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Algebraic solution of a general quadrupole Hamiltonian in the interacting boson model
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A method based on an eigenmode condition and projection techniques is presented for solution of
a general quadrupole Hamiltonian in the interacting boson model. It is shown that the intrinsic
states obtained from the eigenmode condition provide a zeroth order solution to the diagonalization
of the corresponding quadrupole Hamiltonian. The method is in eA'ect a 1/N expansion, where N is
the boson number, ideally suited for the deformed nuclei for which N=12 —16. Because of certain
cancellations with the normalization, zeroth order solutions of the intrinsic states are sufticient to ob-
tain matrix elements to order 0(1/N ).

In recent years, the interacting boson model (IBM) has
been almost a standard tool in phenomenological analysis
of the low-lying nuclear data. Besides its simplicity,
another appealing feature of the model has been the three
limiting symmetries each of which can be associated with
a well defined nuclear shape. ' Although the dynamical
symmetries are not strictly realized in nature, they allow
analytical solution of the model problem which may be a
convenient starting point. As long as deviations from the
symmetry are small, these can be treated in perturbation
theory with the benefit that analytical solutions often pro-
vide insight to the problem at hand which are hard to
come by in a numerical solution.

Extensive numerical calculations of the deformed nu-
clei, which correspond closest to the SU(3) limit of the
IBM, indicate that this limit is far from being realized.
Phenomenological values of the parameter g in the quad-
rupole operator

some light on this process.
In the following, we will indicate an algebraic solution

of the Hamiltonian

H= —tcQ Q tt'L. L, — (2)

q02

which has been successfully applied to the deformed re-
gion in the sd IBM numerically. ' Since the L.L term is
always diagonal, it has no effect on the wave functions
and will be dropped henceforth. It can be easily restored
by adding tc'L (L +—1) to the final energy expressions.

We introduce the boson creation (bi ) and annihilation
(bt ) operators, where 1=0,2, 4, . . . , p correspond to
s, d, g, . . . bosons, and m is the projection on an appropri-
ate axis. The quadrupole operator, Eq. (1), can be gen-
eralized to arbitrary kinds of bosons by defining a param-
eter matrix q of order 1+p/2

Q„=(s d+d s)„" +X(d d)„', q20 q22 q24

0 q42 q44 q46 0 (3)

range from —0.4 to —0.6 to be compared with the
SU(3) value of —1.32. Thus a perturbation treatment of
the deformed nuclei based on the SU(3) limit is not practi-
cal, and one has to go beyond the group theoretical tech-
niques for algebraic solution.

Another complication for the deformed nuclei arises
from the need to include the g boson in addition to the
usual s and d bosons. Microscopic calculations show that
there are non-negligible admixtures of J =4 (6) nucleon
pairs in the low-lying collective states. Thus mapping of
fermion pairs to bosons requires a certain amount of g bo-
son which is the image of the 6 pair. At the phenome-
nological level, inclusion of g boson is found to be essen-
tial for a detailed description of a complete set of spectra.
Empirical g-factor variations in the ground band is anoth-
er phenomenon which is not explained in the sd IBM and
requires inclusion of the g boson.

Because the sdg IBM Hamiltonian contains many more
parameters (32 compared to 9 of the sd model), selection
and determination of a simple set of parameters through
numerical analysis is an arduous task. Algebraic solu-
tions of relevant model problems would certainly shed

The matrix q is symmetric to ensure the hermiticity of the
quadrupole operator which is now written as

Qt = Xqit~bi b&~v
~ .

j, l

(4)

to Eqs. (4) and (5) leads to the eigenvalue equation

g ( —) (jml —m
~
20)qitxi =X x,

which determines all the intrinsic boson operators in

In the usual notation, qo2=1, qq2 ——X in the (sd) case and
qo2 = 1, q22 =P, q24=y, q44 =6 in the (sdq) case.

Intrinsic boson operators are given by

bm gxtmb(m g(xtm) =xm
I I

where m =0, 1, . . . , p.
Applying the eigenmode condition

[Qo, b']=~ b
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terms of the quadrupole parameters qj~. As an example,
in the sdg IBM, Eq. (7) has order 3 for m =0, order 2 for
m = 1,2 and order 1 for m =3,4. Thus there are three
solutions for m =0 denoted by bo, bo aild bo (with ei-
genvalues ko&A.O& A,o') which correspond to the ground,
P- and f3'-band intrinsic operators.

