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The three models for the structure of S*, where it is considered as a member of the qq L = 1 nonet,
or as a member of the lightest q q nonet or as a KK molecule, can be distinguished by studying the

dependence of the production cross sections at high energies of the inclusive reaction
~ + A~S* + X and of the exclusive reaction ~ + A~S* + N+ (A —1). The energy dependence of
the inclusive cross section can provide an independent test for the KK molecular model where we
find a depletion in the cross section at energies corresponding to the Y* resonances of the K-nucleon
system.

I. INTRODUCTION
In the conventional quark models the 0+ mesons

S*(975) and 5(980) are assigned to the Po qq states.
However, such an assignment fails to explain the widths
and decay modes of these mesons. On the basis of the
standard quark model, the large branching ratio (22%) of
S* into KK is completely unexplainable given that it lies
below the KK threshold, as it is the small widths of these
resonances. The degeneracy of the S' and 6 with the KK
threshold seems totally accidental in this picture. These
peculiarities can be naturally explained by considering
these mesons as q-q singlets. ' In the MIT bag model
such a state is expected to have a size similar to the ordi-
nary qq mesons. On the other hand, nonrelativistic poten-
tial quark models support the existence of a deuteron-like
two meson states. Within these quark models there is evi-
dence that such a molecular state occurs only for the KK
system which makes the S* and 6 of special interest.

In this work we show how nuclear production experi-
ments can be used in order to distinguish among these
three models for S* and 6, as already was suggested by
Lenz. Before we describe our method we would like to
point out that there are alternative approaches in order to
investigate the structure of these mesons. We mention
here that the rate for photon decay of S* and 6 seems to
support the molecular picture for S' and 6, but because
of the large uncertainties involved in the estimation of the
decay rate, the qq alternative cannot be completely ruled
out. Indications for molecular structure are also obtained
by looking at such decay modes as the t(1140)~KKtr. '

In contrast to the other approaches, we nowhere re-
quire a detailed knowledge of the wave function of S* or
6. Rather, we use purely geometrical arguments related
to the very different spatial extension of S* and 6 in the
KK molecular picture as compared to the other two al-
ternatives, and the fact that we have twice as many
quarks in the q q and KK models as compared to the
usual qq mesons. The very large size of a weakly bound
molecular state leads to an anomalously small S*-
nucleon elastic cross section which produces a different
2 dependence for the inclusive production cross section
through the large breakup probability of the produced
meson, S* or 6, in the nucleus. We expect the S*-

nucleon total cross section for a 2q2q structure to be
larger than that of ordinary qq mesons. We show that
this leads to a difterent 3 dependence for the exclusive
production cross section on nuclei. Therefore, a simul-
taneous knowledge of both the exclusive and inclusive
production cross sections will provide information about
the internal structure of these mesons. For the rest of
this work we will concentrate on the I =0 S* resonance
although our conclusions hold equally well for the 6.
For this investigation the S* must be produced with in-
cident pions of momentum of at least —3 GeV/c, so that
we are in a region where the K-nucleon elementary cross
sections have a smooth energy dependence.

In a complementary way, the study of the energy
dependence of the total inclusive production cross section
can provide a test for the KK model. For this model the
K constituent of S' will produce the well-known K-
nucleon resonances and therefore the production cross
section will have an energy dependence strongly related to
the K-nucleon resonances. The main observation is that
at incident K momentum of 1 GeV/c the K-nucleon total
cross section has a broad resonance which we expect to
show up as a depletion in the S* production cross section,
thus providing a definitive signature for the KK model.
For such a study we need pions with momenta in the
range of 2. 5 —3.5 GeV/c.

At these high energies the Glauber multiple scattering
series describes very well scattering of a composite projec-
tile with the nucleus at small momentum transfer. Thus
we use it to describe reliably the final and initial state in-
teractions.

The contents of this paper are divided into three main
sections: In Sec. II we describe our calculation for the in-
clusive and exclusive production cross section as a func-
tion of the number of nucleons, 3, in the target. In Sec.
III we obtain the energy dependence of the inclusive cross
section on ' O. In Sec. IV we give our results and con-
clusions.

