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Nuclear force in the Skyrme model
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A generalized Skyrme model of the nucleon supplemented by possible extra terms in the Skyrme
I agrangian is applied to the study of the two-nucleon system. A variational approach taking account
of modification of the chiral profile is employed. An adiabatic N-N potential is calculated by the
standard spin-isospin projection technique. Several different approaches and parameter choices are
examined and compared with each other. No medium-range attraction is found. Modification of
some nucleon properties in the interacting system is investigated.

I. INTRODUCTION II. FORM UI.ATION

The 1/N, expansion of quantum chromodynamics' has
led to a renewed interest in the Skyrme soliton model for
the baryon. Phenomenological aspects of the Skyrme
model have been explored. The calculated static proper-
ties of the nucleon come out within about 30% of experi-
mental values. The ~N scattering phase shifts have been
calculated in various partial waves, ' and they reproduce
the general characteristics of the experimental ~N scatter-
ing data. An adiabatic nucleon-nucleon potential has
been calculated, ' and compared with the conventional
meson exchange potentials. It has been found that the
Skyrme model leads to a one-pion exchange potential at
large R and short-range strong repulsion, while it fails to
explain medium-range attraction, which binds nucleons
into a nucleus. The latter is the most serious difticulty in

applying the Skyrme model to the multibaryon system.
The aim of this report is to introduce a variational ap-

proach to the two-skyrmion system and to seek a possi-
ble source of medium-range N-N attraction. We are also
interested in the ability of the Skyrme model in studying
possible modification of single nucleon properties in the
interacting system. In a previous paper, ' we have
shown that modification of the chiral profile in the two-
soliton system is significant. It lowers the soliton-soliton
adiabatic potential and deforms the baryon density dis-
tribution drastically. In the present study, we incorpo-
rate spin-isospin quantization, which allows us to project
the realistic NN potential out of the soliton-soliton po-
tential. We also take into account several non-Skyrrne
terms in the Lagrangian. One of them has been claimed
to produce attraction between two nucleons. ''

In Sec. II, after a brief introduction to the generalized
Skyrme model, a variational approach, called the scaling
product approximation, is introduced and the spin-isospin
projections are formulated. Various possible approaches
are discussed. In Sec. III, we present results of the two-
skyrmion calculation, comparing approaches and parame-
ter choices. In Sec. IV, a brief summary and discussion
are given.

We start with the generalized Skyrme Lagrangian in
chiral SU (2) &(SU(2) theory, given in terms of the SU(2)
matrix Uby

X =Xp+X4+X4+X6+X
F2

TrI L„L"I,16
(2)

X4= Tr{[L„,L„] I
32e

(3)

L4= ( TrIL L "I )2

p2
B B",P2m',

2F2
TrI U —1I,

8

with

I.„=U B„U

and

B"= e"' t'TrIL L L j (8)

The first two terms X2 and X4 were chosen by Skyrme in
his original work. L2 is the pion kinetic energy term,
and is known as the lowest order term in the effective low
energy chiral meson theory. L4 was introduced by
Skyrme to stabilize the soliton solution. L4 is an addi-
tional fourth order derivative term, which is claimed
necessary to reproduce the low energy w~ interaction. '

L6 is the large co-mass limit of the cu-soliton coupling
term, ' where B„ is the conserved topological baryonic
current. L is the pion mass term, which breaks the
chiral symmetry explicitly. Equation (1) is, in fact, the
most general Lagrangian so far discussed, except for in-
troduction of explicit (finite mass) meson degrees of free-
dom besides the pion, ' although it is not the unique
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choice in the low energy expansion of the effective chiral
theory. '

The skyrmion is a static B= 1 solution with hedgehog
symmetry,

U(r) = Uz (r) = exp[is. rF(r) ],
where the chiral profile F(r) satisfies the boundary condi-
tions, F(r =0)=m and F(r = ~ )=0. Ui, does not have a
definite spin nor isospin because the isospin of the pion
field is correlated with the spatial coordinate r. To obtain
physical baryon states, one needs to superpose degenerate
static soliton solutions given by the hedgehog (9) rotated
in isospin space. Following Adkins, Nappi, and Witten,
we introduce collective rotation variables,