Next we show that for the low-lying states, which are
dominated by the ground-band intrinsic operator, bo, the
leading order solutions obtained by varying the Hamil-
tonian, Eq. (2), are the same as Eq. (7). First, we treat the
simple case of m =0 (from now on we drop the subscript
if m =0, e.g., bo =b), —and consider a trial intrinsic state
with N bosons. Then

&
—

~

b "g Q(b'8
~

—
&

(
~

bx(bt)N
~

)

Using standard boson commutation techniques, we obtain

I

2

(Q Q)~=N(N —1) +N
X'X

where
= g ( —) (Jml —m

~
20)q~~x~ xi

jl

5C =g (q, ixI )

jf +

(9)

(10)

Variation of the leading term in Eq. (9) is equivalent to
varying Ao subject to the condition x.x= 1 which (upon
introducing the Lagrange multiplier A, ) leads to Eq. (7)
with m =0.

Evaluation of (Q.Q) for a general intrinsic state

tN, N, , . . . , N ) =(b ) (bt) ' . (bp~)
i

—), (11)

is somewhat more involved due to the presence of cross
terms. The final result is

&g.g &, ,
= g N. '" +(N —1)

m m Xm Xm Xm

2

Am Am'

Xm Xm

Ujmm ' UImm '

+ g xgmxlm
m 'Xm Xm 'Xm

(12)

where

U( ——g (imp' m'
~

2m —m')—qi'x' (13)

gN A ~ g( —) (jml —m
~
20)q~ixi

m'

N U) ~ g Ui~~xi~ =&~x~~ .
m'~m

Invoking the dominance of bo (i.e., No »N, m&0), it is
easy to see that Eq. (14) reduces to Eq. (7) for m =0 and
m & 2. For m = 1,2, the second term in Eq. (14) does not
vanish, however comparison of the solutions in the sdg
model shows that the two equations are equivalent in the
SU(3) limit. Away from the SU(3) limit, especially for
m =2 (which is more important because b 2 generates the
y band) Eq. (7) remains an excellent approximation to Eq.
(14).

Until now, we have discussed properties of intrinsic
state solutions to Eq. (2). To each boson condensate, or

Variation of the leading terms in Eq. (12), subject to the
conditions, x -x =1, m =0, 1, . . . ,p gives

excitations thereof, a band of states can be obtained by an-
gular momentum projection. En variation before projec-
tion (VBP), the intrinsic state is fixed for all states in the
band. In contrast, in variation after projection (VAP), the
intrinsic state is varied independently for each I., and
hence can produce stretching effects. In general, VAP in-
corporates band-mixing e6'ects and is preferable to VBP
when technically feasible.

In our model, we finally show that VAP changes only
the next to leading order term in the VBP calculation,
hence the two methods are equivalent to the leading or-
der. The intrinsic state solutions are therefore stable,
changes induced by rotation being of order I/N. Again,
we erst treat the simple case of m =0

(
i

bing.

gPL (bt)N
i )

&~,1. =
( —ib P (b)

i

—)
(15)

where

P~~K = f D~~~(fI)R(Q)dQ .
8

is the projection operator. Writing the rotation operator
explicitly, Eq. (15) becomes

f dPsinPdoo(P)( —
~

b Q-Qe '~ y(b )
~

—)
&Q Q&~,.=

f dPsinPdoo(P)( —
~

b e '~ y(b )
~

—)
(16)

where d &p& are the reduced rotation matrices. Defining the rotated intrinsic operator as

b,' =e -'~'yS'e'~'y (17)
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=N! g xi d oo(P) =N![Z (P)]
l

the matrix elements in Eq .(16) can be calculated as
N

~

bx —i' (b. )x
~

ab,
ab' (18)

&
—

~

b+Q Qe '~ y(b )
~

—
& =NN![Z(p)] N —1

4

2 2

aa
' ~ ab~ a~ o o )

a Z()a a

=NN![Z(p)] (N —1) g g&jOlp
~
2p&q, lx, x&d„'o +Z(p) g (q,lx~) doo

P Jl Jl

K
=5NN![Z(p)] (N —1) g &jOj'0

~

KO&&101'0
l

KO&
'

1 1 2 qrq&~''XJx
Kll'
JJ

+Z(P) g (q~(xl ) doo
2l +1

(19)

where in the last step, we have used angular momentum algebra to combine the d matrices. In order to evaluate the /3

integrals, we approximate [Z(/3)] with a Gaussian, which is valid for large N

N N —/3 /'I- 2
[Z(P)] =(x.x) e ~ ", I =

Ny

with

y = —,
' g l(l +1)xI'/x. x .

l

Extending the p integration to oo, and using the integral formula

p2f"dpsinpPI (cosp)e ~ =—1 — (X+ —,')+ (X +2k+ —,', )+
p

(20)