II. CALCULATIONS

A. S -nucleon interaction

In this section we discuss the S*-Nucleon (S*N) in-
teraction for the various models of S* and show how in-
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ikoS*N —a'P', /2f (Q) s N

4m
(2.1a)

with os~N ——azeN(l+as*N). The elastic section is given

formation about the internal structure of S* can be ob-
tained from the qualitative behavior of the S*N cross sec-
tions. For the case of qq and q q models, on the level of
S*N scattering, we treat the S* as a one-constituent
meson. The S'N scattering amplitude is parametrized by

by

el
S N

2~s*NI
16m.Ps» N

(2.1b)

For the KK model we obtain the S'N scattering arnpli-
tude using Glauber theory, which has been very success-
fully applied to describe high energy hadron-nucleus
scattering. By analogy to hadron-deuteron scattering, the
S'N scattering amplitude in the S*N c.m. is given by

fs*N(b, )=fKN(b)S(b/2)+fKN(b)S(A/2) — . J d q S(q)fKN(h/2+q)fKN(h/2 —q),2~ik, (2.2)

where fKN, fKN are the free KN, KN amplitudes in the
S*N c.m. , respectively, k, is the momentum in the S*N
c.m. , and the S* form factor, S(b, ), is given by

and

el el(1)
S*N S N

(2.5b)

S(h) = J I /san(r) I

e' 'd r . (2 3) where

lk&KN —Pg~h /2
fKN(~) =

4m
(2.4)

with o KN =a'KN(1+i aKN ). Taking a Gaussian wave
function of width Rs for the S*, we obtain for the total
and elastic S*N cross sections, o.&"N and a. s' N, the fol-

lowing expressions,

The momentum transfer b, =k; —kf is assumed to be
completely transverse and ps~ is the S* wave function. In
writing (2.2) we have used the high energy approximation
of nearly forward scattering to relate the free KN scatter-
ing amplitude in the KN c.m. frame to the scattering am-
plitude, fKN, in the S*N c.m. frame. For the KN scatter-
ing amplitudes we take a Gaussian parametrization,
namely

tot(1) tot tot
O KN+ KN (2.6a)

and

I

o KN+o KN I

16m(pKN+R s/8)
(2.6b)

~KN~KN
5o.= —Re

8m (pKN+ R s /4 )

cr~'e'N" and o.st'N' are the cross sections due to one scatter-
ing of the incident nucleon N on K or on K, and 5o.,5o. '

are corrections due to shadowing. For values of Rs simi-
lar to the deuteron radius, these correction terms are on
the few percent level. We give their expressions for com-
pleteness, although they are not essential for this qualita-
tive discussion:

tot tot(1)
S N S N + (2.5a) and

PKN PKN

with

elKN
16m'PKN

where we have set PKN=PKN.
From (2.5) and (2.6) it is clear that o'~'eN for the KK

model is expected to be typically twice as large as that for
a usual meson. On the other hand, o s'*N is expected to be
anomalously small because of the large spatial extension
of S*. Physically, this means that the S* can easily break
up by a collision and has very little probability of propa-
gating in the nucleus. Thus the ratio r =cr~'~N/o. &*'N will

be abnormally small compared with the corresponding ra-
tio for a qq meson. En the case of the q q model we ex-
pect o'~'*'N to be given approximately by o~*"N and there-

fore it should also be twice that for a qq meson, whereas
a.s'*N is given approximately by crz'k'N with Rs-0 and
therefore we expect it to be anornalously large. This will
lead to a ratio r which in this case will be abnormally
large. For the qq model we expect both o-~~N and os'*N to
be those of usual rnesons.

In Fig. 1 we show cr&"N versus o.s"*'N ——os'*'N —as'*N cal-
culated within this simple model. The experimental
values of KN and ~N cross sections at 3 GeV/c are
shown for comparison. As a representative of the qq or
the q q picture of S*, we evaluated the cross sections us-
ing (2.1), where we take, for the range parameter, ps+ N

=6
GeV, which is a typical value for the usual qq mesons
or a little larger value of 9 CieV with as*N set to zero.
For comparison with the KK model we also show the re-
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with the size of S* ranging from Rs ——1 —4 fm. We take
eKN ——0 since the results are not sensitive to the value of
aKN. Clearly, simultaneous knowledge of o.s""N and
o.&'+N enables us to distinguish among the qq, q q, and

KK molecular pictures of S*. The large inelastic cross
sections (40 mb) together with the large total cross sec-
tion suggest the weakly bound KK structure. Large to-
tal cross sections together with large elastic cross sec-
tions support the q q picture.

