,
plus the short-range nature of V, and V,, allows for a
straightforward determination of the asymptotlc bound-
ary conditions to be imposed on ¥,,(r,R) and we exam-
ine this point first.

The lack of spin and the / =0 behavior of the n-p
motion means that ¥,,(r,R)—1,(r,R). Hence, the
partial wave expansion of ¥, is

u;(r,R)
U(r,R)=3 R

L

YLO(GR yPR ) ’ (3.1)
which yields a set of uncoupled equations in the two sca-

lar variables » and R.
The effective Schrédinger equation that u; obeys is

# % 1 9
S - W X0 5]
ar 4 3R? R?

+Vap(P)+U(r,R)—E |u; (r,R)=0, (3.2

where we have set €,=0 and

U(r,R) —fdQ,[‘\/ |R+1r [ )+V,(|R—1r])].

(3.3)

It is convenient to change from the rectangular coor-
dinates (r,R) to hyperspherical ones (p, ), defined by

(3.4)
(3.5)

r=pcosf ,
R =1psinb .

Thus, u; (r,R)—u,(p,0), and the appropriate boundary
conditions are that u; vanish for p=0 and 6=0 and
m/2, while as p approaches infinity we assume that u,
behaves as

L(p,6) ~ $4(pcosd)[j,(Qpsind/2)
p—

+A.hiT(Qpsing/2)]
+ag(0)e’VEP /172 (3.6)

where Q is the momentum of the incident deuteron, E is
the total energy, j; and hi*) are the Ricatti-Bessel and
outgoing-wave Ricatti-Hankel functions,?? respectively,
and we have now shifted to units in which #=M =1.

The ¢4 ] term on the right-hand side (rhs) of (3.6)
refers to the incident wave and the elastically scattered
one, while the term with p~'/2 is associated with breakup.
It is obvious that the ¢, portion of (3.6) will be non-
negligible only for those 6 very close to 7/2. Hence, at
large p, most of the p,0 domain contains only breakup
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contributions. The combining in (3.6) of the elastic and
the breakup parts of the asymptotic boundary conditions
follows the work of Ref. 16. Note that the elastic scatter-
ing amplitude can be determined from the 4;’s. In prac-
tice, of course, both p and L must be truncated. The accu-
racy of such truncations is discussed below.

The detailed forms of the potentials remain to be
specified. For V', we have used the Gaussian form

Vo (r)=—Voe P, (3.7)

np

with V;=66.99 MeV and f=0.415 fm 2, which yields a
deuteron binding energy of 2.22 MeV.

Two forms for the optical potentials have been used in
our calculations. In one, known as the Farrell-Vincent-
Austern model,'' V,(x,) and V(x,) were chosen to
have the same Gaussian functional form, viz.,

Vi (x)=YV (3.8)

where Uy=(50+5i) MeV and a=0.0625 fm~2. In addi-
tion to ignoring spins and Coulomb effects, and requiring
[ =0 neutron-proton states, this model also assumes that
the target nucleus is infinitely heavy. This is an important
three-body model because it has been studied by all of the
approximation techniques described in Sec. I. It is this
model for which we present results of our FEM calcula-
tions.

In the second choice for V, and %V, the Gaussian
exp(—ar?) of (3.8) was replaced by a Woods-Saxon
form, viz., {1+ exp[(x —x,)/a]}~'. This latter choice
led to major problems, as discussed below, and no results
based on it are given here.

Finally, the incident deuteron energy was chosen as
22.9 MeV,>!'! corresponding to a total energy of 20.68
MeV. The value #*/M =41.47 MeV fm? was used, where
M is the nucleon mass.

p(x): _er —ax? )

IV. DETAILS OF THE FEM CALCULATIONS

Before presenting our results, we first discuss some de-
tails of the FEM calculation. We tested this numerical
procedure by applying it to the case of three identical
particles,”® for which published results exist.!®!"2* The
experience gained in securing agreement with these
latter results was helpful in carrying out the deuteron-
nucleus FEM computations.

