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Calculation of pair production by 10 and 20 MeV photons
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We present new techniques for calculating electron-positron pair production in the field of a fixed

point charge in distorted-wave Born approximation which permits the evaluation of the Dirac-
Coulomb radial matrix elements for lepton energies much greater than the electron rest mass, and for

large angular momenta. Using these techniques, the pair production cross sections for 10 and 20
MeV photons on uranium (Z=92) are evaluated and compared to the so-called "bridging formulae"
which connect the low energy (co ( 5 MeV) distorted-wave Born approximation results to the approx-
imate results for high energy (co & 50 MeV) obtained with the Sommerfeld-Maue approximation and

to the experimental results.

I. INTRODUCTION

Total photon absorption cross section measurements
have been carried out by a number of workers' in the
intermediate energy range. The aim of these measure-
ments has been to extract the photonuclear cross section.
The nuclear absorption cross section is the difference be-
tween the total absorption cross section o.

t and the atomic
cross section o., which results from the electromagnetic
interaction of photons with an atom and includes the pho-
toelectric effect, pair production, triplet production, and
the Compton effect. That is,

~nuc=o t a

The nuclear absorption cross section is at most 5%%uo of the
total absorption cross section in the intermediate energy
range (co=5—50 MeV). Therefore, it is essential to know
the atomic cross sections as well as the total absorption
cross section as accurately as possible in order to extract
the nuclear absorption cross section. For details of the
present status of total photon absorption cross section
measurements and theoretical calculations of the atomic
cross sections, we refer the reader to the recent tabula-
tions of Gimm and Hubbell and Hubbell et al. In the
intermediate energy range the atomic absorption is dom-
inated by the pair production process. For lead, e.g. ,
74% at 10 MeV and 87% at 20 MeV of the total cross
section is due to pair production in the field of the atomic
nucleus. Therefore, there is considerable interest in the
theoretical evaluation of the pair production cross section.

Bethe and Heitler have calculated the pair production
cross section in the Coulomb field of the nucleus in the
plane wave (PW) approximation. However, this approxi-
mation is not valid for high Z elements or for low Z ele-
ments in the low energy region and, therefore, one needs
"Coulomb corrections" to the PW calculation. This
means that the leptons can no longer be represented by
Dirac plane waves.

For a more exact calculation, one includes the effects of
the static Coulomb field in the lepton wave functions by
including the Coulomb potential in the Dirac equation.
With the use of Dirac-Coulomb waves, pair production

occurs in first order and keeping only the first order term
is referred to as the distorted wave Born approximation
(DWBA). A number of DWBA calculations for the pair
production in the low energy region are available in the
literature. " In particular, Overbo et al. have carried
DWBA calculations from threshold to photon energies of
5 MeV where their techniques break down. The DWBA
calculation for a fixed electron energy in the tip region of
the positron spectrum in the energy range 5—10 MeV is
also available. ' At high energies (photon energy co) 50
MeV), the calculation of Davies, Bethe, and Maximon'
(DBM) using the Sommerfeld-Maue approximation for
the lepton wave functions should be accurate. Recently,
there have been attempts to construct semiempirical
bridging formulae by Overbo' and Maximon and
Gimm' by choosing a reasonable analytic function of Z
and co along with a number of parameters such that the
formula approaches the DBM result in the high energy
limit. The parameters are fitted to the low energy results
of Overbo et al. However, the two reasonable analytic
functions are different and the two different bridging for-
mulae give different results in the intermediate energy re-
gion. ' Thus there exists an energy range from 5 to 50
MeV or more where the Coulomb distortion correction to
the Bethe-Heitler result is reasonably large and uncertain
for medium and heavy nuclei. The Coulomb distortion
effect remains the single largest uncertainty in the extrac-
tion of the photonuclear cross section from total photon
absorption measurements. '

In this paper we apply some recently developed
mathematical techniques for evaluating the Dirac-
Coulomb radial matrix elements for the process of pair
production from a fixed point charge in order to evaluate
the Coulomb distortion effects in the intermediate energy
region. ' ' In Sec. II we give the DWBA formulas for
pair production along with our technique for evaluating
the radial integrals. In Sec. III we outline the calculation-
al details and in Sec. IV we give our results for 10 and 20
MeV photons on uranium (Z= 92). We compare these re-
sults to the bridging formulae and to the experimental re-
sults of Sherman et aI. Due to the large amount of com-
puter time required for these calculations, we have not yet
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evaluated the pair production cross section at other ener-
gies nor for other nuclei. However, the Coulomb distor-
tion changes rapidly in the energy region from 5 to 20
MeV, so that our values for the most distorting nucleus
should provide a good test of the bridging formulae as
well as testing the assumptions made in extracting experi-
mental pair production cross sections from the total pho-
ton absorption measurements.

p

ZB

II. PAIR PRODUCTION IN THE DWBA

In a distorted wave calculation, the Coulomb distortion
arising from the spherically symmetric static charge distri-
bution of the atomic nucleus is included exactly by solv-
ing the Dirac equation for leptons in the presence of the
associated potential. By using these states as basis states
(Dirac-Coulomb wave functions) and treating the time
dependent part of the interaction to first order, we per-
form a distorted wave Born approximation analysis.
Since in DWBA the Coulomb potential acts continuously,
it is equivalent to summing all plane wave Feynman dia-
grams for the spherically symmetric part of the static
Coulomb field. We represent the Dirac-Coulomb waves
diagrammatically by curved lines in the DWBA diagram
for pair production shown in Fig. l. In the following sub-
section we give the lepton Dirac-Coulomb wave functions
needed for subsequent discussion.

