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The behavior of the fully-off-the-energy-shell T matrices for the Reid-soft-core and Paris-80 poten-
tials are studied for a variety of partial waves, both uncoupled and coupled. Although the potentials
have qualitatively different structures in both coordinate space and momentum space, the resulting
off-energy-shell behavior is very similar in the range of energy and momentum relevant to low and

medium energy nuclear physics.

I. INTRODUCTION

Because of the strength of the two-nucleon force, the
off-energy-shell T matrix or four-point function is a nat-
ural and convenient way of putting two-particle informa-
tion into many-particle calculations. This is particularly
the case in those areas of nuclear physics which come
closest to having a complete and convergent calculation-
al scheme based on two-body forces, such as the three-
body problem,! multiple-scattering theory of intermedi-
ate energy elastic and inelastic nucleon-nucleus scatter-
ing,2 and the theory of nuclear matter.’

The off-shell T matrix also provides a convenient inter-
face between the physical assumptions made in traditional
nuclear physics about the two-nucleon system and the re-
sulting implications for many-particle calculations. It has
been known for many years that reactions which directly
depend on the half-shell T matrix, such as bremsstrah-
lung* or knockout,’ require the use of the half-shell ampli-
tude rather than an on-shell one, and that, further, the
half-shell amplitudes from realistic potential models are
rather well determined® given the on-shell amplitude, the
long and intermediate range part of the potential, and the
assumptions that the relative wave function is smooth and
suppressed in the interior.

The fully-off-shell nucleon-nucleon T matrix has, unfor-
tunately, not previously received the kind of systematic
and detailed study which is required to understand the re-
lation of the two-nucleon input information both to the
many-particle results and to the underlying physical as-
sumptions. This paper is part of a broad study in which
we consider the behavior of the off-shell T matrices pro-
duced by nonrelativistic potential models and the implica-
tions of the resulting systematics for many-body calcula-
tions. As a first step, we consider here the fully-off-shell
behavior of the T matrices from two potentials which are
realistic but which have a severely different character: the
Reid soft core (RSC) potential’ and the Paris-80 (P80) po-
tential.®

The RSC potential is the widely used standard of the
previous decade. It has a one pion exchange potential
(OPEP) tail, a midrange attraction, and short-range repul-
sion. The ranges are chosen from consideration of the
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possible mesons that can be exchanged, and the strengths
(except for OPEP) are adjusted to fit the two-body data.

The P80 potential has become the standard of the
1980s. In addition to the OPEP, its midrange potential is
constructed from the meson theory of the exchange of two
interacting pions using dispersion relations and a reason-
able (if arbitrary) ansatz for an off-shell continuation. At
short range the potential is parametrized following a com-
plicated procedure. This will be discussed in more detail
below.

Both potentials lead to excellent fits of the data, with
P80 being somewhat superior (see Fig. 1). The RSC po-
tential is given in each partial wave, while P80 is given
in the form of a central, spin-orbit, tensor, plus quadra-
tic spin-orbital potential. It contains a strong explicit
nonlocality of very short range in the form of a velocity
dependence. When considered either in coordinate or
momentum space, it is clear that the short-range physi-
cal content of these two potentials is very different.

We note that recently the Bonn group’ has made sub-
stantial advances in the calculation of meson theoretic po-
tentials and there are indications of both improvements in
the fit to on-shell data'® and in the fit to the triton binding
energy.!! An analysis of the Born potential is planned for
a subsequent work.

In this paper we compare the off-shell behavior of RSC
and P80 in partial waves for J <2. In Sec. II we intro-
duce notation. In Sec. IIT we discuss the character of the
potentials and their structure in momentum space. Our
method of solving the Lippmann-Schwinger (LS) equation
is presented in Sec. IV. Included there is a discussion of
the convergence of our quadrature rule. In Sec. V we
present our results for the off-shell amplitudes. An
analysis of our results is presented in Sec. VI; conclusions
follow in Sec. VII.

II. THE OFF-SHELL T MATRIX

The full T matrix contains all the information about the
two-body bound and scattering states in a more direct
way than the potential does. For a system of particles in-
teracting by strong, short-range forces, the interactions of
any pair must be summed to all orders in any arrange-
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FIG. 1. Nuclear bar phase shifts given by P80 potential (solid), RSC potential (dashed), and the VPI-SP86 phase shift analysis
(dotted-dashed) as a function of lab energy.
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ment of the many-body theory. For a number of impor-
tant cases this makes off-shell amplitudes a convenient
starting point.

