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The kinetic equation on nuclear gas is derived by means of the Bogoliubov approach. It is an im-

proved Boltzmann-Uehling-Uhlenbeck equation including correctional binary collisions with many-

body effects.

The study of collisions between heavy ions at medium
energy is a subject which is still poorly understood. The
time-dependent Hartree-Fock (TDHF) equation has been
used at low energy. ' The TDHF equation requires that
binary collisions be neglected in comparison to the mean
field generated by the nucleons. However, at medium en-
ergy binary collisions between the nucleons are important.
In this case, the Boltzmann-Uehling-Uhlenbeck (BUU)
equation has become a starting point for microscopic stud-
ies. The first derivation of this equation was given by
Uehling-Uhlenbeck in 1933. They derived it from physi-
cal arguments. The collision integral on the right-hand
side differs from the classical Boltzmann equation by the
Pauli blocking factor. Later attempts have been made to
derive this equation from the Liouville —von Neumann
equation of quantum statistics. In these derivations an
important condition is that the gas is dilute. Whether the
BUU equation can be used in the nuclear gas of heavy ion
collisions is an open question. Recently, the modified
Boltzmann equation has been derived by the self-
consistent Brueckner-Bethe-Goldstone method. The
equation is expressed by the Brueckner 6 matrix, which is
very dificult to solve.

In this paper an improved Boltzmann-Uehling-
Uhlenbeck equation is derived by means of the Wigner
distribution function and a Bogoliubov approach. The
equation considers both modified mean field interactions
and correctional binary collisions by the effect of many-
body effects. This is of advantage for applications.

The time evolution of s particle density matrices p, is
determined by the quantum BBGKY hierarchy as fol-
lows:

quirements on the function p, by means of

p, = A, F, ,

where A, is an antisymmetrization operator defined by
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Here, I'Jk denotes the permutation operator. Since
satisfies the relation
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It is convenient to introduce the Wigner distribution
functions

f, (q'p't) = fF, (q "q'"t)

x exp( p' y'li A)d—y' . . (6)

and commutes with the operators K; and V~, one may
substitute Eq. (2) into Eq. (1) to obtain the equation
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and

F, (q "q'"t)= ff, (q'p't)exp(p' y'/iR)dp' . (7)
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It is convenient to introduce directly the symmetry re-
t

One may substitute Eq. (7) into Eq. (5) to obtain the
quantum BBGKY hierarchy of the Wigner distribution
functions f, . When s = 1 and 2, one finds

f l pl f1 1
d (ir/2)8) 3

—(ii)'/2)8(2 f i
1 (ir/2)8(3 —(ir/2)8(3

t)t m 2q l fiv

Pj f2 t (vari/2)8(& —(i'/2)8(& „ t
d

(iri/2)8 3
—(ifi/2)8. 3

2

"dt
) m t)q/ fi RU

i (iri/2)8 3 (i'/2)8 '3

36 667 Qc1987 The American Physical Society



668 BO-JUN YANG AND SHU-GUANG YAO 36

where v is the mean occupied volume of every nucleon, x,
are all of variable q, and p, . The operators 012 and Oj3 are
expressed as

case

f, (x(, . . . , x, t)=f, (x(, . . . , x,
~
f)),
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Bq1

a
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(10)
The average separation between collisions is d. When

the length is measured in d the mean volume v is a small
quantity. One can write

Equations (8) and (9} are exact. Since f2 depends on

fq, accurate solutions of the hierarchy are impossible. It
is necessary that the approximated approach will be ap-
plied to solve.

According to the Bogoliubov hypothesis, provided the
average time between collisions is much longer than the
collision time, it is possible to find a kinetic state. In this
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In a first order approximation we set f2=f)(x()f)(x2)
and find
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This is a self-consistent equation called the quantum Vlasov equation. In a second order approximation we write a for-
mal solution

f'(, . . . , ~f)= y g(, , ) g f( ), (15)

where

g (x;x, ) =f2((x; x/ f, ) .

g(x; x, ) is the two-body correlative function, whose boundary condition is

lim 4(,g(x;x, )~0 .

Equation (15) means that s-body eff'ects are correlated by two-body effects. We may write

(16)
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We use Eq. (15) to obtain
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Once one knows g(x), xq), we shall be able to obtain the two-order-approximated equation off(,
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U)(q) ) is the mean field potential. In general, solving the simultaneous equations (18) and (19) is very difficult. In the
following paragraph it is shown how Eq. (18) may be solved in quasihomogeneous systems.

The conditions of quasihomogeneous systems are

g(xlx2) =g(ql —q2PlP2)

This shows that the correlative function only depends on the relative coordinate. In this case one may obtain
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We may substitute Eq. (23) into Eq. (19) to obtain
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Performing the Fourier transform of Eq. (22), one may find, after some manipulation,
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It is convenient to introduce the Fourier transform to solve Eqs. (19) and (22). We set
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Substituting Eq. (26) into Eq. (24), one finds
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Equation (28) is the kinetic equation of a nuclear gas in the quasihomogeneous case. This is an improved BUU equation.
It is reduced to the usual BUU equation provided to neglect many-body e6'ects and to take the first approximation of the
term 2:
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In summary, the BUU equation can be applied by restricting the systems to be dilute: that is, the density of the parti-
cle should be low enough so that each nucleon essentially is independent of every other nucleon in the system. However,
this condition is not satisfied in heavy ion collisions. Since Eq. (28) includes the infiuence of many-body effects, it is
inevitable that Eq. (28) is better than Eq. (29) for heavy ion collisions.
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