FIG. 1. Pair production in the D%'BA.

and the radial functions f,(r) and g, (r) are real and obey
the first-order matrix di6'erential equation

dU(r) A —B U( ),
dp 7'

where

A. Dirac-Coulomb wave functions

The Dirac equation for a central potential V = V(r) can
only be separated in spherical coordinates, and thus the
Dirac-Coulomb wave functions are a superposition of
spherical wave solutions. For an electron with spin m„
energy E, mass m, and momentum p, the Dirac-Coulomb
wave function in the point Coulomb field of a charge Ze
is

—K cxZ

—cxZ K

—(E +m)
0

0B= E —m

m, E+m
ttt+'(r) =4~

1/2

X I P (p)~(r), (2)

The phase factor in Eq. (2) is given by

6,=g, —y —+ —(l + 1}—arg[l (y+iri)],

where

where + (or —) denotes outgoing (or incoming) spherical
waves and V is the normalization volume. The spinor
Q(r} is given as

g, (r ) X",(r)

if, (r) X",(r)
and

T

gC

y=(v —a Z )'~, rl=aZE/p .

rl(x+ m y/E )

vy —mg /E

where ~ is the Dirac quantum number which determines
the orbital angular momentum l and the total angular
momentum j by g=

~

a.
~

—
—,
' and l=

~

a.+ —,
'

~

—
—,'. The

spin-angle functions are given in terms of the Pauli spinor
I

In Eq. (7), I is the conventional gamma function and the
principal value of tan ' is to be taken. The Dirac-
Coulomb functions (DC) are given explicitly in terms of
the conAuent hypergeometric functions by

g, (r)

f (r)
1 (2 )r n.q/2 Re

P +m prI (2y+1)/(E+ ) ~

I (y+iri)
~ I (y+ig)e 'e ' " tF)(y+1+irl, 2y+1; 2ipr) .Im

)

Distorted wave functions for electrons will be denoted by
using a minus subscript on various parameters in Eqs.
(2)—(9) e.g. , E (energy), p (momentum), U (r),B, etc. For positron scattering in the same Coulomb

field of the nucleus, the distorted wave functions with a
plus subscript are obtained by making the replacements
E = —E+ and p = —p+ everywhere.

As noted in the Introduction, the Sommerfeld-Maue
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approximation has been used to calculate pair production
at higher photon energies. The Sommerfeld-Maue wave
function (SM) corresponds to an approximate solution of
the Dirac equation is closed form, and can be written for
an electron of spin m„

'(t'SM '() 0 +41

HDC= —ia %+ V(r)+mP, (13)

where a and I3 are standard Dirac matrices and
V(r)=+aZ/r for electrons ( —) and positrons (+ ), re-
spectively. The interaction Hamiltonian for an electron
(or a positron) in an electromagnetic field is described by
the scalar and vector potential P and A as

=Ne't" 1 — a.V &F~[iil, 1; i(pr —p r)]u '(p),
2E

H;„,=q[P(r, t) —a A(r, t)], (14)

(8)
where u '(p) is the plane wave Dirac spinor and the nor-
malization N=l (1 ig—)e""~ /~V Jo.hnson and Deck
have investigated the relationship between the SM and
DC wave functions, and upon making a partial wave ex-
pansion of both find that for y~~ the distorted wave
function g+' defined in Eq. (2) reduces to the
Sommerfeld-Maue wave function defined in Eq. (8). That
ls,

(9)

In other words, the Sommerfeld-Maue wave function is a
good approximation to the Dirac-Coulomb wave function
for large angular momentum since y=

~

a
~

(1—a Z /
2

~

t~
~
+. . .). This result will be used in Sec. III to assist

in performing the angular momentum sums and the de-
tails of the relationship between the SM and DC functions
is extensively discussed in Ref. 20.

