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Spurious components in the ideal boson states
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The nature of the appearance of the spurious states in the ideal boson basis states is investigated.
It is shown that the occurrence of the spurious states can be mainly attributed to the orthogonality of
the boson basis states. It is further observed that the matrix element of the pairing interaction be-

tween the ideal boson basis is identical to the corresponding fermion matrix element.

In recent years, the Dyson boson mapping (DBM) has
been extensively employed' for mapping the bifermion
operators onto a physical subspace of the boson space.
The underlying aim of these studies is to relate the in-
teracting boson model (IBM) parameters to the nuclear
shell model. In these investigations the major difficulty
one encounters is in the mapping of the fermion basis
states. These mapped states, referred to as the physical
boson basis (PBB) states, have a very complex struc-
ture, ' thereby nullifying any advantage in working in the
boson representation. The various truncation schemes to
these PBB states are still far from satisfactory. An alter-
native approach is to employ the ordinary boson basis
(BB) states. Here one encounters the problem of the
spurious (unphysical) states which appear due to the
neglect of the Pauli principle. In the present work the
origin of these spurious states is investigated.

It is shown that the physical Hamiltonian does not con-
nect the physical and unphysical states. This is
exemplified by considering the pairing interaction between
the identical nucleons. In the following we shall first
brieAy review the DBM.

The Dyson boson mapping is represented as

CaCp~b ap=bap g barb psbys
y5

CpC ~b p=—b p,
C~Cr ~ X b rbpr

r

with

(la)

(lb)

(lc)

b p= —bp

b p=(b p)

and a (=nljm) labels the single particle shell model
states. The operators C (Cp) are the single particle fer-
mion creation (annihilation) operators. The operators b p
(bys) are the boson creation (annihilation) operators satis-
fying the following commutation relations:

[b-p b yp] =~ y&ps &py~ s—
(3)

[b p, bys]=[b p, bys]=0 .

The DBM Eqs. (la) —(lc) in terms of the angular momen-
tum operators is

Ja Jc

AJM(ab)~b JM(ab)=bJM(ab) gJ~ J2J3J—4 .jb j~ Jq ( —1) ' '
[[b~, (ac)bz (bd)]J bJ, (cd)I JM

Jl J2J3 J J JJ4cd 3 4

A JM (ab) ~ bJM (ab ) = bJM (ab)—
J)

(C, Ct, )JM~ —g J)Jp( —1) ' ' ' 'J J . '[bJ (ac)tgbJ (bc)]JM,
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The commutation relations between the coupled bosons in Eqs. (4a) —(4c) are

[bJM(ab) bJ'M'(a b )]—fiJJ'b '[b 'obb' ( 1) 6 b'6b ']

[bJM(ab), bqM (a'b')] = [bq~(ab), bJ M (a'b')] =0 .
(6)

It is to be noted that the DBM is (a) finite and (b) nonuni-
tary. Due to (a) any fermion operator will have a finite
number of terms in the boson space. For the evaluation
of various matrix elements, one needs an appropriate set
of basis states. Recently, the use of ideal boson basis
states

l
i), instead of the PBB states

l
p), has been advo-

cated in favor of their constructional simplicity.
The relation between the two basis sets can be uniquely

expressed as

li)= lu)+ p).
The presence of the unphysical states

l
u) in i) drastical-

ly enlarges the space of diagGnalization and also ensures
the spurious components in the calculated eigenstates.

The above points can be exemplified by considering a
simple case of four particles in a single j=—,'shell. The
fermion basis states for total angular momentum J =0
subspace are

(0
l

[bj'(77)bJ(77)]p[bJ'(77)bJ'(77))o
l
0)=0

for J,J'=0, 2, 4, 6 and J&J'. From the overlap it is
clear that the states [Eq. (10)] are linearly independent.
Therefore, in the boson space for the present case, one has
to diagonalize a 4)&4 matrix yielding four eigenvalues
(eigenvectors). As mentioned before, in the fermion space
there is only one physical eigenstate, implying that out of
the possible four states three are spurious. Thus, the oc-
currence of the spurious states can be attributed to the
orthogonality of the boson basis states.

