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We derive a unified description of the low-energy elastic, inelastic, neutron transfer, and fusion
cross sections of systems involving two stable oxygen isotopes. Coupled channels equations with
an incoming wave boundary condition are employed, as is the no-recoil approximation; the adia-
batic approximation, which violates unitarity, is avoided. A calculation with phenomenologically
determined '°O + '®0 and '®O-n potentials reproduces the measured cross sections within the limi-
tations of the model. A possible error in the data analysis for '°O + ’O by Thomas et al. is point-

ed out.

I. INTRODUCTION

The description of subbarrier fusion in terms of a
Schrodinger equation involving only the internuclear sepa-
ration is quite adequate for many light systems. However,
for heavier systems this picture often underpredicts exper-
imental fusion cross sections below the barrier by large
factors.? By “inverting” the measured fusion cross sec-
tions, Balantekin et al.® showed that this underprediction
is due not to poor parametrization of the internuclear po-
tential, but rather is inherent to a one-channel approach.
A successful description of subbarrier fusion in these
heavier systems is possible only if other degrees of free-
dom are treated explicitly; likely candidates include target
and projectile excitations, as well as few-nucleon transfer.

Comparisons of closely related systems involving
different isotopes or isotones of the target and/or the pro-
jectile allow an addition and removal of selected degrees
of freedom and hence an isolation of their influence on the
fusion process. The stable oxygen isotopes 'O, 'O, and
180 are particularly attractive in this regard. The doubly
magic '°O nucleus has no low-energy excited states, the
extra neutron in 'O provides fairly clean single-particle
states, and '®0 has well-defined two-neutron excitations.
Moreover, in the '7'80 + %O systems, the one- or two-
neutron transfer channels, respectively, have vanishing Q
value and are thus expected to enhance the subbarrier
fusion cross section. The coherent addition of this
transfer amplitude in the elastic channel results in a rich
structure in the angular distributions. There have been
several measurements of the '°0O + %O subbarrier fusion
cross section,”*~7 and Thomas et al.""” have measured
%0 4 70 and '°0 + '®0. Data for various angular distri-
butions are also available.®8~ 12

In this paper we attempt a unified description of the
subbarrier elastic, inelastic, transfer, and fusion cross sec-
tions for systems involving two oxygen isotopes. Our
basic picture is two inert 'O cores interacting with
valence neutrons and with each other. Given a phenome-
nological, but microscopic, description of the low-lying
states in 'O and '*O and of the '°0 + 90 system, we
wish to assess the effects of the neutron degrees of free-
dom on the experimental observables of the 'O + !°0
and '80 + %0 systems. Our computational framework is
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the coupled channels formalism, supplemented by an in-
coming wave boundary condition (IWBC). In Sec. II we
define our model for the 'O + %O system and compare
its predictions with the data. In Sec. III we similarly con-
sider the '®0 + '®0 system. Some conclusions are given
in Sec. IV. Details of this work can be found in Ref. 13.

II. THE '%0+!"0 SYSTEM

We treat the %0 + 70 system as a three-body problem
of two inert 'O cores interacting with each other and
with a valence neutron. This allows us to account simply
for the $* ground state and 1+ excited state of 'O and
for the exchange symmetry between the two O cores.
The dynamics are determined by the core-core potential
V, and an '®O-neutron potential, v. After eliminating the
center-of-mass coordinates, we choose the intercore sepa-
ration, R, and the neutron center-of-mass location, r, as
independent coordinates, as shown in Fig. 1. The Hamil-
tonian is then

__ P 7o
H—_MVR—ZHV'+V(IRj)
+o(|r+4R|)+ov(|r—1IR]|), (1)

where M is the '°0O mass (twice the reduced mass for the

FIG. 1. Coordinates for the 'O + 'O model; 1 and 2 refer to
the two '°O cores and n refers to the valence neutron.
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160 + 10 system) and u is the reduced mass for the (two
160)-n system; i.e., g =2Mm /(2M +m), with m the neu-
tron mass. To complete the model, we use phenomeno-
logical considerations to specify the potentials involved.