1Q-

5

O

0

10

0.8—
A =—a4+ia w, (10)

with g i a „=1, and represent the physical baryon
(B = 1) solution by

Ui(r, A) = A Ui, (r) A

1.2—

1.0—

U(r) = Ui, (r—R/2) Ui, (r+ R/2) (13)

is a functional of F and F . Minimizing E(R) for a fixed
R, we obtain an integrodifferential equation for F, which
is solved numerically. This approach we call the varia-
tional product approximation (VPA). Figure 1 shows the
resulting soliton-soliton potential and the size of the indi-

By quantizing a4. and a as collective coordinates, we ob-
tain the spin-isospin wave function for a physical state,
i.e., N or A. '

It is easy to prove that a product U = U(1)U(2) gives a
B =2 configuration when U(1) and U(2) are B =1
fields. We are interested in two baryon systems with a
(fixed) relative distance R. We introduce a relative coordi-
nate R by

U(r)= Ui(r —R/2, A)Ui(r+R/2, B),
with Ui given by Eq. (11). This is an ansatz first pro-
posed by Skyrme and used in previous studies of the NN
interaction. ' Jackson et al. and Vinh Mau et aI. cal-
culated the energy of the NN system adiabatically by us-

ing the form (12). They found a strong central repulsion
as we11 as a weak spin-dependent force, which is con-
sistent with the one-pion exchange potential. It was as-
sumed that the soliton profile F does not change under
the interaction. This approximation, which we call the
free product approximation (FPA), is valid for large R.
The validity, however, has been questioned in general for
smaller R is, i9

The form (12) becomes more general if one allows de-
formation of the single soliton field Ui. The simplest gen-
eralization is to make the chiral profile F dependent on R,
keeping the spherical shape. Then F(r,R) may be deter-
mined variationally for each R. In a previous report, ' we
have shown that this generalization changes the adiabatic
skyrmion-skyrmion potential and the baryon density dis-
tribution in the two-skyrmion system significantly. For
simplicity, we choose A =B =1 for a while and therefore
consider the interaction between two unrotated hedgehog
solitons. The static energy E(R) calculated for

0.8—
l i i i i I

5 10

R/(F7re)

FIG. 1. Unrotated (C =1) soliton-soliton potential Vq, scaling
parameter aq, and the ratio of the soliton size vs R for the origi-
nal Skyrme model, i.e., m =P=y=O in the Lagrangian (1)
(Ref. 10). The FPA (free product approximation) curve is ob-
tained by using the free soliton solution in Eq. (13), and the VPA
(variational product approximation) uses the solution of the
differential equation for each R. The SPA is obtained by the
scaling of F(r) [Eq. (14)]. Standard values of the parameters
(taken from Ref. 4) are F =129 MeV and e =5.45. The corre-
sponding scales of length and energy are (F e) '=0.28 fm and
F /e=23. 7 MeV, respectively. The results with and without
pion mass show no qualitative difference from each other.

F(r,R) =Fo(r/a (R)), (14)

where Fo is a free solution. Then the energy of the two
soliton system is obtained as a function of the scale pa-
rameter a. The energy is minimized variationally for each
fixed R and the resulting chiral profile and the energy are
compared with the VPA. The dashed-dotted curve in
Fig. 1 shows the result in this approximation, which we

vidual soliton as a function of R for the original Skyrme
model, i.e., m =0 and y=P=O in the Lagrangian (1).'

Although the energy gain by the variation is not large
(&100 MeV), the soliton size changes significantly. In
Ref. 10 we also showed that the baryon density distribu-
tion is modified drastically. The large deformation is not
surprising because the lowest excitation energy of the soli-
ton, =200 MeV, is less than the magnitude of the repul-
sion obtained. We conclude that the soliton is easily de-
formed when it is interacting.

