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In this work we calculate the inelastic electron scattering charge form factor of He using several
N-N interactions. We employ the hyperspherical harmonics expansion method and include the con-
tribution of harmonics above the minimal subset (L;„). We find that the inelastic electron scatter-
ing form factor obtained by us is in excellent agreement with the experimental observations of
Walcher. However, the inelastic form factor is insensitive to the N-N interaction. Further, we find

that the minimal subset approximation is inadequate for form factor calculations when the momen-

tum transfer is large. We also calculate the elastic electron scattering form factor and find the usual

disagreement between theory and experiment. A possible explanation for this discrepancy is given.

I. INTRODUCTION

The electromagnetic properties of nuclear systems are a
unique laboratory for testing various models of nuclear
structure. Although there is a large body of high accura-
cy experimental data on the elastic electron scattering
charge form factor (chff) of H, He, and He, the corre-
sponding information for inelastic electron scattering chff
[ He(e, e') He" ] is quite scanty. Moreover, the results of
different experimental groups are in serious disagreement
with each other. In the present work we have tried to
resolve this lacunae by calculating the inelastic electron
scattering chff (abbreviated to inelastic chff) to a higher
degree of accuracy using various N-N interactions.

It is worth noting that Furutani' has calculated the in-
elastic chff of He using the generator coordinate method
(GCM) technique. The model used in that work en-
visaged the excited state (e.s.) as a (3 + 1) state, i.e., a clus-
ter of three nucleons with the fourth nucleon loosely
bound to it; this amounts to a single particle excitation.
However, as discussed towards the end of Sec. II, the 0+
e.s. has to be collective excitation. Thus, it is not surpris-
ing that the results of Furutani are in poor agreement
with both the experimental groups.

The 0+ e.s. of He is quite loosely bound with a binding
energy (BE) of 8.2 MeV compared to the ground state
(g.s.) BE of 28.4 MeV. Therefore we expect the Coulomb
interaction to play an important role in the determination
of the wave function (WF) of the e.s. It is well known
that long range potentials (like the Coulomb repulsion) are
difficult to incorporate in a Faddeev equation formalism
since too many partial waves have to be taken into ac-
count. A coordinate space approach is more suitable for
this problem Thus, fo.r this work, we have used the hy-
perspherical harmonics (HH) expansion method. In this
technique the few body WF is expanded in the complete
orthonormal basis of HH, which are harmonic polynomi-
als in 3X-dimensional space. The few body Schrodinger
equation then reduces to an infinite set of coupled, one di-
mensional differential equations. For practical purposes
the expansion of the WF is truncated to a finite number
of HH and the resulting finite system of coupled differen-
tial equations is solved numerically.

A general feature of the HH expansion technique is
that the convergence of the expansion of the WF for a
bound state is guaranteed. Also, the largest contribution
to the WF comes from the first term (L;„)of the expan-
sion. Very often the chff of few nucleon systems are cal-
culated in the L;„approximation (i.e., only the first
term of the WF is retained in the calculation). However,
for the 0+ e.s. the convergence of the expansion is quite
slow. Thus, in order to ensure accuracy of the calcula-
tions it is desirable to go beyond the L;„approximation.

With the above discussion in view, we have undertaken
the present work with two objectives: (1) to calculate the
inelastic electron scattering chff of He using the HH
technique, and (2) to go beyond the L;„approximation.
In the next section we give a brief overview of the HH
technique. In Sec. III we derive expressions for chff of
"He in hyperspherical coordinates. The results are shown
and discussed in the last section.

II. THE HH EXPANSION METHOD

In this section we describe, very briefly, the HH expan-
sion technique. Cxreater details may be found in the excel-
lent review by Fabre de la Ripelle.