A. The core-core potential

The %0 + '®0 fusion cross section is well reproduced
in an IWBC framework by a one-channel Schrodinger
equation involving a real internucleus potential. Writing
V as the sum of a nuclear potential, ¥y, and the Coulomb
potential between two point Z=8 charges, Thomas et al.
chose a Woods-Saxon form

" 14exp[(R—Rp)/al ’

Vn(R) (2)

They fixed the potential depth ¥V, and performed a two-
parameter least-squares fit to the fusion cross section by
varying the potential radius R, and the diffuseness a. The
quality of the fit is very insensitive to the choice of IWBC
radius. Equally good fits were achieved with different
values of Vy; they chose Vo=50 MeV and obtained
Ry=6.51 fm and a=0.46 fm. This same potential repro-
duces the 90° elastic differential cross section measured by
Spinka and Winkler,* as well as the elastic angular distri-
butions measured by Bromley et al.® and Wu and
Barnes.®

The potential described above is very steep (i.e., a is
very small), relative to typical folding potentials.!* Never-
theless, it gives a good description of the 'O + 'O sys-
tem in a single-channel model. This is possible because
the high excitation energy of the first excited state in
160(6.04 MeV) renders channel coupling small. This
same rigidity encourages us to assume inert '°O cores for
the systems we treat and to adopt the potential of Thomas
et al. for our model.

B. The core-neutron potential

The J™=37 ground and 17t (0.87 MeV) first excited
states of 170 are well described by single neutron ds,, and
51,2 configurations, respectively. [Spectroscopic factors
Ss5,2,=0.81 and 0.78 have been measured in the
160(d,p)'’0 reaction at a bombarding energy of Eq=25.4
MeV, with a tendency for S to increase with increasing
bombarding energy.!’] A purely central '°0O-n potential
with a realistic radial shape will reproduce neither the ab-
solute binding nor relative splitting of these two single-
particle orbitals, as the 1d orbital typically is less bound
than the 2s; the spin-orbit potential is essential. However,
introduction of a spin-orbit component of the core-
neutron potential would significantly increase the number
of reaction channels that couple to each other and the
overall complexity of our calculation. We have therefore
chosen a central '°0O-n potential with a somewhat uncon-
ventional radial shape that places the 1d and 2s levels at
the appropriate energies; the more deeply bound levels of
this potential are ignored. We also ignore the experimen-
tal 1= and 3~ states of '"O; these are expected to be

unimportant because of their high Q value and negative
parity, as is confirmed in the data of Thomas et al.!

Our '%0O-n potential is the sum of Woods-Saxon and
Gaussian terms:

- 1+exp[(r—ro)/a]

v(r) +vexp(—r2/rl), (3)

with the parameters vo=60.827 MeV, v, =27.3 MeV,
ro=3.034 fm, a=0.66 fm, and r;=1.0 fm. Here, the
Woods-Saxon term has the same diffuseness a and radius
ro as the 17O potential of Ref. 16. When inserted into the
Schrodinger equation defining the single-particle orbitals,

—2£_V3+v(|ri%R|) ¢:(rtiR)=¢€:¢;(r=iR), ()
L

where i labels the orbital being considered, €; is the
single-particle energy, and g=Mm/(M +m) is the re-
duced mass of the '®O-n system, the physically correct
1d and 2s eigenvalues are reproduced. We note that our
procedure of fitting the eigenvalues of our potential to
the experimental 17O levels guarantees that the exponen-
tial falloff of the radial wave function is correct, al-
though its normalization at large neutron-core separa-
tions depends upon the detailed form of v that we have
chosen. Our potential produces asymptotic normaliza-
tions of 0.362 fm 372 for the ds, ground state and 1.172
fm 372 for the s, ,, state, while Gelbke et al.’ give 0.363
and 1.133 fm~3’?, respectively, and Burzynski et al.'®
give 0.354 fm—3/2 for the d , state.