The deformation of the chiral profile F observed in the
VPA is found to be mostly an overall scaling. To see this,
we introduce a scale parameter a(R) by the substitution
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call the scaling product approximation (SPA). One sees
that the VPA solutions are almost recovered only by the
scaling. Thus, without solving the differential equation,
we obtain a deformed profile of the interacting solitons by
the scaling.

In order to obtain the physical NN interaction out of
the soliton-soliton interaction, one needs to quantize the
rotation coordinates 3 and 8 given in Eqs. (11) and (12).
The complete treatment of the rotations in the interact-
ing system could involve a large amount of computa-
tion. Instead, here we adopt a perturbative treatment
following Vinh Mau et al. The adiabatic energy for
fixed R is calculated for a constant 2 and B, which hap-
pens to be a function only of C =c4 +i ~.c:—2 B. The
vector c behaves as a 3-vector in ordinary coordinate
space and the adiabatic potential is a function of
c4, (c R) (R=R/R) and R,

c4 ——0, c.R=O. The second choice, V~, is the one dis-
cussed above and happens to be the most repulsive poten-
tial. The third choice, V„, gives the most attractive poten-
tial, reached by rotating one of the skyrmions by 180
around an axis perpendicular to R. These three poten-
tials are given explicitly in terms of the V; s in Eq. (15) by

V, = V, +,'( V, + V, )+ —,'( V, + V, )+ —,', V, ,

Vg = V) + Vz + V4,

V„=V) .

By choosing the above three cases, we explore the whole
range of the static interaction to be minimized against 5F.
In the next section we present the results obtained by
minimizing V, (SPAc), Vh (SPAh), or V„(SPAr) varia-
tionally in the scaling approximation (SPA).

V(C, R) =E (C, R) —2EO

= V)+ Vpc4+ V3(c R) + V4c4

+ Vqc4(c R) + V6(c.R) (15)

where Eo is the single soliton mass without the rotational
kinetic energy, and the V s are functions of R. Then the
adiabatic potential is evaluated, using the free nucleon
spin-isospin wave function, 4 ( 2), cz being the spin-
isospin quantum number:

V
p p(R)= f 4 (A)+p(B)V(C=A 8, R)

(A)+g(8) dA dB, (16)

where dA (dB) stands for the integral over the three-
dimensional sphere, g4, a &

——1 ( g„b„=1 ). By rear-
ranging V p p for various spin-isospin channels, one ob-
tains three components of the NN potential, i.e., the iso-
scalar spin-independent central force V„ the isovector
spin-spin force V„and the isovector tensor force V, .
Previous calculations have shown that the latter two iso-
vector pieces, V, and V„coincide with the one-pion ex-
change potential at large R.

In applying the spin-isospin quantization in our ap-
proach, we have to note the order of modification of the
chiral profile F and the spin-isospin projection. Because
the static energy depends on the relative rotational angle,
C = 3 B, we cannot neglect the rotation when we mini-
mize the static energy. A possible solution is to project
the spin and the isospin first and then to minimize, for in-
stance, the NN central potential V, against 6F. This
seems a reasonable way if the solitons are rotating fast
enough that the "static" energy is given by an average
over the rotation. It is, however, not a unique solution.
In fact, we cannot solve this problem in a fully consistent
way without employing a complete quantization process
by taking both the nonstatic and the static energy terms of
the rotations into account simultaneously. In the
present study, however, we do not seek the complete solu-
tion because it requires a much harder computation. We
instead employ three different approaches: minimize (1)
the isoscalar central NN potential V„(2) the unrotated
(C =1) soliton-soliton potential Vh, and (3) the soliton-
soliton potential V„with a special rotation given by

III. RESULTS

One of the purposes of the present study is to show
the roles of L4 and L6 terms in the two-skyrmion sys-
tem. We choose two sets of parameters and compare the
results. The first one is (1) /3=y =m, =0, F =129
MeV and e =5.45, which gives the original Skyrme
model. The parameter values are taken from Ref. 4.
The masses of the baryons are M& ——936 MeV and
Mz ——1229 MeV and ( r ) z o

——0.59 fm. Because F is
the only dimensional parameter, the results for other
values of F and e are easily found by scaling of the
length by (F e) ' (=0.28 fm for the present choice) and
the energy by F„/e (=23.7 MeV).