FIG. 1. Inelastic S N cross section vs total S N cross section
(a'"~' vs o."~ ). Graphs A, B,C are computed for a one-

constituent S using the amplitude given by (2.1) with the range
parameter P'+ =6, 9, and 40 CxeV ', respectively. D is com-

puted for a two-constituent S* with the S* radius Rs ranging
from 1 fm (lowest point on the curve) to 4 fm (uppermost point
on the curve). The crosses correspond to experimental cross sec-
tions as follows: (1) K+p, (2) K p, (3) a+p, and (4) vr p.

suit for the extreme case of pseN ——40 GeV, which

would be the eff'ective range of the S*N amplitude (2.2)
for a large S* radius. As inputs for the amplitudes in the
KK model of S*, we take the following parameters,

B. S production on nuclei

1. Inclusive production

We study the reaction ~+A~S* + X. The basic pro-
duction reaction in the case where m. + are used is
~++n~S*+p. Since we are also interested in the ex-
clusive reaction where the p from the production process
is detected, it is experimentally easier to use n+. From
now on we will therefore specifically refer to S* produc-
tion using m+. Within the Glauber theory, the scattering
amplitude of an elementary projectile with a nucleus is
given by

(2.8)

The incoming momentum of the projectile is taken along
the z axis and s; are the nucleon coordinates perpendicu-
lar to the z axis. The profile functions y are related to
the free elastic scattering amplitudes of ~N and S'N and
to the production amplitude of m.N~S'N by

In this case the z integrations can be carried out explicitly
to give

A —1

d'bn, b r. b ' r,. b
k=0

y (b)= fe ' f (A)d h.1

2~ik
(2.9) (2.12a)

is the longitudinal momentum transfer given by
b, l =(ms+ —m~)/2k.

For the nuclear state we take an uncorrelated product
of single particle wave functions (s.p.w. 's).

where

I (b) =1 M(b) M'(b—)+0 (b)—,

with

(2. 12b)

A A
= g(t[(r)= gP wherea=i, f . (2.10)

f1 (b)= f d s TN(s)y (b —s)y*(b —s), (2.12c)

The inclusive cross section is given by summing over all
the final nuclear states using the closure approximation
and integrating over the angular distribution of S',

o'[nc[= f g ~
Fj (~)~' (2. 1 1)

f
In the what follows we neglect ~+ charge exchange pro-
cesses since they are small ~ Therefore no coherent S* pro-
duction is possible. Since we use uncorrelated wave func-
tions, this means that only diagonal terms enter in (2.10).

M (b)= f d s TN(s)y (b —s), (2.12d)

and

TN(s)= f ~

P'(r)
~

dz = f pN(r)dz, (2.12e)

where n and A is the number of neutrons and nucleons,
respectively. In order to obtain the qualitative behavior of
the inclusive cross section, we take the range of the ele-
mentary interactions to be small compared with the nu-
clear size. We can then approximate I by
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(2.13)

Therefore we expect o.;„,~ to essentially depend on the ele-
mentary inelastic cross sections of ~N and S*N.

The treatment given so far applies only when the pro-
jectile has no composite structure. This would be applic-
able in the case of the qq and q q models of S'. For the
KK molecular model we must properly take into account

I

Z/ )Z'
(2. 14)

the composite structure of S' in the final state interaction.
In the Glauber theory we can properly take this into ac-
count by replacing

GI; ——S* 1 —yKN b —sk —s/2 1 —
@AN b —sk+s 2 k

S*
ZA, )Z.

(2.15)

where s is the relative S* coordinate perpendicular to the z
axis.

We also can approximately take into account the com-
posite structure of S* by using the effective S*N ampli-
tude given by (2.2). Physically, this approximation means
that we neglect processes where recombination of K,K
takes place after the S* has been broken up by a collision.
By (2.2) we obtain the S N scattering amplitude in the
S*N c.m. frame. In the high energy approximation the
scattering amplitude in the c.m. and laboratory frames is
related by'

values k and fKN, respectively. Using this effective S*N
amplitude, we obtain

(2.17)
Zp )Zj

with

ysa= f d s Tsa(s)[1 —y~N(b —sk —s/2))

X [1—y~N(b —sl, +s/2)]

and
1 f, (K,',E, ),1 flab(+ lab ~ +lab )—

+lab K,
(2.16) Tsa(s) = f dz Ps*(r)Ps*(r) .