2nVf;= —e
e)V

'a.eie'"'P++d r .
V

where q=+e.
In the radiation gauge the interaction Hamiltonian

reduces to H;„,= —qa A(r, t). The scattering amplitude
for pair production is obtained by using the eigenstates of
H„,d+HDc as basis states and treating H;„t by first order
perturbation theory. A photon of energy co, momentum
k, and polarization e~, while passing through the
Coulomb field of an infinitely heavy nucleus of charge Ze,
is absorbed by an electron of negative energy —E+,
momentum —p+, and spin m+, which makes a transition
to an electron of positive energy E, momentum p, and
spin m . The explicit expression for the amplitude is
given as

af; = 2mi5(E—+ +.F. —co) Vf;,
where

1/2

B. Scattering amplitude and cross section
In order to perform the angular integrals in Eq. (16), we
expand the photon field into multipoles,

The Hamiltonian density for leptons and photons in a
static electromagnetic field is

eie'"'=A(2m)'~ g &(2L+1)iLDMLi(k)
L,M

Brad +HDC +Hint (10)
X [ ALM (r) +i A ALM (r)], (17)

where the Hamiltonian for the electromagnetic field in
free space in second quantized form can be written as

Hrad =g (a k, i at, i + z ) .
k, X

In the radiation gauge this corresponds to the potentials

P(r, t) =0,

where eq is in the spherical basis and DM i(k) are rotation
matrices. The transverse electric and magnetic vector
multipole potentials are

Ai, M(r) =jL(kr)YL L, (r),
' 1/2

A(r, t)=g
1/2

[ag, i,ug, i,(r)e

(12) L+1
2L +1

1/2

~(kr)YL t &(r)

k+&a, i.ug, i.e
L

2L +1 jL+)(kr)Yt. t+)(r) .

where

Uk, k,

1/2

.e

We choose k=kz, and using DMi(z)=6M i the expan-
sion in Eq. (17) can be expressed as

@ate'"'=V2vrk g v'2L + li [ Az i(r)+iA, AL'I (r)] . (19)
L.

and A, denotes the polarization state of photons propaga-
ting with momentum k and V is the normalization
volume. The Dirac-Coulomb Hamiltonian for a lepton in
the spherically symmetric static Coulomb potential of the
nucleus is given as

Substituting the multipole expansion in Eq. (19) and the
partial wave expansion for electron and positron wave
functions given in Eq. (2) into Eq. (16), and carrying out
the angular integrals, we obtain
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(E++m)(E +m)
Vf;= —e(4m) A,

4E+E A@V

1/2
(2L+1)(2j++1) ((&. +s. ) (t t +t

16~

XC„~ ~ „C„+„~„C )/p )/2 QC), g „R(K+)K,LA, )Y( (P—)Yt ( —p+} ~

where the radial integral 8 is given as

R(~+~,LA)=S( ( LI' '(a+a, L).+iAS( ( tI"(~+~,L) .

and l(~) =l( —~). The magnetic multipole radial integral I' ' and electric multipole radial integral I"are given by

(21}

I' '= "jL(cur)(f„g +g„ f„)r dr,
L(L +1) + — +

I(,)
')/'L(L + 1) K+ —K

JL —) (f. g., grc f.—, }— (fags, +g-x f-., }
2L, +l o

(22)

+Ji+) (f. g., g. f..—}+ L, (f. g., +g. f., }L+1 (23)

and St, t, L, = —,'[1+(—1) ' ' ] enforces the electric or magnetic multipole selection rules. The electric radial integrals

contain jL 1 and jL+1, which are somewhat inconvenient to manipulate in the matrix technique used by us to evaluate
the radial integrals. We eliminate the jL+1 term by carrying out a gauge transformation to the so-called "least singular"
gauge. We do this by choosing a gauge function S~ in

A&(r, t}=A&(r, t)+VS&(r, t),
as,

Pq(r, t ) =Pq(r, t ) — (r, t ),
(24)

to be given by

S),(r, t}=e '"'+St (cur)YL(r),
L

where

')/'2mi +' L(2L+ 1)
SL cur =

CO L+1
1/2

jL(cur) .

(25)

(26)

The magnetic radial integral I' ' is not affected by the gauge transformation, but the electric radial integral in the least
singular gauge becomes

1/2

1{e) f (X) K+ —K
d 27Jr—) (fK g'K+ . gK fK+ } (fK gK~+gK fK~ }, JL(fK fK++gK gK+

)

The fully differential cross section for pair production is

cT ~ 2 dn
dE+dQ d A+ I ' dE

dn

dE+ dA dQ+

(28)

dn &p —E- „
dn &P+E+

dQ+ .

(29)

where the initial photon Aux I=1/V, and the densities of
the final states are given as

We integrate Eq. (28) over electron and positron angles by
using the orthonormality properties of the spherical har-
monics and then summing over spins and polarization to
obtain

do do.

where



566 L. E. WRIGHT, K. K. SUD, AND D. W. KOSIK 36

dE+
2e (E +m)(E+ —m)p+p The one-column matrix function W of products of regular

functions satisfies a matrix differential equation of the
type (33) with the following 8 X 8 A and X matrices,

x (2j +1)(2j++1)

X
l
C-1/2 1/2 0&(~+ ~

(30)

The expression in Eq. (30) has a different form from
that used by Overbo et al. since we chose a multipole ex-
pansion of the total vector potential, while they choose to
use the expansion for the scalar factor e' ' in the vector
potential. Our result has the advantage that the radial in-
tegrals enter the differential cross section integrated over
the directions of the pair as terms in an incoherent sum.
Additional details of the above derivation can be found in
Ref. 20.