Separate procedures were used for specifying the
meshes in the p and 0 variables. The p direction was di-
vided into two regions. In the inner region, including
the origin, the mesh was given by the formula

A —1

4.1
. (4.1)

pPi=

pmax ’

where A, is the meshing parameter which determines the
relative density of mesh points near the origin, N, is a
number of points, and p,, is the point where the first re-
gion ends. In the present calculations, 4,=1.01,
N,=45, and pp,,=20.0 fermis. In the outer region,
beyond 20 fermis, the mesh points were equally spaced at

intervals of 5/6 fermis. Obviously, as the bombarding en-
ergy increases, more and more mesh points must be added
to reproduce the proper oscillatory behavior of the wave
function. The final cutoff value for p was determined by
checking the stability of the results as the cutoff value was
increased. In our calculation, a final cutoff value of 30
fermis was found to be sufficient for the FVA model, mak-
ing a total of 57 points in the p direction.
In the O direction, the mesh was laid out according to
the formula
g7 _m Ae—l
where 4,=1.23 and Ny=16. The form of Eq. (4.2) en-
sures that a higher density of mesh points occurs near
0= /2, where the potential V', is strongest. The mesh-
ing parameter A4, must be sufficiently large to accurately
reproduce the deuteron wave function at large values of

p

(4.2)

To recover the physical scattering amplitudes from the
FEM calculation, either of two procedures can be fol-
lowed, viz., either the asymptotic form of the FEM solu-
tion can be compared with the asymptotic form (3.6), or
the complete FEM solution (over the truncated space) can
be used to calculate the integral form of the appropriate
amplitude. For example, in an r, R representation, the in-
tegral expression for the elastic amplitude is given by

_AM(—i*

AL = ﬁZQ

J.” 7 drdRjL(QR)S4(r)

X U(r,R)ur(r,R) . (4.3)
In our FVA-model calculations of A4;, the integral form
(4.3) gave far more stable results with respect to varia-
tion of the cutoff value of p than did extraction from the
asymptotic form. Therefore, all of the results given in
the following section were obtained from use of Eq. (4.3).
For the FVA-model breakup amplitude, neither compar-
ison with the asymptotic form (3.6) nor a calculation of
the integral form of the breakup amplitude gave stable
results. Hence, there are no breakup results for the
FVA model presented in the next section. In the case of
the Woods-Saxon form-factor calculations, neither the
asymptotic form nor the integral representation led to
any stable results: Both A4; and a;(8) were sufficiently
unstable, even for a p cutoff of 65 fm, that no results for
this case are listed in Sec. V. These various instabilities
are discussed in Sec. VI. However, we emphasize that
the A; for the FVA model were sufficiently stable when
calculated via the matrix element method to be reliable,
and as such, are listed in the next section.

V. NUMERICAL RESULTS

We have calculated the elastic S-matrix elements for the
FVA deuteron-nucleus model described in Sec. III. This
model was originally studied by Farrell, Vincent, and
Austern'! using both the CDCC and WAT methods. The
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FVA model was also investigated by Amakawa, Mori,
Nishioka, Yazaki, and Yamaji’ within the VAR and AD
approximations. We will compare our FEM results with
those obtained in Refs. 9 and 11.

Although each of the above studies used the same
nucleon-nucleus absorptive potentials, there were
differences in the choice of V,,. Farrell, Vincent, and
Austern worked solely in terms of a set of deuteron
eigenstates, and since the continuum states were not or-
thogonal to the bound state, it is not possible to infer a
form for V,. In the VAR calculation, a “soft-core” po-
tential, given by a sum of Gaussians, was employed.9 On
the other hand, a Yamaguchi separable potential®® was
used for the AD calculation.” While a separable poten-
tial is a convenient way to generate a set of deuteron
eigenstates, it would be more difficult to use it in a FEM
calculation, since its nonlocality would destroy the band-
edness property of the matrix A4;; given in Eq. (2.3). As
noted earlier, a simple one-term Gaussian form for V,
was used in the present calculation. It will be shown
below that the FEM deuteron-nucleus elastic scattering
observables are relatively insensitive to the choice of
Vops thereby making a comparison between the different
studies meaningful.