where Kl,b (KI,b) and E, (K,' ) are the initial (final)
momenta in the lab and c.m. frames, respectively. There-
fore the effective S'N amplitude can be trivially obtained
from (2.2) by replacing k, and fKN by their laboratory

Using G/; the inclusive cross section is given by (2.12).
By comparing Eqs. (2.15) and (2.17), the inclusive cross
section for a two constituent S* is obtained by making the
substitution

[r,.(b)]" f d sd s'T *(s)T (s') f d s TN(sk)[1 —y~N(b —sk —s/2)][1 —y — (b —sq+s/2)]
n

X [1—yKN(b —sk —s'/2)][1 —y~N(b —sk+s'/2)] (2.18)

We have calculated o;„d using both (2.17) and (2.18) for
the case of the harmonic oscillator nuclear wave function.
For an S* radius -3 fm we found only a -2% difference
in o.;„,] for heavy nuclei. The error decreases with the S*
radius. Therefore in what follows we use the effective
S'N interaction to describe the KK model of S*, which is
accurate enough for our present discussion.

5
excl

d Qs*d Aves'
~s*, d'k[

Tfj
~

2'lrg (/l Ef )
V lab (2') (27r)

this can be corrected by using a distorted proton wave
function instead of a plane wave. The differential cross
section is given by"

2. Exclusive production

We consider the reaction n++A~S + p+ (A —1),
where we go to a definite final nuclear state and we ob-
serve the outgoing proton. Here we assume that at these
high energies production of S* will be dominated by a
knock-out of the nucleon. In this work we are mainly in-
terested in the final state interaction of S* with the nu-
cleus. We shall therefore neglect the final state interaction
of the outgoing proton. In a more realistic calculation

(2.19)

where the T matrix is related to the scattering amplitude
by

2&V ]zb

k~ is the momentum of the knocked out proton and
E;,E~ are the initial and final energies in the lab. Using
the Glauber formalism we obtain
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5
~excl

d Qs d BpdPs

2
P SgUlab

(2ir )
f d b e' '

(Pz ikz I yz(b —s;)e

2d kpx g [I—).(b —,)l g [1—Z, *(b— )]
I

0' ~

Z ~ (Z. Zk &Zi
(2~)'

(2.20)

5
excl

d Q gd Apdp
(2.21)

In order to obtain the qualitative behavior of o,„,i, we take the initial and final state interactions in (2.20) to be the same.
In this case there is no z ordering and (2.20) can be written as

2ps* ;~ z . 2d'k
kp Pp b s e ~' 1 Ms* b

3
~ E Ef

(2ir ) (2' )

Taking the range of the elementary interaction to be small
compared with the nuclear size and an imaginary forward
amplitude, we can approximate Ms*(b) by

tot
s NMs+(b)=l — TN(b) .
2

(2.22)

Therefore o.,„,l should depend strongly on the elementa-
ry total cross sections. In integrating over the energy 6
function, we neglect nuclear recoil and take nonrelativis-
tic kinematics for the outgoing proton. The exclusive
production cross section falls off rapidly for
(b,L

—k~)R„& 1 because of the oscillating exponential
factor, where R & is the nuclear radius and k'„ is the lon-
gitudinal proton momentum. Therefore we consider ki-
nematics where bL ——kp.

The momentum dependence of the differential cross
section as given by (2.20) depends strongly on the orbital
wave function of the nucleon involved in the production
process. However, if we integrate (2.20) and normalize
with the corresponding cross section in the impulse ap-
proximation, we expect the resulting total exclusive cross
section to depend weakly on the particular nuclear wave
function of the production nucleon. Therefore, in this
case, we are justified in using an uncorrelated product of s
state s.p.w. 's for g'q and itpq i. In line with our calcula-
tion for the inclusive process, we use the effective S*N
amplitude to describe the S' final state interaction.