C. Radial integrals

A = A, gI4+I2g A gI2+I4@ A+,
X=Bs@I4+I&@B a I&+I4a B+,

(37)

(~, +~ )(r,+r, ),&L(L+1)
]/2;

(38)

I L
L+1 r, +r,+r, —r,

where I„denotes the n && n unit matrix. Integrals over the
one-column matrix 8 will be referred to as a vector gam-
ma function, and the pair production radial integrals of
Eqs. (22) and (27) are simply given in terms of the ele-
ments of this vector gamma function by

I (A+1, B)= J W'(A, B:r)dr,
0

(31)

where W(A, B:r) is a direct product of U's and is given as

W( A, B:r) = Us e U e U+ . (32)

The two dimensional U's satisfy the matrix differential
equation

The radial integrals in Eqs. (22) and (27) are linear
combinations of the elements of a matrix gamma function
(for definition and other useful properties, see Onley' and
Sud et al. '

) defined as

K+ —K
+ (r6+ ri)

The direct integration of Eq. (31) will lead to each ele-
ment of this gamma vector being a Lauricella function
with variables

267X=
p+ +p +ci)

2p

p+ +p +co

dU;
dp'

—B; U;, i=+, —,g . (33)

and

We obtain, from Eq. (6),

—K+ QZ

—QZ K+

—(E++m)

and (34)

p++p-+~
Since the condition for convergence of the triply infinite
Lauricella series is

l

x
l
+ ly l

+ lz
l

& 1, these elements
cannot be calculated by direct summation of the series
without resorting to the analytic continuation of the Lau-
ricella functions. We have followed an alternative ap-
proach in which the spherical Bessel functions in U~ [Eq.
(35)] can be written as the real part of a finite number of
terms,

—(E +m) jt ( cur ) =Re [h /.
' (cur )], (40)

The point Coulomb radial functions U+ and U for posi-
tron and electron, respectively, are given in terms of the
conventional functions f and g„ in subsection A. We
take U~ to be

and the spherical Hankel function is given by
L+1

ht'(cur) =e"""g a„(L)r
n =1

where

jt (cor)

jt. i(~r )
(35)

21 (L+n)i"a„(L)=
I (n)1 (2+L n)(2')"— (41)

Ag ——
—L —1

L —1''
0 —co

co 0

and the corresponding A~ and B~ matrices are

(36)

Furthermore, the lepton radial functions [Eq. (7)] are real,
so we can express Eq. (31) as

r

1(%+1,%)=Re f
h)(cur)

( )
U gU+dr. (42)

We define a four-element vector gamma function such
that all r dependence of Eq. (42) is included in it, and is
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given as
i cur

r(A —n, B—i~)=1" ', (U gU (43)

where

g I&+I28 3+,
8=8 gI2+I2@8+ .

(44)

A I {A, B)=Bl ( A+1,8), {45)

in the following form,

I (A L, 8 —ice)—
(A+ 1» %):X I (46)

We can express Eq. (42) by using Eqs. (40) and (43) and
the recurrence relation satisfied by the gamma vector, ' '

In the 8-diagonal representation, the elements of B in

Eq. (48) are +ip++ip, and when added to i—co one sees
that 8' ' —ice is almost singular for extremely relativistic
leptons due to the element i(p+ +p —m). It is basically
this problem which limits the computer program of Over-
bo et al. to photon energies less than about 5 MeV.

The four elements of I ( A ' ' —n, 8 ( ) —i co ) which ap-
pear in Eq. (49) can be written in terms of the Appel func-
tion Fq(a, a(,aq, b(, b2,x,y) by explicit substitution of the
lepton wave functions and term by term integration. The
parameters a, a1,a2, bi, b2 depend on y+ and g+, while
the variables x = —2ip+ /6 and y = —2ip /6, where
b = —i(p++p +co). The hypergeometric function Fq is

given in terms of a doubly infinite series as

(a) +„(a) ) (aq)„
F2(a, a),a2, b(, b2,'x,y ) = g x y",

) m 2 nm

where the 8 X 8 matrix X is given as

X(L) 0
0 X(L —1) (47)

(50)

and is absolutely convergent for
I
x

I
+

I y I
& 1. Thus for

pair production where cu =E+ +E &p+ +p

with

I. +1
X(L)=al +)(L)I4+ g al +2 „(L)

n =2

Ix I+ Iy! = +2p+

P+ +P —+~
I

2p

(51)

X Q [(8 ice)—
m =1

X(A L+m+ I—)],
(48)

where successive terms in the matrix product multiply
from the left.