The conventional Jacobi vectors, g;, are used to con-
struct translationally invariant WF's for four identical
particles:

41 (r2 rl )

$2 ——[r3——,(rt+ r2) ]v'4/3,

g3 [r4 ——, (rt +r2+ r3 )]&3/2

We then transform to the hyperspherical coordinates de-

fined by (i) the six polar angles (to;) of g';, and (ii) the hy-

perradius p and the angles cpz and y3 expressed in terms of
the magnitudes of g;:

4, = I g, l
=S»Wz»nV, ,

go= lk I
=pc soon sin3cp

k3 I 43 I
=p cosy»
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In these new coordinates the volume element is given by

3

dr=p dp sin'y3cos (p3d+3sin p2 cos cp2d+2 + d(o;

where (Q) denotes the set of eight hyperangles. The HH,
Y(L)(Q), are defined as the eigenvectors of the grand orbi-
tal angular momentum operator L (Q):

and the nine dimensional Laplace operator is

(l~ 8 8 L (0)2+ +
~P ~ ~~ P

(3)

(4)

L (0)Y(L)(Q) = L(L—+7)Y(L)(Q),

where (L) denotes the eight quantum numbers required to
specify a HH completely. Explicitly, we have

12 l i (12+1/2, l &+1/2)
Y(I )(0)= g Y ' (w;)C2(Lz, l), lz)(sin(p2) '(cosy2) 'P(L

& (, )~2 (cos2@2)

L~ 13 ( L2 +2, l3 + 1 /2 )

X C3(L3 Lp 13 )(sinlp3) '(cos'tp3) P(L L ( )/2 (cos2(p3)

subject to the conditions

L3 L, (L——2
—I) —lq )/2 )0, integer

and

(L3 13 L )2/2 )0, integer .

The normalization factors C2 and C3 are

(2L2+4)[(L~ —l, —l~)/2]!r[1+ (L~+l, +lq)/2]
I [(L2+I) —l3+ 3)/2]r [(L2+l2 —1) +3)/2]

Cp(Lp, l), 12)= '

1/2
(2L +7)[(L L —1 )/—2]!I[(L +L +l3+ —, )/2]

(2+(L3+L2 —l3)/2]!I [(L3 L2+I +3—)/2]

The HH obey the orthonormality condition

f Y(L)(Q, )Y(L )(A, )dQ=5(L) (I. ), (7)

Q= g UL (p)p SL(II,)A(s, t) .

A(s, t) is a spin-isospin WF, totally antisymmetric with
respect to exchange of nucleons. SL(Q) is a linear com-
bination of HH of order 2L, totally symmetric with
respect to exchange of nucleons:

Sl (n)=Dr y Y(pL)(n) y Y(pl)((p' ) .
(2L) l,J ) 1

The Y(zL) (p'~) are geometrical coefficients, independent
of all extraneous factors like the potential. DL are nor-
malization constants such that

f Sl*(A)SL (Q)d0=5L I

which gives

Y(iL)(g )
(2L) i j & i

2 —1/2

(10)

where the 5 function implies that the HH are separately
orthonormal in each of the eight dimensions. The HH
form a complete orthonorrnal set and can be employed to
expand any arbitrary function f(p, Q). In particular, we
can expand the space WF and the total potential of a few
body system in the HH.

The S state WF of He can be written as

Introducing (8} in the four-nucleon Schrodinger equation,
multiplying from the left by A (s, t)SL* (0), summing
over the spin-isospin variables, and integrating over (0),
we get a coupled set of differential equations in the hyper-
radial functions UI (p),

(2L +3)(2L +4) mE—UL'p + p' ))1

= —g Vl (p)UI (p),
L'

where

VI. (p) =, fS,* (~)V((0, 0)SI.(Q)d0

V(p, Q) is the total potential in the system:

2

V(p, Q)= g VN N(i j) + —,
' [1+t3(i}][1+t3(j))

E,J ) E lJ

Some details of the procedure for calculation of the poten-
tial matrix elements, VI (p), are given in our earlier work
on the photodisintegration of He. The system of cou-
pled differential equations can be solved if the expansion
over WF, (8), is truncated to a finite number of terms. A
special technique of iterative improvement of adiabatic
approximation has been employed in the present work.
The details will be published elsewhere. In brief, we cal-
culate the hyperradial functions UL, (p) as
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Ul. (p) = —Iir. +7/2(ep)~p f ~p+2L+7/2(&p )[Wp(P ) (2L+3)(2L+4)/P ] UL(p')dp

+2L+7/2(eP)~P f ~p12L +7/2(&P')[II p(p') —(2L+ 3)(2L+4)IP' ]UL(p')dp (12)

where I„(x), K„(x ) are the modified spherical bessel func-
tions, W'0(p) is the zeroth eigenpotential, and UI (p ) in
the integrands, are the hyperradial functions calculated
using the uncoupled adiabatic approximation and
e[=(—mE/()i )' ] is the corresponding energy eigen-
value.