(21)

where X =L (L + 1), we obtain after some algebra

2

&Q Q&, =N Ap
+N

X X

Ap
2

1 AoBo Co
2+ +-

2y (xx) XX
Ap

X X

2
A pBp+ + e ~ ~

(x.x)
(22)

Here Ao and Co are defined as in Eq. (10) and Bo as

Bo——g (21 +21 —3)&j010
~
20&q&Ix/x~ . (23)

jl
Since VAP is equivalent to the Schrodinger equation in
the full boson space (and this equivalence is carried to the
leading order in the case of a special subspace) this com-
pletes the proof that the eigenmode condition provides a
zeroth order solution to the m =0 intrinsic states.

Before proceeding further, we have a few comments on
Eq. (22). First, it correctly reproduces the energy eigen-
values in the SU(3) limit. (Corrections coming from the
variation of Eq. (22) vanish in that limit. ) Secondly, the
general expression for the expansion has the form

n

& Q.Q &~,L =N' (24)
n, m =p

where Cpp, Cp~, and C~p correspond to the three terms in
Eq. (22). The coefficient C2o/N determines the deviation
from the L (L + 1) rule, which is usually obtained
through band-mixing calculations in the geometrical mod-
el. Here, Eq. (24) automatically includes mixing of all the
K =0 bands [subsequent to our choice of K =0 subspace
in Eq. (15)], and no further parameter is needed other

X
n, m =O

n
ynm

Nm
(25)

where y„are the coeScients obtained from the varia-
tional equations. Equation (25) shows that, in general,
the structure of the intrinsic state depends on L, i.e., the
boson system stretches in response to the rotation. [The
(sd) case and the SU(3) limit are exceptions where no
stretching occurs .]

Rather than going into the general case, which is tech-
nically complicated, we will repeat the above calculation
for the /3 band which should also illustrate the general
case. Denoting the intrinsic operator for the /3 band by
b'", the expectation value of Q.Q is given by

&
—

~

b 'b'Q. QP (b )
'b'

&P, l. =
~

b" 'b'PL (b t) —'b'"
~

——
&

(26)

Following steps similar to Eqs. (16)—(22), we obtain

than those of the quadrupole operator. Finally, variation
of Eq. (24), with respect to xi, leads to solutions of a simi-
lar form
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(Q-Q) p, l. =N Ap

X X

2
Ap+X
X'X

2
Ap Ap+2 XXXX

1

2g

Ao&o Co+ +(x.x) x x 3'

2
p

'

1 ApBp
+ + 0 a 4

4g (x x)

(27)

~P) = (b')~-'b'

+(b ) pa blab +
~

—),
m~p

(28)

suggests corrections to Eq. (27) at the O(l/N) level due
intrinsic operators. However, evaluation of

(Q Q) for the above state gives to leading order for each
term

(Q.Q &p, L. =
N Ao+NAoga

(x x) I+—$a 2
m

m

(29)

where primes denote the P band and A o ——A o(x'). Equa-
tion (27) shows that the leading term for the P band is left
intact after projection. Similar calculations can be repeat-
ed for the other intrinsic states.

In the SU(3) limit, Eq. (27) reproduces the energy ei-
gen values obtained from the Casimir operator. This
might come as a surprise at first thought because the form
of the intrinsic state

which shows that, due to cancellation with the norm»iza-
tion, such corrections only enter at the 0 ( I /N)

Another consequence of the dominance of the ground-
band intrinsic operator is that the moment of inertia of
diFerent bands remain the same to the leading order [see
the C~o terms in Eqs. (22) and (27)]. In general, the C»
terms will be di6'erent and the moment of inertia of neigh-
boring bands mill di6'er at the 1/X level.

The present method is very economical in the sense
that it is purpose specific, i.e., in order to calculate a nu-

clear property in a given band, one need not diagonalize
the Hamiltonian in the full space. On the other hand it is
general enough to a11om study of the influence of higher
bosons (g, i, . . . ). The method enables prediction of nu-

clear properties in terms of the quadrupole parameters g&I

[three in the (sdg) case]. It has already been used to indi-

cate g-boson and stretching eft'ects in the rare earth re-

gion after proof that a standard VBP approach could not
suSce. In principle, it would be possible to correlate
algebraically most measurables involving ground f3 and y
bands in terms of the quadrupole matrix, as a guide to
trend analysis or to assist more accurate (but tedious) nu-
merical calculations. Application of the method to calcu-
lation of other properties (e.g. , electromagnetic transition
rates) will be given in a future publication.
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