III. ENERGY DEPENDENCE OF THE INCLVSIVE
S* PRODUCTION CROSS SECTION

In this section we investigate the energy dependence of
the total S* nuclear production cross section. As we
mentioned in the Introduction, we expect a very different
energy dependence for the KK model as compared with
the qq standard quark assignment. This is because of the
very different final state interaction of the K component of
S*. Near a K-nucleon resonance, there is a time delay of
S* in the nucleus, resulting in a depletion in the outgoing
S* Aux. Therefore we expect the S* production cross sec-
tion to show a depletion at energies corresponding to the
K-nucleon resonances. On the other hand, if S* is a pure

qq state, then we expect no such correlation. The
A(1520) resonance in the K-nucleon system does not
show up because it is smeared out by Fermi motion. '

Therefore we look at the broad Y* resonances present at a
K lab momentum of —1 GeV/c. This means that the S
must be produced with a momentum of -2 GeV/c.

Since the K-nucleon amplitudes are very strongly ener-

gy dependent, we must take into account both the Fermi
motion associated with the internal momenta of S' and of
the nucleus. For this we follow the procedure for Fermi
averaging developed by Lenz. '

In this formulation we need to obtain the Fermi-
averaged scattering amplitude in the laboratory frame in
terms of the free c.m. K-nucleon amplitude f, . In the
high energy approximation using (2.15), we obtain, for the
scattering amplitude in the laboratory frame, '

(k +p ) kfM kM
M* M*

1
~kf pf I flab I

k ~pi ~ = ~k; c.m.

where

1
5 (kf+pf —k; —p;)f, E„, Hg—

(3.1)

M =E+M, a=E/M* . (3.2)

Et,t is the total energy in the lab frame, E is the projectile energy, M is the mass of the target particles, and k;, kf p' pf
are the initial and final projectile and target momenta in the lab frame, respectively. For the nuclear ground state, gq,
we take a product of single particle harmonic oscillator (HO) wave functions,

»(rj) . (3.3)

The appropriate scattering amplitude of a projectile with a bound nucleon is given by
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1 1

k
&0A kf Ifl.b I

k, WA&= K,
[p, +(&+Q)/2]'f d'p, ltl~'(b, +p, )p, (pj)f, E+M+e-

2M*
(3.4)

where e is the binding energy, 5=k; —kf is the momentum transfer, and Q =k; +kf.
We now proceed to generalize (3.4) in order to take into account the composite structure of S*. As was discussed in

Sec. II, it is su%cient for our considerations to obtain the effective elastic S*N amplitude in the S*N c.m. This can be
obtained from (3.4) with the nucleon being the projectile of incoming momentum —k; and S* the target having

momentum k; . We only Fermi average the KN amplitudes, the KN amplitudes having a smooth energy dependence.
Since at high energies the most important contribution comes from the forward amplitude, we use the forward c.m. KN
amplitude and neglect the spin-Hip amplitude since it vanishes in the forward direction. With these approximations the
Fermi-averaged KN scattering amplitude is given by

(/san, —k;
I fKN(Es+N) I

—kf, ps* &

ks N
E

Kc.m.

3 . 3

f (2~) 5 (q; —qf —b, /2)ps*
d g; d gf
(2vr) (2rr) 2

—
4 4s*(q )f."' [~(q )l (3.5)

where

co =(EN+EK) —(k; /2+q;) is the KN c.m. energy,
2 1/2

1 s N

—q; +m~2

EN=[(k; ) +M ]'~, and Es*N is the S*N c.m. energy. We have neglected the S* binding energy e. Using a Gauss-

ian for the S* wave function, we obtain
S*N

S N S*N
fKN=—~&s* —kf lfKN —k &s*&=

1/2
—6 R /16 —2 2

d3q e i KN (3.6)

where we have taken the forward KN c.m. scattering am-
plitude f, (cu). The S*N amplitude is then given by

y S N
R s2/16

fs*N«S~N ~)-—fKN+ fKN(~)eK,
where co=co

I q. o. In (3.7) we have neglected the second
scattering term. The error of neglecting this term is very
small ( —1%) for the KK molecular S* because of its
large extension.

We take f + to be the appropriate two body scatter-
ing amplitude to be used for the Glauber multiple
scattering series, i.e., we take 5 to be completely trans-
verse and Q= 2k; along the z axis. In order to calcu-
late the total production cross section, we need to Fermi
average f ~ over the nuclear ground state. This we
can immediately do using (3.4), where S* is now the pro-
jectile, with fs+N being the appropriate c.m. amplitude.
Since, for the Fermi averaging of the scattering ampli-
tude, the relevant quantity is the Fermi momentum, we
take an oscillator parameter, R z, which gives the
correct Fermi momentum deduced from electron scatter-
ing experiments. ' Using single particle s-state harmon-
ic oscillator wave functions, we obtain, for the forward
scattering amplitude,