For the case of He, both the g.s. and e.s. have J~=O+.
Thus, their hyperspherical expansions are similar and only
their expansion coefficients [i.e., the hyperradial functions
UL (p)] are different. In this sense the e.s. is a pure hyper-
radial excitation of the g.s. On the other hand, from the
definition of the hyperspherical coordinates we see that
the hyperradius is a collective variable. Therefore we con-
clude that the 0+ e.s. of He is a collective excitation of
the g.s. It is probably due to this reason that the results of
Furutani' did not agree with experiment.

III. ELECTRON SCATTERING CHFF
IN THE HH FORMALISMS

In this section we derive hyperspherical expressions for
the electron scattering chff of He. The electron scatter-
ing form factor of a transition from state 3 to B is given
by

4

F(q)= tpz g —,
' [1+t&(j )]e ' tp„)f (q) .

B-A ~

1

(13)

The WF Pq, g~ are given by expansions of the form (8).
Summing over the spin-isospin variables and noting that
the space part of the WF is symmetric with respect to ex-
change of identical particles, we can write

F, „(q)= f gU,'(p)SL(n) e"
L

X g Ul (p)SL(Q) p d7. .
I

(14)

It should be noted that the above form is valid for both
the elastic and inelastic electron scattering chff's. The ex-
pansion of the plane wave in HH is given by

iq.$3 3/8 (27r) g ~ .x (~)
9/3

x=o (x)

x Y )(n, )Jr+7/, (x), (15)

where x =qp( —, )
'/ and

~ A2 (k2+ 1/2, A, [+1/2)
Y, , (Q )= g Y„'( ) C (X A, , A, )(si ) '( oa ) 'P(x' i i'(/ ( os2 )

X2 Q3(72+2, A, 3+1/2)
XC3(X3Xql3)(sina3) '(cosa3) 'I'(7i' x '3 (/2 (cos2a3),

with the restrictions X3 ——X, (Xz —)(, (
—A2)/2) 0, integer, and (X3—Xq —13)/2) 0, integer. The (pic) are the polar angles

of the momentum transfer q. The angles a2 and a3 are "kinematic rotation" angles characterizing $3; for the hyper-
spherical coordinates defined earlier (2), a3 ——0. Therefore, for Y(x((Q9) to be different from zero we require X2 ——0.
However, due to restrictions on the quantum numbers we also require A, 1

——A, 2 ——0. Moreover, since the system is spheri-
cally symmetric we can assume q to be along the z axis. Thus p3 ——0 and the expansion of the plane wave reduces to

iq.g'33/3/8 2 X3(2,A3+1 /2)
e ' =2

7/2 7r gi Jr+7/2(x) g Y(x((Q) Yp (lU&)C ( 3,XAO)P3( zi. )/2 (1) |ix,,04, , 04, ,0~@,,o|7(,,0~, , 0 ' (16)
X (x)

The above expansion of the plane wave has to be introduced in the expression for chff (13). Noting that the L =0 com-
ponent of the WF is the dominant term in the expansion of the WF, we retain only those terms in (13) which have L =0
in either fz or gs.

F(q)= f Uo(p)So (Q)e '
Uo (p)S0(O)p «+ g f Uo(p)So (Q)e ' UL(p)SL(&)p

B-A L=2

+ g f Ul (p)SL(O)e ' Uo (p)S0(Q)p dr f (q) .
L=2

(17)

In the L;„approximation only the first term of the above expression is retained in the calculation of I'(q). Introducing
(9) and (15) in the above expression, noting that Sp(A) is a constant and the HH are orthonormal in each dimension, we
get
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TABLE I. Norms of the "partial waves" together with the rms radius and BE calculated using the
Volkov and S 1 potentials (with Coulomb interaction).

Potential
L

0
2
3
4
5

6
7
8
9
10

g.s.

98 ~ 6436
0.9593
0.2233
0.1063
0.0366
0.0280
0.0068
0.0034
0.0013
0.0006

Volkov
e.s.

90.0 160
7.3389
1.6738
0.5698
0.1213
0.0652
0.0244
0.0203
0.0144
0.012 1

g.s.