In the second choice we take all the terms of the La-
grangian (1) into account. It is known that X4 with a pos-
itive y, which is consistent with the low energy ~w in-
teraction, destabilizes the soliton, while the X6 term is al-
ways repulsive and stabilized the soliton. In fact, intro-
duction of X4 without X6 is disastrous, especially in mul-
tisoliton systems. ' Qualitatively, increase of P of X6
makes the soliton expand, while increase of y &0 of X4
makes the chiral profile F(r) oscillate around r = 2 —3
(F e) '. The latter causes instability of the soliton and
for large y one cannot find a solution. This qualitative
tendency is enhanced in multisoliton systems. Contribu-
tions to the static energy of the soliton from L4 and L6
tend to cancel with each other. When the contributions
of those terms become comparable with those of Lz and
L4, the results would become very sensitive to the param-
eter choice. To avoid this unfavorable situation, we prefer
moderate magnitudes of /3 and y.

We choose the second parameter set according to Ref.
12: (II) F„=164MeV, e =7.0, rn„=137 MeV, @=0.12,
and /3=3. 5, which is claimed to minimize the central po-
tential in the free product approximation (FPA). In this
choice the contribution of L4 and L6 in the single soli-
ton static energy is less than half of that of Lz and L4,
while any larger values of /3 and y would make the re-
sults too sensitive to the parameter choice. The masses
of the baryons are MN ——1053 MeV and Mz ——1787
MeV, which indicates that the moment of inertia is too
small to fit to experiment. The baryonic rms radius
(r )~~ o

—0.42 fm.
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FIG. 2. Isoscalar central NN potential and the scaling pa-

rameter a in various approximations (see text) for the parameter

set (I). The SPAr result coincides ~ith the SPAc one.
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Figures 2 and 3 summarize the results for the two-
soliton calculation. a (R) is the scaling parameter defined
by Eq. (14) in the scaling product approximation (SPA).
SPAc, SPAh, and SPAr stand for, respectively, the SPA
with V„Vi, , and V„[Eq. (17)] minimized.

One notices that there exists no attraction in the central
potential, although the introduction of the X4 term has
been suggested to bring NN attraction. " The energy
contributions from X4 and X6 tend to cancel with each
other for the two-soliton system as well as for the single
soliton. For instance, contributions to the single soliton
energy are 516 MeV from X2, 383 MeV from X4 —164
MeV from X4, 117 MeV from X6, and 181 MeV from

for parameter set (II). As is stressed above, the con-
tributions from X4 and X6 are less than a half of those

FICx. 4. Rotational kinetic energy, 1/2J, 2 being the moment
of inertia, and the ratio of the nucleon and the 6 masses to the
corresponding free masses, respectively, for parameter set (I}.

from Xq and X4. At R =0.86 fm [=5 (F„e) '], the adi-
abatic central potential V, consists of —69 MeV from X2,
217 MeV from X4, —124 MeV from Xq, 169 MeV from
L6 and —9 MeV from X . We do not see any significant
extra attraction due to the scaling variation in the central
potential at R &0.5 fm, while in the unrotated soliton-
soliton potential V~ has 50—100 MeV more attraction in
the same region. In fact, a difference of V, among SPAc,
SPAh, and SPAr is little, except for R &0.5 fm. For
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FIG. 3. The same as Fig. 2 for parameter set (II}.

R (fm)

The same as Fig 4 for parameter set (II}



724 MAKOTO OKA 36

R &0.5 fm, a significant energy gain is observed in the
variation. The main difference between parameter choices
(I) and (II) is the range of the potential. For (II), the
range is shorter and the potential rise is sharper than for
(I), while the magnitude of the central repulsion is about
the same.