1- 1
FS*N

ks N( 3)l/2

)& fd'pe ~fs N

(p/R „'+Q/2)'E+M-
2M

with
(3.8)

Rg ——( —', )'
kF

where M *=E +M, p is the rescaled nucleon momentum,
and kF is the Fermi momentum. Using F ~N we can im-

S N
mediately write down the profile function needed as an in-
put to the Glauber scattering series. For the calculation
of the production amplitude in the Glauber theory, it is
important to use nuclear wave functions which give the
correct nuclear rms radius. For this part of the calcula-
tion, for p-shell nuclei, we use s- and p-state HO wave
functions with an oscillator parameter, R~, which repro-
duces the nuclear rms radius.

The inclusive production cross section as a function of
the S' energy is then given by

o (E)= f d'b dz 2A l'(b, z) [1—1 "(b,z) —1 '(b, z)]'[1—I "'(b,z) —I ~'(b, z)]"

0'~'(b, z)[1—I '„'(b,z) —I "(b,z)]'[1—I ' '(b, z) —I '(b, z)]" (3.9)
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where

Sl "(b,z)= f d's p;(s, z)y~(b —s)y~(b —s),
I ' (b, z) = f dz'd's p;(s, z')[y (b —s)+y*(b —s) —y*(b —s)y*(b —s)],
I I'*'(b,z)= f dz d sIo;(s, z')[y *(b—s)+y**(b—s) —y *(b—s)y* (b —s)],

z

and p, and pz are s and p state HO nuclear densities.

IV. RESULTS AND CQNCLUSEDNS

We have taken a Gaussian parametrization for the ele-
mentary nN elastic scattering amplitude of the same form
as for the KN amplitudes given by (2.4) with the parame-
ters

o'„'g ——31.9 mb, a N=O, p N=6. 16 GeV . (4.1)

To describe the final state interaction of S' for the qq and

q q models, we used the scattering amplitudes given in
(2.1) with

tot
S N

tot tot
&N+ KN

and

I T
I

I I ~~ I I I

D

tot tot tot
~S*N —~&N+ ~ZN ~

respectively. The cross sections o.KN and ~zN are given

by (2.7) and we take a + ——0. For the range parameter

Ps~ we take 5.8 and 10 GeV . For the KK model we

use the eff'ective amplitude (2.2) with the parameters
given in (2.7) and a&N ——a&N

—0 with the S* radius

R s ——3 fm. In order to show the sensitivity of our results
on the S' radius, we also take Rs ——1 fm, although this
does not correspond to any of the three proposed mod-
els.

Nothing is known about the range of the S* production
amplitude for which we have taken a Gaussian parame-
trization. We assumed the same range parameter P„as
for f3 N. The elementary production cross section o ~
enters as an overall normalization factor. For the calcula-
tion of the inclusive production cross section, we take a
Woods-Saxon single particle nuclear density given by

po
pN(r) =

1+e' (4.2)

with ro ——1.143 ' fm and t =0.545 fm.
In Fig. 2 we show the inclusive production cross sec-

tion normalized with the corresponding cross section in
the impulse a~proximation, as a function of the mass
number A. The normalization is chosen so that with no
initial and final state interactions we obtain the neutron
number. The inelastic cross sections o.

&VN are shown for
each case. For the larger inelastic cross sections we ob-
tain a weaker 3 dependence. This is what we expect
since for the large o.

&VN the S' must be produced near the
nuclear surface in order to emerge from the nucleus.
Whereas the inclusive cross section is strongly dependent

s N' it depends only very weak y on o s*N 0 s N '
0'~VN is kept constant. Thus by the 3 dependence of the
inclusive S* production, we can deduce the S*N inelastic
cross section.