96.7955
1.3979
0.7527
0.5095
0.215 1

0.1778
0.07 1 8

0.0450
0.02 19
0.0127

S1
e.s,

91.4529
5.9038
1.5834
0.5605
0.1 347
0.1003
0.06 1 7
0.0727
0.0648
0.0649

BE (MeV) 29.769 5.579 30.833 2.585

rms radius (fm) 3.66 1.43 3.77

F(q)= 105 f Uo(p)Uo(p)j3(x)x dp
B-A

max

+ P Difdp[U. O (p)UI. (p)+UL (p)Uo(p)lx g'I-+3(x) P G(L I3) fp(q»
L=2 I,

with DI-=( —1) 16(, )' vr DL,

Oo ''
3 (2, 213+ 1/2)

G(L, l3) = g Y(2g 2', )((p' ) Yp '(0)C3(2L,0, 2t3)P(~ ', ) (1) .

YtiL q~ ~(q"J) are the geometric coefficients defined earlier

with all quantum numbers, except for L and I3, equal to
zero. In the above expression L takes even values only
(i.e., L =2, 3,4, . . . , L,„)and I' varies from 0 to L.

Using the above expression we can calculate the chff of
He easily. Only the integrations over the hyperradius

need to be performed. In practical calculations we found
that the integrands were quite smooth and an ordinary
Simpson's rule works efficiently.

IV. RESULTS AND DISCUSSION

The system of coupled differential equations is truncat-
ed to a finite (L,„) set in practical calculations. This
amounts to truncating the solution space and the corre-
sponding eigenvalue is an upper limit to the exact eigen-
value. The presence of the centrifugal barrier
[—( L2+3)(2L +4)/p ] ensures convergence of the WF.
We increase L „until the eigenvalue converges. In the
present work we found that both the g.s. and the 0+ e.s.
of He converge when we retain the first ten equations
(i.e., L,„=10). In Table I we give the norms of the
"partial waves" together with the root-mean-square radius
and the BE calculated using the Volkov and S 1 potentials

07 (~)
0.6—
0 ~ 5—

CL,
0 ~

4—
0.3—
0. 2-
0;1
0. 0—

—0 ~ 1

( t )0 ~ 5

0 ~ 4

0.3
0.2

F 1

0 ~ 0
—0 ~ 1

—0 ~ 2
—0. 3

10 12

FIG. 1 (a) The hyperradial functions Up(p) and U2(p) of the

g.s. using the Volkov potential. (b) The hyperradial functions

Up(p) and U2(p) of the e.s. using the Volkov potential.
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ever, they have integrated only the first seven equations
and ignore the Coulomb interaction. Thus, we obtain a
slightly different set of norms though the trend is similar.
Moreover, they have not calculated the chff of He. Bal-
lot et al. have also obtained a node in Uo(p) of the e.s.
This result can be understood on the basis of the lemmas
due to Levinger, ' which state that for local noncentral
forces in multidimensional space we have that (i) the
lowest partial wave of the g.s. is nodeless, and (ii) the
lowest partial wave of the first e.s. has at least one node.
It should be noted that, in general, forces which are cen-
tral in three-dimensional space become noncentral in 3N-
dimensional space (X ~ 1), resulting in the coupling terms
Vt (p) in (11).

The electron scattering chff is calculated using (18). In
Fig. 2 below we plot the inelastic chff of He calculated

FIG. 2. The inelastic chff of He obtained using the Volkov
(solid line) and S1 {dashed-dotted) line potentials. The experi-
mental data are due to Walcher (Ref. 11) (triangles) and Frosch
(Ref. 12) (dots).

10

(with Coulomb interaction). An inspection of the table re-
veals that the L =0 component of the WF is the most im-
portant term. This justifies the approximation used in the
calculation of F(q).

In Figs. 1(a) and Fig. 1(b) we plot the functions Uo(p)
and U2(p) of the g.s. and e.s., respectively obtained using
the Volkov potential. Remarkable features are that Uo(p)
of the e.s. has a node and both Uo(p) and U2(p) decay
very slowly compared to their g.s. counterparts. Thus the
e.s. has a large rms radius (cf Table I) and this state is sen-
sitive to the Coulomb interaction. Similar hyperradial
functions are obtained with other potentials.