C. The coupled channels equations

Our ansatz for the total wave function |®) is a sum
over products of channel wave functions ®;(R) and
internal single neutron states |i) in '70. We include in
the latter only the lds,, and 2s,,, orbitals and use the
letters a and 3 to denote the partition of the system; i.e.,
whether the neutron forms 'O together with the “left”
or “right” '°0 core. Thus,

|@)=F ®ia(R) |a,i)+3 ®;R)|B.j) , (5)
i j

or, equivalently,

| @)= @ (R)$i(r+iR)+ 3 @jo(R)G;(r—1R)  (6)
i J

if the internal wave functions are written explicitly in
coordinate space. The ¢; are, of course, spinors describ-
ing the neutron’s spin.

The kinetic energy in the full Hamiltonian (1) associat-
ed with the neutron center-of-mass coordinate r contains
the (two-'°0) + neutron reduced mass, u, while the
single-particle Schrodinger equation defining the neutron-
core bound states involves the '°0O-n reduced mass, .
Equating these two reduced masses is a particular no-
recoil approximation, which becomes exact in the limit
m /M —0. This step seems to us to be the cleanest way
of treating the coupled channels problem with transfer as
a system of local differential equations (an alternative is to
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simulate the nonlocality of the exact equations by scal-
ing”). However, we will show below that it allows the
adiabatic approximation only at the cost of nonunitarity
and that the alternative nonadiabatic coupled channels
|

0=(ka |H—E |®)

2
= —-%Vﬁ —E+4e+V(|R| )J(Dka(R)

2
+3 @,u(R) [ d’rgi(r+1R) {—f—vi +o(|r—1R])

M

ﬁl
M

+3 [ d’r gt(r+1R);(r—1R)
J

Vk—E+¢€+V(|R])

equations contain first-order derivatives.

The coupled channels equations are derived by project-
ing the Schrédinger equation with the kets (ka| and
(kB|:

2ﬁ2 3 * 1 1
— 2 3 [Va®pR)): [fd r¢k(r+?R)VR¢j(r—?R)]
J

2
+3 ®jp(R) [ d $L(r+1R) [—%V% +u(|T+iR])
J

and similarly for (kB |. Here, we have used the facts that
[ @ g1 (r+1R)Vri(r+ 1R)=0

(we consider only internal states of the same parity), and
that

[ d’r g1(r+ IR)VR4i(r+LR)

is independent of R and is equal to 8;7Tx/4, where
Ti= [ d’x¢%(x)V3di(x).

A considerable simplification and a halving in the num-
ber of channels that couple to each other can be achieved
by working in an even/odd basis, rather than the
left/right basis used above. We define even/odd state as

li,p)=2""|i,a)+(—1¥|i,B8)], (8)

where p takes the values O (even) and 1 (odd). The ex-
change symmetry of the two '®O cores implies that matrix
elements of the potential, overlap, and differential opera-

J

0=3

2—’52<k V|iB)(V®D,,) ﬁ(k ip ) V®
Y al|V|iB)- v, p | ip ip

for all k. Here, the even/odd channel wave functions are
P, (R)=P;o(R)+(—1PPpp(R) , (1

and the core-core potential V and all matrix elements in
Eq. (9) are functions of R.

The no-recoil approximation and the resulting constant
T; in Eq. (10) lead to an ambiguity in the Q value. On

¢i(r+1R)
®;5(R)
¢j(r—3R), ™

f
tors Vg and V% are diagonal in p. Thus, for each k, Eq.
(7) and its analog for {k,B| are transformed into uncou-
pled equations for the even and odd states; the coupling in
the indices k, i, and j remains, however.

With the definitions and derived identities

(kp |ip) =8y +(—1¥{ka|iB)
=8y +(—1P{kB|ia) ,
(kp | Ve lipy=Lka|V_|ia)+(—1P{kB|V_ |ia)
=(kB|V, |iB)+(—1¥ka |V, |iB),

9)
(ka |V |iB)=(kB|V |ia) ,

(ka |V2|iB)=(kB|V*|ia) ,

where V, and V_ are given in coordinate space by
v(|r+4R|) and v(|r—JR|), respectively, the coupled
channels equations can be written as

2
(—E+€+V)kp |ip)+6;T,/4+kp |V, |ip)—%(ka | V2]iB) |®@,

(10)

the one hand, it can be defined as the difference in kinetic
energy at spatial infinity for different channels; alterna-
tively, it is the difference of the single-particle energies in
70. In an exact calculation, these are, of course,
equivalent. We have used the former definition in our nu-
merical calculations to guarantee the correct asymptotic
behavior of the channel wave functions and thus treat the
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dynamical effects of the Q values correctly.