As discussed in detail in the Appendix of Ref. 22, the
Dirac-Coulomb functions (and the spherical Bessel or
Hankel functions) and the radial integrals over them can
be conveniently expressed in the so-called standard repre-
sentation where f, and g, are real, or in representations
where either the 3 matrices or 8 matrices are diagonal.
These different representations are labeled with the super-
scripts (5), (A), and (8), respectively, and the various
transformations among the different representations are
given in Ref. 22. If one examines Eq. (48), it is clear that
since the matrix 8 —i~ needs to be inverted, working in
the 8-diagonal representation is most convenient. Thus
the eight-element vector gamma function whose elements
can be combined to yield the radial integral can finally be
written as

r(~ (s)+ 1 cg(s)) Re (I (N CsB(N CsB )

x&'" r(A ")—L. , 8("—i~)
r( A "'—I + 1, 8("—i~)

(49)

where the transformation matrices from the 8-diagonal
representation to the standard representation are given in
Ref. 22 and the superscript (8) means those functions
should be evaluated with all matrices in the 8-diagonal
form.

As co increases, p+ and p approach E+ and E (apart
from the endpoint region) and

I
x

I
+ y I

approaches 1,
and the evaluation of Fq becomes problematic on the
computer.

As discussed in Refs. 16, 17, and 22, the Dirac-
Coulomb wave functions can be expressed as a 2 X 2 ma-
trix series and the four elements of I in Eq. (41) can be
obtained by summing a matrix series in the 3-diagonal
representation. The resulting series has the form

(3)
l(A n, B —iso)= g—

I ( A )( —n+m )Vm

m=0 ( i~)

(52)

where I (A ((
' —n +m ) is the conventional gamma func-

tion, and the elements of V are given by the recurrence
relation,

(53)

with (Vo);=(norm)6;). This single matrix series is more
quickly summed than the doubly infinite series in Eq. (50)
since roughly speaking it is a 4X oo series rather than an
oo X ao series. However, the convergence condition for
the matrix series and for the Appell series in terms of the
kinematic variables p+, p, m are identical, so that, for
larger cu, numerical difTiculties prevent using the matrix
series directly just as before.

The procedure given above is formulated somewhat
differently than the one used by Overbo et al. and the ra-
dial integrals can be evaluated more quickly on the com-
puter. However, in the final analysis the numerical
difficulties which prevented Overbo et al. from evaluat-
ing higher angular momenta radial integral also show up
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(54)

where

7 — g ~ii~@14 B~ ~C311 (/~ii~) — (~~ I / 1)
1

(55)

The matrices 3& ' and Bg ' are given by

—1 L

in our procedure. The primary source of the difficulty is
the near singularity of the B—i ~ matrix. This near
singularity can be avoided by evaluating the radial in-
tegrals at a nonphysical value of the photon energy co',
and using the fact that the matrix gamma function obeys
a first-order matrix partial di6'erential equation' in co'.
That is, we evaluate the vector gamma function of Eq.
(42) for co'&co, and then use the diff'erential equation to
integrate it back to the physical photon energy
co =E+ +E . This procedure leads to two improve-
ments: (1) the sum of variables

~

x
~
+

~ y
~

in Appell's
series becomes smaller since cu'&~, and thus the series
converges with fewer terms, and (2) the recurrence on
powers of r in Eq. (48) works much better since B ico-
now has elements +ip++ip —ice' and is no longer al-
most singular.

The first order matrix differential equation satisfied by
the eight-element vector gamma function of Eq. (42) in
the B-diagonal representation is

cal Hankel functions hz and hI &
from which we can

extract the spherical Bessel integrals by transforming to
the standard representation and taking the real part of
the resulting gamma vector as in Eq. (49). This step is
necessary before numerically integrating Eq. (54) to ob-
tain the desired integrals at co'=co since the spherical
Neumann parts of the spherical Hankel integrals are
significantly larger than the spherical Bessel parts for
large photon angular momenta. The recursion relation
which forms the basis of Eq. (48) loses precision after
about five steps, so we actually calculate
n =L, L —5, . . . , and recur to obtain the intermediate
values of n.

The eight-element gamma vector with spherical Bessel
functions is transformed back to the B-diagonal represen-
tation and is numerically integrated by means of Eq. (54)
to co'=co. Once again transforming the gamma vector
back to the standard representation, we can use its ele-
ments to form the electric and magnetic radial integrals
given in Eqs. (38) and (39). In both A-diagonal and B-
diagonal representations, the 3 and B matrices are in-
dependent of the sign of kappa, so from a given magni-
tude of K+ and ~ once can form four radial integrals in-
volving +~+ and +~ by only repeating the last transfor-
mation back to the standard representation which depends
on the signs of the kappas.

For given magnitudes ~+ and &, the allowed photon
multipoles L range from

~
K~ —K

~

to
~

K~+K —1
~

.
Additional computer time can be saved by using a recur-
sion relation on L for the gamma vector ' which is
given by

and

B(B)
—Lco 0

0 Etc)

(56)
I (A(L+1)~1,&)=[(Ci+8 I4)A —'8 —(Dl @I')]—

XI (A(L)+ I, &) . (58)

while A ~ and B~ in the B-diagonal representation are
This recursion relation follows from the spherical Bessel
recursion relation, which can be written as

g (Bj
p++ &'g+ Ug(L+1) =

+CI-
DI U(L ),— —

r (59)

and (57) where U~ is defined in Eq. (35) and Ci. and Dl. are
+jp~ 0

C —= (2L + 1/co 0
0 0

The 8&(8 A and X matrices are given in terms of these
matrices by Eq. (37).