We have chosen to present our results in terms of
phase shifts (8, ) and absorption coefficients (7, ). These
quantities are related to A4; by
nLeZzSL .

1 S;—1
2i T2

The FEM results together with those obtained with the
CDCC, VAR, AD, and WAT methods are given in
Tables I and II. (The numerical values of S; for these
other methods have been estimated from the Argand di-
agrams in Refs. 9 and 11.) As can be seen, the largest
differences occur for L <3, although all of the calcula-
tions are qualitatively similar for these values of L. For
4 <L <8, the FEM, CDCC, and VAR give quite similar
results. This might have been anticipated, since the

A = (5.1)

TABLE 1. Phase shifts §, for elastic deuteron scattering at
22.9 MeV.

L FEM CDCC VAR AD WAT
0 69 74 64 65 50
1 59 68 65 60 45
2 48 55 47 46 34
3 31 53 38 29 16
4 9 12 7 4 —6
5 —19 —19 —17 —27 —36
6 —58 —58 —65 —66 —72
7 66 72 66 68 64
8 11 12 9 14 14
9 —45 —46 —48 —45 —48
10 70 72 72 67 69
11 34 34 35 31 34
12 17 17 18 14 17
13 8 9 9 9 8
14 4 4 4 4 4
15 2 2 2

TABLE II. Inelasticities 17, for elastic deuteron scattering
at 22.9 MeV.

L FEM CDCC VAR AD WAT
0 0.16 0.22 0.21 0.18 0.30
1 0.18 0.22 0.18 0.19 0.31
2 0.21 0.22 0.22 0.21 0.32
3 0.22 0.23 0.22 0.21 0.30
4 0.24 0.23 0.22 0.22 0.33
5 0.23 0.24 0.25 0.22 0.34
6 0.20 0.22 0.18 0.25 0.35
7 0.21 0.19 0.19 0.27 0.36
8 0.33 0.31 0.33 0.35 0.37
9 0.42 0.42 0.42 0.41 0.42

10 0.53 0.57 0.55 0.55 0.61

11 0.74 0.75 0.77 0.77 0.82

12 0.89 0.88 0.89 0.89 0.93

13 0.94 0.94 0.94 0.96 0.97

14 0.97 0.98 0.98 0.98 0.98

15 0.99 0.99 0.99

CDCC and VAR methods are expected® to be the most
accurate techniques of those which have been previously
used to study deuteron-nucleus scattering. Next best in
the 4 <L <8 range are the AD results, followed by the
WAT calculation. Above L =38, all five methods agree
very well with each other. The convergence of our cal-
culations is demonstrated by the fact that the 8, ’s rapid-
ly approach zero at the same time that the 7;’s ap-
proach unity. Thus, as usual, this behavior justifies the
truncation of the calculation with respect to L.

To see how the above-mentioned differences affect the
elastic scattering observables, the contribution to scatter-
ing from all partial waves must be summed. Because of
the factor of 2L + 1 that occurs in the sums for the vari-
ous cross sections, the lowest L values make relatively
small contributions and therefore one would not expect
large differences between the FEM, CDCC, and VAR re-
sults for elastic scattering observables. This is borne out
by Fig. 1, which compares the differential cross sections
obtained with the FEM, CDCC, and VAR methods. As
can be seen, the major differences occur in the minimum
near 60° and at backangles. Differences between either
the CDCC or the VAR calculations and the FEM calcu-
lation are, in general, no greater than those between the
CDCC and VAR calculations themselves. The FEM,
AD, and WAT differential cross sections are shown in
Fig. 2. As expected, the AD result is better than the
WAT result, but not as good as the CDCC and VAR re-
sults. The total, elastic, and absorption cross sections
for all five methods are given in Table III.