Using the rotational symmetries of the problem and an-
gular momentum couplings, Eq. (10) can be transformed
into a set of differential equations for radial wave func-
tions involving only R= |R| and the matrix elements
can be reduced from three- to two-dimensional integrals
that can be evaluated by numerical quadrature. The ap-
pearance of first-order derivatives in Eq. (10) prohibits use
of the usual Numerov algorithm'® for discretization.
Thus, we have employed a simpler formula that is of
second order in the step size. The usual method for cou-
pled channels Schrodinger equations, namely the sequen-
tial Born-series-like channel-by-channel integration,'® then
loses much of its advantage over a direct calculation
where all channels are integrated outwards simultaneous-
ly. This is especially true for systems with few coupled
channels. In the even/odd basis we have for the general
case four channels that have the same parity: the three
ground state channels with total channel spin J=3 and

2
the one excited state channel with J=1.

D. IWBC for coupled channels
The IWBC is formulated for the multichannel case as

Xip(R)~[Kip(R)]_l/zexp (12)

. [R =\ =
i fROK,.,,(de

for R near Ry, where R is the IWBC radius and
— 172

2ME,,
#ip | ip)
with M the reduced mass of '°0-0, and E;, the energy
of channel (i,p) at R= 0.

The set of equations (10) is unusual in direct reaction
theory studies because it contains first-order derivatives of
the channel function ®;,. An approximation that elimi-
nates these terms is to let V% in Eq. (1) act only on the R
dependence of ®,,,5 in Egs. (5) and (6), but not on the
internal wave function ¢;. We call this the adiabatic (or
Born-Oppenheimer) approximation in analogy to molecu-
lar physics, because the potential of the light particle (here
the neutron) is calculated with the positions of the heavy
particles (here the 180 cores) fixed. This calculation, how-
ever, is done only on the truncated subspace of 7O wave
functions for either core.

The existence of a conserved probability current for the
coupled channels equations we use is very desirable since
far below the barrier it is much easier to evaluate the
fusion cross section by calculating the in-going flux at the
IWBC radius, rather than from the small outgoing flux
missing at large separations. Unfortunately, the coupled
channels equations resulting from the adiabatic approxi-
mation do not admit a conserved current. The flux in the
nonorthogonal basis states is

i B8 .
=5 > 52 2(17 | JONDEVD;s—D;sVDE) . (14)
y=ao=a i,j

K,‘p (13)

It is easy to show that F is conserved by Eq. (10), but not
in the adiabatic approximation. (Approximate, but non-
trivial expressions for F are also not conserved in the

latter.) The loss of unitarity in the IWBC framework
makes the definition of the fusion cross section ambiguous
because the difference in flux of the incoming and total
outgoing wave is not equal to the flux at the IWBC ra-
dius. Therefore, we have not made the adiabatic approxi-
mation in our work and have returned the first derivatives
in Eq. (10).

E. Results and comparison with experiment

Figure 2 shows our calculated fusion excitation func-
tion and the corresponding experimental data. Two data
sets are shown: the open circles are the data published
by Thomas et al.,! while the error bars are the same
data corrected for an error in the determination of the
28 A partial fusion cross section.?’ The new cross section
data show a small, but clearly visible, enhancement over
the %0 + 'O fusion cross section (dashed line in Fig. 2),
which is well reproduced by our calculation (solid line in
Fig. 2).