III. CALCULATIONAL DETAILS
We briefly outline the salient features of our procedure

for evaluating the pair production cross section in the
distorted Born approximation, which we have used to
calculate the pair production cross section for 10 and 20
MeV photons on uranium (Z =92). To evaluate the ra-
dial integrals which appear in Eq. (30), we first evaluate
the four-element gamma vector of Eq (43) for .n =L at
the nonphysical photon energy ~' in the 3-diagonal rep-
resentation. For photon energies of 10 and 20 MeV, we
have chosen cu' to be between 12 and 15 and 24 and 30
Me V, respectively. We transform these four-element
vectors to the B-diagonal representation and use Eq. (46)
to form the eight-element gamma vector over the spheri-

0 0
0 (2L —1)/co

0 +1
1 0

We evaluate the gamma vector for L;„and recur a max-
imum of eight times; and if needed, recalculate L;„+9
and recur again. The recursion works well, but all recur-
sion relations gradually lose precision in the computer.
For large L values (L & 80), we find it necessary to reduce
the number of recursions to five before recalculating.

The procedure outlined above has been used to evaluate
the pair production radial integrals for photon multipoles
L and kappa values up to 150, and apart from minor
modifications in the number of recursions we find no nu-
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merical difficulties for photon energies from 5 to 20 MeV
and for values of E+ and E at least 0.15 MeV away
from the endpoints. Our procedure requires modification
if p+ or p become too small. ' The remaining difficulty
in evaluating the differential cross section for pair produc-
tion is carrying out the sums over angular momenta.

The differential cross section of Eq. (30) can be ex-
pressed as

do
dE+

(61)

L =Lm;„SgnK+
SgnK

dE+

In Fig. 2 we show Tq as a function of q for co = 10 MeV
and three different positron energies. Note that Tq is a
smooth function of q, so in general, we only calculate Tq
for q =1-40, 60, 80, 100, and 150 and use a spline inter-
polation of lnT, to fill in the other points. In particular,
note that lnTq versus q approaches a straight line for large
values of q. Assuming this linear behavior continues per-
mits us to use the slope (a) of the lnT~ versus q at
q =q „to calculate the remaining contributions. That is,

d g qmax

= g Tq+R,
+ q=1

where the remainder R is given by

(63)

R =Tq
e'

where q= la. ~
~
+ ~~

~

—1, and the terms Tq are given
by

~q, ~K+ ~+ IK
~

—1

fK+ J, IK

Lmax

For co=10 MeV, the remainder at q=150 is less than
2% of the total sum apart from midrange cases where the
photon energy is more evenly shared by the positron and
electron. There the remainder is less than 4% of the to-
tal. For m =20 Me V, the remaining percentages are
larger and amount to 4% for uneven energy splits and
10% for more even energy splits. Of course, if the slope
(a) is still varying, this extrapolation leads to errors in our
estimate of the remainder. In order to estimate the error
in the remainder, we compare exp(a) at q=100 and 150
and take this variation to generate an estimated error in
the remainder R. For ~= 10 MeV, this estimated uncer-
tainty in R leads to an uncertainty in the difFerential cross
section of less than 0.2%. For the point in the middle of
the 10 MeV spectrum, we adopted an alternate procedure.
When E+ ——cu/2, the differential cross section can only
depend on even powers of the charge Z, and we found
that T~ for large values of q becomes independent of Z.
Thus by adding and subtracting the plane wave cross sec-
tion o BH (which we assume is well represented by Z= 1 in
the partial wave expansion method), we can calculate the
differential cross section by writing

do qmax

= g [T~(92)—T, (1)]+cr sH.

+ Z=92 q=&

To confirm that Z =1 for large q reproduces the plane
wave result well, we compare Ti5o for E+ of 6.5 and 3.5
MeV. For the plane wave case, these points are identical.
Using Z= 1 we find 0.350 28 & 10 and 0.350 47 & 10
respectively, which only differ by 0.05%. For E+ ——5
MeV, Ti&0 for Z=1 and 92 only differ by 0.2%, so we
conclude that the difFerential cross section evaluated with
this method is accurate to within 0.2%. For 10 MeV
photons on uranium (Z =92) we have calculated d o /dE+
for the values of E+ shown in Table I by the methods de-
scribed above, apart from the point at E+ ——9.4849 MeV,
which was obtained from Ref. 12. Our estimate is that

lO' TABLE I. Differential cross sections for pair production from
Z=92 with 10 MeV photons for different positron energies. The
labels DW, SM, and BH corresond to the present calculation,
Boric's Sommerfeld-Maue results (Ref. 25), and the plane wave
Bethe-Heitler results, respectively.

(MeV)
do Dw/dE+

(10-' MeV-')
dosM/dE+

(10 MeV )

d o.BH /dE+
(10 Me V )

IQ
0 25

I

50 75
g

I

IOQ l25
I

150

FIG. 2. The terms Tq as a function of q for various positron
energies for 10 MeV photons on uranium (Z= 92).