The good agreement of the FEM calculations with both
the CCDC and VAR results leads us to conclude that each
of the latter methods is reliable for obtaining elastic cross
sections. Amakawa et al. have already reached this con-
clusion® based on a comparison of the CDCC and VAR
methods. Our confirmation of this conclusion is based on
an independent method that does not rely on an expansion
of the three-body wave function in terms of a global basis
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FIG. 1. Elastic differential cross sections for the FVA model
calculated by three different methods. The solid line is the
FEM calculation, the dotted line is the CDCC result, and the
dashed line is the VAR computation.

set followed by neglect of high momentum components.
Finally, we comment on the sensitivity of our calcula-
tion to the choice of V,,. As stated earlier, although
each of the calculations for which we have made com-
parisons used the same model for YV, and YV, they
differed in their treatment of V,,. The sensitivity of the
FEM solution to V,, was tested by comparing three sets
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FIG. 2. Elastic differential cross sections for the FVA model
calculated by three different methods. The solid line is the
FEM calculation, the dotted line is the AD result, and the
dashed line is the WAT computation.

TABLE III. Comparison of deuteron cross sections in fm? at
E;=22.9MeV.

T el Oab O tot

FEM 246 182 428
CDCC 260 180 440
VAR 257 179 436
AD 246 177 423
WAT 267 163 430

of calculations, each with a different V,,,. In addition to
the Gaussian potential, the soft-core “sum of Gaussians”
potential of Ref. 9, and the Hulthén-type potential con-
sidered by Anders and Linder,!© was used. The phase
shifts and absorption parameters for each potential for
the values O<L <3 are presented in Table IV. Al-
though each potential yields the same deuteron binding
energy, they give different values for §; and 7, at low
L. Above L =3, all the phase shifts agree with those in
the first column of Table I to within 1° (except for an
isolated case where one phase shift differs by 3°), and all
the absorption parameters are within 0.01 of those given
in the first column of Table II. The three potentials, of
course, give slightly different cross sections, but the
differences, shown in Fig. 3, are barely visible on the
scale of the graph presented. Thus the fact that other
V.p’s were used in the various calculations does not alter
the conclusions of this paper, although clearly if one is
making a detailed comparison for low L values, where
the largest discrepancies between different methods
occur, the same V', must be used in each calculation.

VI. INSTABILITIES

Results have been presented only for the FVA elastic
S-matrix elements S;. Neither the FVA a;(60) nor the
S; and a;(0) values for the Woods-Saxon model were
sufficiently stable with respect to changes in p (i.e., varia-
tions <2%) that we could rely on them. And, of the
two methods of determining S; , viz., from the asymptot-
ic behavior of u; and from the integral expression, only
the latter led to stability in the FVA case: use of the
former did not. As it turns out, the instabilities encoun-
tered for the Hy, model at energies above the deuteron
breakup threshold have also been encountered in
configuration-space calculations of neutron-deuteron
scattering and breakup: unpublished computations of
Payne and collaborators®® and of the present authors,
each using a hyperspherical coordinate system, have
failed to yield stable A4; and a;(0) at energies
E> |€q|.?” Thus, there are two questions to be
answered: Why do these instabilities occur, and why are
our matrix element computations of A4; for the FVA
model sufficiently stable to be reliable?

The occurrence of instabilities in position space break-
up calculations using hyperspherical coordinates— of
which the present computations as well as the unpub-
lished ones of Payne and collaborators and of the present
authors are all examples—are almost certainly due to the
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TABLE IV. Comparison of S, and 7, for different V,,, at E4=22.9 MeV.

oL ne
L Gauss Soft core Hulthén Gauss Soft core Hulthén
0 69 67 66 0.16 0.15 0.15
1 59 58 56 0.18 0.19 0.18
2 48 46 45 0.21 0.22 0.21
3 31 30 29 0.22 0.24 0.23

maximum values of p used in these computations not yet
being in the asymptotic region. As a consequence, the
asymptotic form (3.6), though imposed on the numerical
solution, is not a valid representation of u; at the max-
imum p values used in the computations. Since the form
(3.6) is derived®® from the stationary phase approxima-
tion,?’ the failure of the asymptotic form is actually due to
invalid use of the stationary phase approximation. This
latter conclusion is discussed by Kuruoglu and Levin,*®
who give specific examples of the errors that can arise in
this situation, including an example in which an error of
25% at p=8300 fm (E ~20 MeV) was found. The physi-
cal reason underlying the need to use extremely large
values of p before applying (3.6) is*! the long-range rescat-
tering effect due to final state interactions.