Figure 3 shows the total inelastic excitation function for
%0 + "0—1%0 + 70%,,. The data are from Ref. 1, the
solid line is our calculation, and the dashed line is a semi-
classical Coulomb excitation calculation.?! At these ener-
gies, the Coulomb excitation cross section is very small
compared to the nuclear excitation and thus has a negligi-
ble effect on the fusion process. The large inelastic cross
section at low energy stems not from the direct inelastic
reaction, but from neutron transfer into the excited state.
In the no-recoil approximation, this transfer is not
affected by the Coulomb force. The experimental cross
section is consistently smaller than the calculated one,
from a factor 0.25 at the lowest to 0.7 at the above-barrier
energies. This could, of course, be improved at the ex-
pense of fitting the parameters in our calculation (e.g., the
neutron-core potential).

Figure 4 shows an experimental inelastic angular distri-
bution from Ref. 9 and our calculation (dashed line). The
interference pattern in the cross section stems from the

il J‘LJAL

Tpys (b)

sl

T ReTmI

. . ‘ ‘ .
8 9 10 1 12 13 14
,
Ecm. (MeV)

FIG. 2. Fusion cross section for 'O + 0. The circles de-
pict the data from Ref. 1. The error bars are centered around
the corrected values, as discussed in the text, but their sizes are
unchanged. The solid line is the result of our calculation, while
the dashed line shows the calculated '°O + 'O fusion cross sec-
tion.
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FIG. 3. Total inelastic cross section 'O + *0—'70* 4 °0.
The crosses are the data from Ref. 1 (errors are smaller than the
symbol size). The lines show the result of the calculated nuclear
(solid) and Coulomb excitation cross sections (dashed).

coherent summing of the direct inelastic and transfer elas-
tic amplitudes. The solid line is the result of our calcula-
tion scaled by a factor 0.7, i.e., the factor that would bring
the total measured and calculated cross sections into
agreement at these energies. After scaling, the data are
fairly well reproduced (of the same quality as the DWBA
calculation of Ref. 9, which needed a scaling factor of the
same magnitude).

The elastic angular distribution relative to the Ruther-
ford cross section at E., =10.65 MeV is shown in Fig.
5. The measurements are from Burzynski et al.'° and the
solid curve is our result. The dashed curve is a one-
channel calculation that uses just the '®0-10 potential
without transfer or inelastic excitation. The data exhibit
oscillatory behavior around this curve; again, this is due
to the interference of the direct elastic and transfer elastic
channel. Burzynski et al. find an excellent fit to these os-
cillations with an exact finite-range distorted-wave Born-
approximation calculation with a fitted spectroscopic fac-
tor, i.e., a scaling of their single-particle wave function

12 T T T T
10 + B
—~ 8}
S
o
<
=
£ |
c
T
5
T 4} ]
2+ §
o =
0 150 180
ec.m.
FIG. 4. Inelastic differential cross section for 7O + '°0O at

E.m =113 MeV. The data are from Ref. 9 and the solid and
dashed lines show our scaled and unscaled results, respectively.
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FIG. 5. Ratio of the elastic cross section, do/df}, to the
Rutherford cross section, doo/d ), for 'O + °0 at E. . = 10.67
MeV; data are from Ref. 10. The solid line results from our
coupled channels calculation, while the dashed line is a one-
channel calculation using the '°0-'°O potential.

and thus matrix elements. Also, their single-particle po-
tential contains a spin-orbit coupling term. Our full cal-
culation (solid curve) shows the same oscillations, but
they are too pronounced at larger angles. We might attri-
bute this deviation either to a relatively poor choice of the
single-particle wave function (e.g., an absence of a spin-
orbit coupling term in the single-particle potential) and/or
to our no-recoil approximation.

III. THE %0+ '%0 SYSTEM

We model the '%0-!80 system at subbarrier energies in
the same spirit as the '®0-170 calculation described above.
The '%0-'°O potential is taken from Thomas et al. and
the coupling matrix elements are derived from the single-
particle potential (3). However, betause of the higher ex-
citation energy of the first excited state in '%0 (1.98 MeV,
compared to 0.87 MeV in '70), the total inelastic (direct
and transfer) cross section for '*0-'°0 is much lower than
that for '"O-'°0. (Figures 6 and 3 show the measure-
ments for these two systems.) A semiclassical Coulomb
excitation calculation of the first excited state (no other
excitations were observed in the experiments) shows that
Coulomb excitation accounts for all of the inelastic cross
section below E. ., =10 MeV (solid line in Fig. 6). We
conclude that the inelastic channels are unimportant for
the subbarrier fusion process but that, should they be tak-
en into account, nuclear excitation (as in our treatment of
the '°0-'70 system) must be supplemented by Coulomb
excitation. We therefore do not include inelastic channels
in our description of the fusion cross section and restrict
our calculation to only the direct and two-neutron
transfer elastic channels.