0.75
1.00
1.40
1.75
2.10
2.50
3.50
5.00
6.50
7.50
8.25
9.00
9.25
9.4849

1.005
2.350
3.426
4.120
4.493
4.761
5.041
5.162
5.197
5 ~ 140
4.894
4.098
3.567
2.707

1.396

3.246

4.077
4.535
4.724
4.686
4.422
3.897
2.762
2.160

2.298
3.337
4.383
4.952
5.326
5.599
5.895
5.967
5.895
5.599
4.952
3.337
2.298
0.1245
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IV. RESULTS AND CONCLUSIONS

In Tables I and II we present the results of our calcula-
tions of the differential cross section for photon energies
of 10 and 20 MeV for uranium (Z= 92) for different posi-
tron energies. We also compare our results with the PW
result of Bethe-Heitler and results from the Sommerfeld-
Maue approximation ' obtained by numerical integra-
tion over the lepton angles without resorting to the high
energy approximation. In order to obtain the total pair

TABLE II. Differential cross sections for pair production
from Z=92 with 20 MeV photons for different positron energies.
The labels DW, SM, and BH correspond to the present calcula-
tion, Boric's Somrnerfeld-Maue results (Ref. 25), and the plane
wave Bethe-Heitler results, respectively. The values with an as-
terisk were calculated using the partial wave decomposition of
the Sommerfeld-Maue approximation.

E+
(MeV)

0.60
0.65
1.00
1.50
2.50
5.00
7.50

12.50
15.00
17.50
19.00
19.15
19.35

do. Dw/dE+
(10 Me V )

0.0248
0.0934
1.251
2.061
2.828
3.467*
3.563*
3.606*
3.586
3 ~ 185*
2.314
2.117
1.552

do sM/dE+
(10 Me V )

0.794
1.642
2.586
3.359
3.488
3.511
3.427
2.832
1.574
1.360
1.039

do. pH/dE+
(10 Me V ')

1.864
2.659
3.494
4.111
4.164
4.164
4.111
3.494
1.864
1.526
0.931

these differential cross sections are accurate to +0.25%%uo.

We have carried out similar calculations for 20 MeV
photons on uranium (Z=92), but as mentioned above the
sum over q has not converged as well at this higher pho-
ton energy. To improve our results when E+ is well

away from the endpoints, we make use of the
Sommerfeld-Maue (SM) approximation by writing

& tnax

dE+
[Tq(DW) Tq(SM)] (66)

dE+ sM

where Tq(SM) is defined in terms of (dcrldE+ ),
just as Tq(DW) is defined in Eq. (62), and the same for-
malism is used for the radial integrals, except that y~~
everywhere. The Sommerfeld-Maue cross section

(der idE+ )sM is a numerical integration over lepton angles
of the Sommerfeld-Maue result obtained from Boric.
For uneven energy splits we sum the DWBA series to
qm, „=150 and use the linear extrapolation of lnTq as in
the 10 MeV case to add in the remainder since the
Sommerfeld-Maue approximation breaks down when one
of the lepton energies is too small. In Table II we give
the differential cross sections for photon energy co=20
MeV on uranium for a number of positron energies. The
cross sections with an asterisk were evaluated with the
help of the SM results as shown in Eq. (66).

pn

0 5-
(U

C)

+
LLI
C3

b

Pw

0 l 2
I I I

4 5 6 7 8
E,(Mev)

9 lO

FIG. 3. The differential cross section for pair production of
10 MeV photons on Z=92 as a function of positron energy. For
the distorted wave (DW) results, the points given in Table I were
interpolated using a spline interpolation program (Ref. 27). The
curve labeled PW is the Bethe-Heitler result.
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FIG. 4. Same as Fig. 3, except the photon energy is 20 MeV.

production cross section, we use a spline interpolation
program which suppresses waves in the fitted curve to
obtain the results at 10 and 20 MeV shown in Figs. 3 and
4. These curves allow us to calculate the total DWBA
cross sections by Gaussian integration that are shown in
Table III along with the predictions by Overbo, ' Maxi-
mon and Gimm, ' Davies-Bethe-Maximon, ' the
Sommerfeld-Maue approximation, and the experimental
results of Sherman et al. modified by screening and radi-
ative corrections.

Note that the total cross section predictions by the two
different interpolation formulas differ from each other by
0.68% of the Bethe-Heitler result at 10 MeV and 0.99%%uo

of the Bethe-Heitler result at 20 MeV. Since neither of
the interpolating formulas can be derived from theory, it
is not surprising that they differ from each other and from
our results.