The above remarks account for the instabilities, but do
not explain the stability of the FVA values of S; as com-
puted from the elastic matrix element. Our explanation
of this is based on the fact that the optical potentials in
the FVA case, due to their Gaussian form factors, are
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FIG. 3. Elastic differential cross sections for the FVA model
calculated with different neutron-proton potentials V,,. The
solid line is from the one-term Gaussian given in the text, the
dotted line is from a Hulthén potential, and the dashed line is
from a soft-core sum of Gaussians. Each of these V,,’s yields
the same (S-wave) deuteron binding energy.

very short ranged, much more so than are the Woods-
Saxon form factors in the other optical potential case.
Now in the elastic matrix element, the integral contains
the product

Ga(P[Vo( |[R+1r] )+ Vo (|R—1r|)].

Since ¢4(r) is the bound state solution to a short-ranged
Gaussian potential, a nonzero integrand occurs only for
small ». On the other hand, V, (V) also being short
ranged means that in the integrand, the range of R can-
not be very large. Hence, in the matrix element, ¥(r,R)
is not needed for large values of r or R, so that its
asymptotic form is not a crucial component, as long as
the overall normalization of ¥ is reasonably well deter-
mined. This is, of course, an old argument. It is
significant in the present context because the uncertain-
ties in the asymptotic form of u; for the FVA case are
smaller than for the Woods-Saxon case. As a result of
the shorter range of the optical potentials in the former
compared to the latter case, the asymptotic uncertainty
plays a smaller role in the former case, leading to uncer-
tainties in the matrix element form of S; of the order of
a few percent for the FVA model compared to about
10% for the Woods-Saxon form of S;, even when calcu-
lated via the integral form.

VII. SUMMARY

In this paper we have presented results of a numerical
study of the three-body deuteron-nucleus model using a
method which does not, a priori, ignore large values of
the neutron-proton relative momentum. Whereas previ-
ous methods of solution involve reducing the model to
an effective one-body, coupled-channels (CC) problem,
we have solved the full three-body problem using the
finite element method (FEM). Although we have been
unable to obtain stable results for breakup amplitudes
(for reasons described in the foregoing), we have calcu-
lated elastic scattering S-matrix elements for the
Farrell-Vincent-Austern model and have compared the
results with those obtained by previously used tech-
niques. For the lower partial waves, the FEM calcula-
tion gave qualitatively different results than the other ap-
proximation methods. Above L =3, however, the FEM,
CDCC, and the L2-discretization (or VAR) methods all
agreed well with each other, and yielded very similar
differential cross sections as well. Thus, we have provid-
ed an independent test of the accuracy of the standard
methods for calculating deuteron-nucleus elastic scatter-
ing parameters.



890 R. KOZACK ANDF. S. LEVIN 36

ACKNOWLEDGMENTS

This work has been supported in part by the U.S.
Department of Energy under Contract DE-ACO02-
76ER03235 and in part by the U.S. National Science
Foundation under NSF Grant No. PHY-8306268. We
thank Brown University for a grant of time on its com-
puting facilities.

APPENDIX

The expansion of ¥, via (1.4) is analogous to defining
¥y as the solution of a single Lippmann-Schwinger (LS)
equation. This has led to occasional comments that such
an expansion cannot be valid, since a triad of LS equa-
tions, and not merely one, is required to define a unique
solution for three-body problems.** While this latter point
is valid in general, there is one circumstance when a triad
is not needed and, as we show below, the present model is
an instance of this latter situation.