Our model is the three-body system of two '°0O cores
and one effective dineutron “boson.” The same no-recoil
approximation is made and the same formalism is used as
in Sec. II B (again, the final equation contains a first
derivative of the channel wave function). The neutron-
neutron interaction is treated as a perturbation to first or-
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FIG. 6. Total inelastic cross section '*0 + '°0—130* + Q.
Data are from Ref. 1 and the solid line shows the result of a
Coulomb excitation calculation.

der in the energy and to zeroth order in the wave func-
tions; i.e., 'O radial wave functions are used with the
correct angular momentum coupling. In an even/odd
basis the coupled channels system is reduced to two un-
coupled single-channel equations. Details of the calcula-
tion can be found in Ref. 13.

We show our calculated fusion cross section (solid line)
in Fig. 7 together with the data from Refs. 1 and 7 and
the !'°0-'%0 results (dashed line) for comparison. The
subbarrier fusion enhancement is well reproduced. Above
the barrier (~ 10 MeV) the measured fusion cross section
exhibits a dip that the calculation does not reproduce. If
this structure is real, it could arise from the interference
of the direct channel with another channel. Our calcula-
tion makes it unlikely that this would be the transfer elas-
tic channel, and the small inelastic cross section makes it
unlikely that excited states are involved. We conclude
that this above-barrier structure remains unexplained.

Because of the simplicity of our %0 wave function, we
cannot expect that the elastic angular distributions are
reproduced any better than are those for '°0O + '7O.

|
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FIG. 7. Fusion cross section for 0 + !°0O; data are from
Ref. 1. The solid line is the result of our calculation, while the
dashed line shows the calculated '°O + !°O fusion cross section.
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FIG. 8. Ratio of elastic cross section do/d{ to Rutherford
cross section doo/dQ, for 80 + '°0 at E., =12.7 MeV; data
are from Ref. 11.

Indeed, Fig. 8 shows only qualitative agreement between
the calculation and the measurement by Gelbke et al.!l

IV. CONCLUSION

The subbarrier fusion cross sections for 'O + °0O and
180 + 160 show relatively little enhancement over that for
10 4+ 10 when compared with isotope differences for
heavier systems. These enhancements are well repro-
duced in our model calculation, with the possible excep-
tion of an above-barrier structure apparent in the
160 + 80 data of Refs. 1 and 7. Our consistent incor-
poration of inelastic and transfer channels allowed us to
calculate various differential cross sections as well. In all
cases considered, our results show qualitative agreement
with experiment.

An improved quantitative agreement with much of the
experimental data could no doubt be had by a fine tuning
of the single-particle potential and wave functions. In our
model calculations, the quality of the single-particle wave
functions sets a limit on how realistic is our description of
the additional channels in the fusion system and hence
how believable are our precise values of the fusion cross
section. We did not perform such a fit in this work, but
believe that we have demonstrated the feasibility of doing
so. A truly unified picture of all aspects of collisions at
subbarrier energies (to the formation of the compound nu-
cleus) has been obtained in this way.

For internal consistency in models that include particle
transfer (and hence nonorthogonal basis states) it is neces-
sary to avoid the adiabatic approximation, if a no-recoil
approximation is made and only ordinary differential
equations are to be solved. However, the nonadiabatic
equations contain first-order derivatives and are more
difficult to integrate numerically.

The remaining systems of oxygen isotopes amenable to
experimental study pose interesting experimental and
theoretical problems. From a theoretical point of view the
70 + 170 system is especially interesting because of the
positive Q value of the '®0-'30 channel and the expected
larger enhancement of the subbarrier fusion cross section.
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