In Fig. 5 we show the ratios of the total cross section to
the Bethe-Heitler result for the two bridging formulas and
the high energy DBM result as a function of photon ener-

gy for Z=92. The ratios from our calculated values lie
between the two bridging formulas, but are slightly closer
to the Maxirnon-Gimm curve. In order to compare our
calculated results with the observations of Sherman
et al. , we have divided o.,b, by the Mork-Olsen radiative
correction f„d and the screening correction 1 —R interpo-
lated from Hubbell et al. We refer to this result as the
"experimental" cross section o.-,„&, , and our DWBA re-
sults differ considerably from these values. The "experi-
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TABLE III. Total pair production cross sections for Z=92 and photon energies of 10 and 20 MeV.
The subscripts DW, "expt,"MG, Ov, SM, and BH correspond to the present calculation, the experimen-
tal results of Sherman et al. (Ref. 3), as divided by f„q and l —R, the Maximon-Gimm interpolation
(Ref. 15), the Overbo interpolation (Ref. 14), the Sommerfeld-Maue results of Boric (Ref. 25), and the
plane wave Bethe-Heitler results. All the cross sections are in 10 MeV

Photon
energy
(MeV)

10
20

~DW

4.085
6.128

4.238+0.024
6.193+0.018

&MG

4.073
6.091

Oov

4.101
6.162

~SM

3.463
5.757

0BH

4.593
7.076

0.95-

0.85—

0 80'
2 Io

/

/

20 50
m(MeV)

I

l 00 500

FIG. 5. D, the ratio of the total cross section to the Bethe-
Heitler result, as a function of photon energy for Z=92, is
shown for the interpolation formulas of Overbo (Ref. 14) and
Maximon and Gimm (Ref. 15) and for the high energy
Sommerfeld-Maue approximation of Davies, Bethe, and Maxi-
mon (Ref. 13). The two points are the results of the present cal-
culation.

mental" values are higher by 3.7% at 10 MeV and 1.1%
at 20 MeV than our theoretical results. As discussed in
the preceding section, we estimate the maximum error in
our 10 MeV differential cross sections to be 0.25% and
believe that our errors at 20 MeV are comparable. How-
ever, due to the use of the partial wave expansion of the
Sommerfeld-Maue approximation at 20 MeV which in-
cludes a second-order term that is neglected in the analyt-
ic Somrnerfeld-Maue approximation, we cannot be as sure
in our error estimate at 20 MeV. Furthermore, the
spline interpolation used to generate the total cross section
could introduce additional errors. To examine this source
of error, we carried out the interpolation with one or
more calculated points omitted and found very small devi-
ations in the interpolated value of the point omitted and
the total cross section if we forced the spline interpolation
to be quite smooth. Our best estimate is that our total
cross section results have a maximum uncertainty of
0.5%, and thus are in disagreement with the "experirnen-
tal" results.

In order to explore the possible reasons for this
discrepancy between the "experimental" and theoretical
results, it is worthwhile to examine the technique used by
Sherman et al. to extract the pair production cross sec-
tions. The experimental pair production cross sections
have been obtained from the measured total photon ab-
sorption cross sections by subtracting the theoretical
atomic absorption cross sections and the photonuclear ab-
sorption cross section. The atomic cross sections have
been obtained by interpolation from the tables of Refs. 5
and 6 which claim an accuracy of better than 0.2%, and
the photonuclear cross section has been assumed to be
given by the experimental photoneutron cross section. In
order to compare our DWBA theoretical results with the
experimental pair production cross section, one needs to
take into account the correction due to the screening of
the point Coulomb field by atomic electrons. Davis,
Bethe, and Maximon' have shown in the high energy
limit that the corrections for screening and for Coulomb
distortion are independent since the screening is mainly
related to the small momentum region while the Coulomb
corrections arise due to close encounters which involve
large momentum transfer. It is not obvious that this sepa-
ration is valid in the intermediate energy range or in the
intermediate momentum transfer range, particularly to
the degree needed in the present comparison of theory
and experiment. We see need for a full DWBA model
calculation with some simple atomic potential to investi-
gate the question of the separability of the Coulomb dis-
tortion and screening effects.

In addition, the screening corrections used have been
calculated in the form factor approximation (see Hubbell
et al. for details) in the Born approximation, but the
form factor approach does not predict the screening effects
correctly in the low energy region. ' The discrepancy ob-
served between the theoretical and "experimental" results
strongly suggest that the screening effects have not been
properly calculated in this energy region and need further
investigation.

In conclusion, we point out that we have demonstrated
that a full DWBA calculation of pair production from a
point charge in the intermediate energy region is feasible
using the improved techniques of evaluating the Dirac-
Coulomb radial integrals. Based on work involving simi-
lar integrals in bremsstrahlung, we should be able to in-
clude the effect of finite nuclear size which may also be
one of the reasons for the discrepancy between theory and
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"experiment. " However, nuclear size effects would cer-
tainly be larger at 20 MeV than at 10 MeV, while the
discrepancy is larger at 10 MeV. A DWBA calculation
which properly includes screening appears to be very
difficult. However, as mentioned above, a model calcula-
tion with a simplified atomic charge distribution may be
used to investigate the separability of screening and
Coulomb distortion. Finally, our calculation should be
used for a number of other energies between 5 and 30
MeV and for other nuclei to modify and improve existing
interpolating formulas for Coulomb distortion.
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