The BE of the four nucleon system has been investigat-
ed using the same N-N potentials by Ballot et al. How-

-2
5 x10

10-1
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-2
10

I

10 15
q'(fm )

20 25 30

10
0.0 0.5

t

1.0 1 5

q(fm )

2.0 2.5

FIG. 3. The inelastic chff of He obtained using the L;„ap-
proximation (dashed line) and the full expression (solid line).

FIG. 4. The elastic chff of "He obtained using the Volkov po-
tential with the L;„approximation (dashed line) and the full
expression (solid line). We compare our results with those ob-
tained using the realistic Urbana 514 potential (plus three nu-
cleon interaction) (Ref. 15).
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using the Volkov and S 1 potentials. These two potentials
are central but vary in the strength of the soft core. Re-
markably, the inelastic chff's obtained agree with each
other. The calculations were repeated for a number of
other potentials and similar inelastic chff's were obtained
in each case. This feature clearly exhibits the insensitivity
of inelastic chff's to the explicit form of the N-N interac-
tion. Thus the He(e, e') He* reaction is unlikely to reveal
any information regarding the details of nuclear potential.
Moreover, there is close agreement between the theoretical
values and the experimental observations of Walcher"
(marked with triangles). The other set of experimental re-
sults (marked with dots) is due to Frosch. ' Both experi-
mental groups studied the reaction He(e, e') He* and ob-
tained similar cross sections, though Walcher s experi-
ment had better resolution. Frosch used an asymmetric
curve, based on R-matrix analysis, ' to fit the resonance
due to the 0+ e.s. On the other hand, Walcher used a
symmetric Lorentzian to fit the same resonance. The in-
elastic chff was then extracted by the usual process and
are reproduced in Fig. 2. The discrepancy between the
two sets is obvious. Qn the basis of our calculations using
various N-N potentials, we get the impression that the in-
elastic chff obtained by Walcher is more reliable. Howev-
er, the final test rests with the experimentalists.

A detailed analysis of the chff shows that the L;„ap-
proximation is quite good for low momentum transfers.
However, the approximation becomes poor with increas-
ing momentum transfer and for q & 2.5 fm ' the
discrepancy is alarming. In Fig. 3 we compare the inelas-
tic chff obtained using the L;„approximation [i.e., the
first term in (18)] and the actual chff calculated using the
Volkov potential.

It is well known that for large momentum transfer the
chff is sensitive to the details of the WF. From Fig. 1(b)
we see that U2(p) gives an appreciable contribution to the
asymptotic part of the WF. Thus the L &2 components
of the WF become significant for increasing momentum
transfer.

For the sake of completeness we have also calculated

the elastic chff of He. In this case both Ps and g~ [cf.
(12)] refer to the WF of the g.s. The results are shown in
Fig. 4. In this case we see that the theoretical estimates
with the Volkov potential (solid line) are in very poor
agreement with the experimental observations. ' The first
minima are too far and the secondary maxima are too
small ( —5&&10 ). Our results are in agreement with
those of other group; in the figure we compare our values
with those obtained using the Urbana 5,4 (Ref. 15) poten-
tial. In Fig. 4 the dashed line indicates the elastic chff of
He obtained with the Volkov potential in the L;„ap-

proximation. As in the earlier case of inelastic chff, we
see that this approximation becomes poorer with increas-
ing momentum transfer. A similar situation exists for the
elastic chff of trinucleon systems. However, recent calcu-
lations of chff's of H and He (Ref. 16) indicate that the
discrepancy can be resolved if the quark substructure of
the nucleons is incorporated accurately in the few nucleon
WF. Coon et al. ' have indicated a procedure for obtain-
ing the quark cluster probability in He. It is worth inves-
tigating the elastic chff of He with the underlying quark
dynamics taken into account. Since the nucleons are well
separated in the 0+ e.s. of He, the six, nine, and twelve
quark clustering probability will be very small. Thus
quark dynamics will have a small effect on the inelastic
chff of He.

With the results of this work we can conclude the fol-
lowing.

(i) The inelastic electron scattering chff's of He, calcu-
lated using various spin independent N-N potentials, agree
closely with the experimental observations of Walcher.

(ii) It is important to retain the L & L;„components of
the WF for q & 1 fm

(iii) The underlying quark dynamics should be included
in the calculation of elastic chff.
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