In addition to the inhomogeneous LS equation, homo-
geneous ones are needed (to specify a unique solution)
whenever rearrangements can occur. In the typical
three-particle problem, two rearrangement channels exist
and so a total of three LS equations are required.>*> We
now recall a few theoretical aspects of this situation.**
Let a, B, and y denote the three two-body channels in
this case, and let ®, g, Pg 5, and P, ¢ be “plane wave”
states of total energy E in channels a, 3, and y. These
states are given as a product of a bound state for the
pair forming the channel times a plane wave for the
third or spectator particle. The full scattering state that
develops from any one of them, say from ®, g, is denot-
ed Wi, It is given by

Y =0,2,
where Q is the relevant Mgller operator

Applymg the adjoint operator Q to both sides of (A1)
yields

QLWEZTEQ :(ba,E » (A2)

which, as discussed in Ref. 34, is equivalent to the usual,
inhomogeneous LS equation for W."%. However (A2)
does not uniquely determine \Il‘“ because of the relation
ol b2 =0, B#a. That is, \I/a !+ C Wi also satisfies
A2) ‘Where C, is an arbitrary constant and \l’”’ obeys
(Al) with B replacing a. In the typical SItuation
? P +C Wi will also satisfy (A2) because of
W, =0 (where C, is a second constant and
\I" +E—Q +®, £). To avoid these admixtures, ¥,') must
obey a triad of one inhomogeneous and two homogene-
ous LS equations.>*
In contrast to this, the H,, problem is an example of
the atypical case in which no rearrangements can occur,
€., the allowed processes for H,, are elastic scattering
and elastic breakup but not (d,p) or (d,n) stripping.
Stripping cannot occur because the absorptive optical
potentials V,(Ey/2) and YV (E;/2) cannot support

(A1)

particle-stable bound states. Consequently, for the
“stripping channels” 8 and ¥ of this model, there are no
plane wave states ®g p or ®, g, and therefore the corre-
sponding full scattering states W' and \Ilg,“ are zero.
Thus, there can be no admixtures to the \Pa £ defined by
a single, inhomogeneous LS equation describing elastic
scattering and elastic breakup: it uniquely specifies a
solution.

Even though a single LS equation defines a unique
solution, this equation cannot be straightforwardly
solved to yield that solution. The reason is that the ker-
nel of the equation is not compact. The same is true
when one works with the triad of LS equations: neither
the single LS equation in this case nor the triad in the
case of rearrangements allow numerical solutions to be
obtained using the standard methods as employed in nu-
clear physics. If one wanted to use such methods in an
integral equation approach, then a set like the Faddeev
equations are required. A noncompact integral equation
method such as that of the Iowa—Los Alamos Colla-
boration might be successful here,*® although it has not
yet been tested above the breakup threshold. However,
one can use the single LS equation in the present case
and the triad in the more general case to specify the
asymptotic boundary conditions which must be imposed
on the solution to the relevant Schrddinger equation.
The physical statement of the boundary conditions for
the H), model is that only elastic scattering and breakup
occur in the asymptotic region. A mathematical state-
ment, combining the two physical processes, is given as
Eq. (3.6). Imposing this form will yield a unique solu-
tion to the Schrddinger equation in the present case.
That it failed to provide a complete set of stable FEM
amplitudes for both models studied here has been ex-
plained above.

Notice that our argument relies crucially on the fact
that the optical potentials are being evaluated at E4/2—
or at least on their not being energy dependent. On the
other hand, with an energy dependence such as in Eq.
(1.2), the model changes drastically. For example, we can
have stripping at spectator-nucleon kinetic energies corre-
sponding to capture of the stripped nucleon into those sin-
gle particle states associated with the ground state of the
target. At such energies, ViP(E —e,—K ), for example,
becomes VPPYE() ), with E‘S’p <0, and accordmg to
Feshbach’s orlgmal analysis,’® VP — |E{) | ) becomes
real and thus capable of supporting the bound states cor-
responding to stripping. With the energy dependence of
(1.2) thus retained, H; defines an energy-dependent,
three-body model incorporating rearrangement and neces-
sitating a Faddeev-like description. Because such a model
is very nontrivial to analyze, we did not emphasize this as-
pect of H3 in our earlier work. We believe that there are
simpler three-body models for treating the coupled set of
elastic processes (d,d), (d,p), (d,n), and (d,np), and will re-
port on the results of our investigations of this problem in
a future publication.
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