For the calculation of the exclusive production cross
section, we take s-state HO nuclear wave functions, since

0 ~ I I I I I I I I I I I I f I I I

0 48 96 144 192 240
9—

FIG. 2. A, B are calculated for a two-constituent S*; A with

Rs ——3 fm corresponding to o."~ =43.8 mb and to o'"+' ——41

mb (KK molecule); B with R s
——1 fm corresponding to

o'+ ——40. 7 mb and to o'"~' ——30.5 mb. C,D,E are calculated

for a one-constituent S*. C corresponds to o'+ ——44. 6 mb and
rr'"„' =27.5 mb with range parameter /3 ~ =5.8 CxeV and it

is representative of the q q model. D, E correspond to
o."+ ——22. 3 mb, typical of a qq meson; D with o'"+' ——19.8 mb

and P ~ =10 GeV; E with o'"~" =18.04 mb and P ~
——5.8

G V

0-
0

~J
48 96 144 192 240

FICs. 3. A, C are calculated as representatives of the q q
' and

qq models, respectively, with the range parameter P'~ =5.8

ReV; A with o'~"*'N ——44. 6 rnb; C with o.s*'N ——22. 3 mb. B cor-
responds to a KK model with Rs ——3 fm and o."~ ——43.8 mb.
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FIG. 4. K +' C total cross section. The solid line is drawn
through the experimental points (Ref. 17). The dashed line is the
result of a Glauber calculation using a Fermi-averaged forward
K N scattering amplitude.

a more realistic calculation will require improving the
proton wave function for which we take a plane wave.
We have calculated the inclusive production cross sec-
tion using HO wave functions instead of the more realis-
tic density (4.2), and we have found the same qualitative
A behavior. Therefore we expect the essential 3 depen-
dence of the exclusive cross section to be well repro-
duced with HO nuclear wave functions. The oscillator
parameter Rz is adjusted to give the nuclear rms radius.
In Fig. 3 we show the normalized exclusive production
cross section as a function of 3 for an incoming pion
momentum of 4 GeV/c. We adopted the same normali-
zation convention as for the inclusive production cross
section. We show the results for the three models of S*.
We take Rs ——3 fm for the KK molecule. We find that
the exclusive production cross section is strongly depen-
dent on o.s"

N
and only weakly dependent on o.s""N.

Therefore, we obtain the same 3 dependence for the

:0 00—

',360

0
:3?0

V)

V)

o ?80

2400

?QQ ~~ ~ ~~ i w i l i i c i l ~~ L

0.0 0.5 1 0 1.4 2.0

K lab rrrorl&en t ural 6'eV, 'c
FIG. 5. The dashed line is the imaginary part of the elemen-

tary forward K N plus K+N scattering amplitudes. The dot-
ted line is the imaginary part of the forward K N plus K+N
scattering amplitudes Fermi averaged over the S* internal mo-
menta (forward S*N scattering amplitude). The solid line is
the imaginary part of the S N scattering amplitude Fermi
averaged over the nuclear momenta of ' 0, For this calcula-
tion the KK molecular model of S* is used.

FIG. 6. Inclusive S* production cross section on "0, for the
case where S* is a weakly bound KK state.

q q and KK models since o."+ in these two models is

approximately the same, although o-z"+~ is very different.

For the same reason we expect the exclusive production
cross section to be insensitive to the S* radius since o.s'+N

depends weakly on Rz. Therefore, from the 3 depen-
dence of the exclusive production cross section, we can
extract o.&"N. Having extracted o.z"N and o&"'z we can
use the arguments given in Sec. II A to distinguish the
three models.

For the calculation of the energy dependence of the in-
clusive production cross section, we used the KN ampli-
tudes of the BGRT collaboration' and of Ref. 16. In or-
der to check how good our approximation of Fermi
averaging using the forward c.m. amplitudes is, we com-
puted the total K ' C cross section in the energy region
of interest. We used s-state HO wave functions with an
oscillator parameter R~ ——1.36 fm to Fermi average the
forward K N scattering amplitude. This amplitude is
then used to define the profile function y(b) and the
scattering amplitude is computed in the Glauber theory
with ' C considered as a closed P3/Q shell nucleus with
R q

——1.64 fm. In Fig. 4 we show the results of our calcu-
lation as compared to experiment. Although we get a
resonance width which is too narrow, the general features
are well reproduced for the purpose of our present discus-
sion. In Fig. 5 we show the effective S*N amplitude
( l /0; )FssN g o Fermi averaged both over the internal

momenta of S* with R s ——3 fm and over the ' 0 internal
momenta using s-state HO wave functions, with R q
=1.44 fm. In Fig. 6 the total normalized production
cross section for ' 0, considered a closed p-shell nucleus,
is shown where we took Rq ——1.76 fm. Clearly, the de-
pletion seen in the production cross section in the reso-
nance region is a definitive signature for the KK molecu-
lar model of S'.
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