The spurious states can be identified by making use of
the fact that the eigenvalue equation can be uniquely
separated into two disjoint parts —one corresponding to
the physical subspace and the other to the unphysical
subspace. The spurious states in the calculated spectra
are then separated from the physical subspace by requir-
ing the invariance of the physical subspace under the ac-
tion of the mapped operator Oz, i.e.,

[ A o(77) A o(77)]oo[ A z(77) A z(77)]oo

[ A 4(77) A g(77)]op[ A b(77) A tb(77)]pp .
(8) (u

l
Ozi lp)=0 . (12)

The single particle state j=—,
' is denoted by 7. The over-

lap integral between any two of the above basis states is

(0
l [ A J(77)Ag(77)]o[ AJ (77) AJ (77))p

l
0)&0, (9)

with J,J'=0, 2, 4, and 6. Therefore the basis states [Eq.
(8)] are linearly dependent. The physical state is

l
(

—', ) U =OJ=0), which is, in fact, a linear combination
of the above basis states [Eq. (8)], the expansion
coefficients being the two particle coefficients of fractional
parentage. Therefore, in the J =0 subspace there is only
one eigenvalue (eigenstate).

The ideal boson basis states are obtained by replacing
the bifermion operators in the fermion basis by the corre-
sponding boson operators. These ideal boson states for
Eq. (8) are

In the following, these arguments are exemplified by con-
sidering the case of the pairing interaction between the
identical nucleons.

The pairing interaction between the identical nucleons
is written as

Hp = g e, N, —G/2 g V'r, rb A oo(aa) A pp(bb),
ab

where
(2j. +1)

N, =gC C; r, =
m

(13)

and e, denotes the single particle energies, and G, possess-
ing the dimensions of energy, is quoted as the strength of
the pairing interaction. We restrict ourselves here to only
two levels. For this case the algebraic expressions for the
matrix are available. The fermion basis states are

[bot(77)bot(77))oo [bz(77)bz(77)]oo

[b t~(77)b ~t(77))oo~ [b b(77)b b(77)]oo
(10) lm, n —m) =M '(Aoo(aa)) (A op(bb))"

l
0) . (14)

The overlap integral between any of the two basis states
[Eq. (10)] is

Using the mapping [Eqs. (4a)—(4c)], we find that the pair-
ing Hamiltonian Eq. (13) is given in the boson space by

jc
Hs ——g e, bop(aa)bop(bb) —G g Qr, rb boo(aa) — g J&JzJ3j, '( —1) '

a ab Jl J~J3 2

cd

&& [bJ (ac)bJ, (ad) J, bq, (cd)]ooboo(bb)
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The ideal boson basis states corresponding to states Eq.
(14) are

(m', n —m' =B '(0
~

(boo(aa)) (boo(bb))" (17)

~

m, n —m)=B '(bazoo(aa)) (boo(bb))"
~

0), (16)

where

B 1

&m!(n —m)!

and
~

0) is the boson vacuum defined through

bJM(ab)
~

0)=0 .

The bra states corresponding to Eq. (16) are

The matrix of the first term of Eq. (15) between the states
[Eqs. (16) and (17)] is

6 (n —2m)(eb —e, ),
which is identical to that given in Ref. 8. The matrix ele-
ment of the second term has three components. These are

—G[m(r, +1—m)+(n —m)(rb+1 —n +m)]5

denoted I,

—G[[m(n —m +1)r,rq]'i —(n —m)[m(n —m +1)]' V'r, /rb Ifi

denoted II,
—GI[(m +1)(n —m)r, rq] —m [(m +1)(n —m)]' Qr, /rb Ifi ~ +1,

denoted III. The diagonal term (I) is exactly the same as
that given in Ref. 8. Due to the nonunitary character of
the DBM, the matrix elements H &H ~ for m&m'.
Using the hermitization prescription

1/2Hmm'=0m'm (Hmm'Hm'm )

it is observed that the oF diagonal terms (II) and (III) lead
to similar results given in Ref. 8. Therefore, it turns out
that the matrix element of the pairing interaction between
the ideal boson basis states is equivalent to the corre-
sponding fermion matrix element.

From the above analysis it follows that the physical
subspace does not mix with the unphysical one. Thus,
one need not worry about the spurious states while carry-
ing out the calculations in the ideal boson basis states.
The spurious states in the calculated spectra can be
identified by making use of Eq. (12).
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