It is known that the contribution of L4 to the central
NN potential V, is even under the G-parity transforma-
tion. (G-parity decomposition for the potential can be
done by comparing the NN potential with the NN one. )

In the generalized Lagrangian, contribution of X6 to V, is
G-parity odd and, in fact, about one-third or one-fourth of
the total V, is found to be G-parity odd at R =0.5 —1 fm
in the present calculation.

We are also interested in single baryon properties in
the interacting system. Here we choose three of them:
moment of inertia, masses of N and 5, and the axial cou-
pling constant gz. These quantities in the interacting
system are defined by the corresponding values for a sin-
gle soliton with the scaling replacement (14). Mv and
Mz include the rotational energy calculated by the use
of the modified moment of inertia I(R). One sees in
Figs. 4 and 5 that both Mz and M~ are enhanced at
R & 0.5 fm by =5% for N and = 15—20 % for A. This
is due to the increase of the soliton mass and the reduc-
tion of the moment of inertia I along with the scaling
parameter a, roughly I =a . The R dependence of the
moment of inertia induces an effective interaction, which
amounts up to =50—100 MeV of repulsion for NN at
around R = 1 fm. This significant repulsion raises a
question on the treatment of the rotational energy as a
higher order effect (in I /X, ). If we include the rotation-
al energy in the potential minimized variationally, we
would expect significant interference between the inter-
nal motion and the global rotational energy. Qualita-
tively, this effect will enhance the size of the soliton to
reduce the rotational energy. We also observe a reduc-
tion of gz by 15—20 % at R = 1 fm. This is again due to
the reduction of a (R ), because g 4 is proportional to a.

We observe a„&a, &a~ for R &1 fm region, which
seems to (anticorrelate) with the static potentials,
V, & V, & Vh. In fact, this is consistent with a general ar-
gument that there exists a simple relation between the
long-range potential and the size of the soliton. Accord-
ing to the general theorem, the soliton size grows when
the intersolitonic interaction is attractive, while it shrinks
when repulsive. We observe a 10%—20 % decrease in the
scale parameter at R =0.5—1 fm. The size of the single
soliton (r )I 0 behaves almost identically in this region.

IV. SUMMARY AND DISCUSSION

In summary, we have studied the two-nucleon system
in the generalized Skyrme model of the baryon, where the
symmetric quartic derivative term X4 as well as the sixth
order derivative term L6 is included. Modification of the
chira1 profile is taken into account by a scale variation.
There is no attraction found in the NN central force, be-
cause of the cancellation of the L4 attractive contribution
by the strong X6 repulsion. We have shown that single
nucleon properties are also modified in the interacting sys-
tem. The nucleon mass is enhanced at R &0.5 fm, and
the nucleon size decreases in the same region. We also
found that the R dependence of the moment of inertia is
significant at R =1 fm. The effective NN interaction due
to this change seems significant so as to make coupling be-
tween the rotation and the internal motion important.
These results are necessarily qualitative because, first, the
Skyrme model provides single nucleon properties with
typically 10—20 % errors, and, secondly, it cannot repro-
duce medium range NN attraction. The latter is serious,
because at large R, turning the repulsion into an attrac-
tion could change the behavior of the scale parameter a.
It is also noted that the variational approach used here
would not be valid at short distances (say R &0.5 fm),
where one could expect a large deformation not covered
by the overall scaling.

Much discussion has been devoted to possible sources
of the attraction. In Ref. 19, the authors took a larger
space for the energy variation, but they could not find
enough attraction. In Ref. 24, semiclassical treatment of
the relative skyrmion motion was discussed. The effect,
of higher order in 1/N„was found to be significant at
high energy, while it failed to provide an attraction at
low energy. Another possibility lies in the rotational
motion of the skyrmion. In the conventional meson ex-
change picture, the two-pion exchange with NA or AA
intermediate states is known to dominate the medium
range attraction. In the Skyrrne model, 5 is treated as a
rotational excited state of the nucleon. Adiabatic calcu-
lation with the NA and AA coupled to NN channels
does not show significant attraction. ' ' Because the ro-
tational energy is of higher order in 1/N, a careful and
proper treatment of higher order effects seems irnpor-
tant. The problem is still open.
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