We work with the off-shell two-body T matrix defined
by the operator relation

T(2)=V+VG(2)V, (N

where V is the two-body potential and G (z) is the full
Green’s function

G(z)=1/(z —H) . (2)

H is the full Hamiltonian, H =Hy+ V, where H, is the
operator for the kinetic energy of relative motion of the
two particles. The matrix elements of T(z) have a cut
along the real axis. The value of the matrix element is to
be taken as the cut is approached from above in the com-
plex plane. This is indicated by the notation
z =e +ie=E™ and provides the outgoing-wave boundary
conditions needed to make the proper identifications with
scattering theory.!> The two-body bound state informa-
tion is present since T(z) has a pole at the energy
z = —¢€p, wWhere €, is the binding energy.
The resolvent relation for G (z) is

G (2)=Gy(z)+Gy(2)VG (2) , (3)

where Gy(z) is the free Green’s function 1/(z —Hy). It
may be used to obtain the operator Lippman-Schwinger
equation!? for T,

We work in the center of mass frame for the two parti-
cles. For equal mass particles, the energies quoted will
therefore be half the lab energy. The two-body scattering
amplitude is given by the on-shell matrix element of T,

f(Er,0)=—(u/2m#?) (k' | T(Ey) | k) , (5)

where 6 is the angle between k and k' and
Eif =k*/2u=k'?/2u with u equal to the reduced mass.
The half-shell matrix elements of T have the form
(k' | T(E,) | k) with k’%/2u not equal to Ej =k2/2u.
The fully-off-shell T  matrix elements are
(k' | T(E*)|k) with k?/2u=E.

We will use the partial-wave decomposition of the ma-
trix elements of Eq. (4) in momentum space to solve for
T explicitly. For the uncoupled states (or in the absence
of tensor forces) the partial-wave expansion is

(K| T(2) | k) =(47)? 3, ¥ (Q)* 11(K', K ;202) Y ()

dent, but it may be nonlocal. The Lippman-Schwinger
equation (4) in partial-wave form is

nik,k'spP)=vik, k") +(2/m) [~ dg g*uilk,g)
X 2u(p?—q*+ie)~!

Xt/(g,k";p?) . (7)

This equation is almost in a form appropriate for calcula-
tion. However, since the Green function is complex by
the equation

lim (x +ie)~'=(x),'—imd(x), (8)
e
where ( - -+ ), indicates the principal value, the function

t; will be complex. We reduce the storage requirements
for the calculation by handling the complex part of the
pole explicitly, solving a real integral equation, and subse-
quently performing algebraic manipulations to yield the
complex T matrix. This is done by solving the K-matrix
equation

ki(k,k';p?) =v,(k,k")+(2 /) fo“’ dq q*v,(k,q)
x2u(p?*—q*)p!
X ki(g,k";p?) . 9)

The partial-wave K matrix, kl(k,k’;pz) is then related to
the partial-wave T matrix by the Heitler equation,'?

2ippk(k,p ;p*)k;(p,k";p?)
1+ 2iupk;(p,p;p?) '
(10)

ti(k,k";p?) =k, (k,k";p?)—

When tensor forces are present, the partial-wave ex-
pansion includes different angular momenta for the ini-
tial and final states. For the tensor coupled states, Egs.
(6) become

(K[ T(2) | k) =(47)* 3 Y (Q)* 1y (k' k ;2u2) Y1 (Q)

(11a)
(K'|V | k)=47)12 3 Yy (Q) 0y (k'k) Y}, (Q) . (11D)
The equation for the coupled states is

kp (k' ks pB=v, (k' k) +(2/m) S, f0°° dq q2p(k',q)
<

x2u(p?—q*)p!

(63.) Xk["l(q,k;p2) >
(K| V k) =412 S, ¥ ()0 (K’ K) Y (Q) (6b) (12)
We have assumed that the potential is energy indepen- while the Heitler equation is
J
ti(k' kspP)=kp (k' k;p?)—2ipp 3 kpk',psp )1+ 2iupk(p,p ;p ) 1ibkp(p, Kk ;p?) (13)

We have written 1 for the matrix §;; and k for the matrix
k1'1.
For the nucleon-nucleon system, both particles have

spin + and the interactions conserve total angular momen-
tum and parity. As a result, in a state having total angu-
lar momentum j, the tensor forces can only couple states
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of orbital angular momentum /=j +1 and j—1. The
sums in Egs. (12) and (13) therefore never have more than
two terms.

The relation of the on-shell 7 and K matrices to the
phase shifts in the uncoupled states is given by

tf’"(p)ztI(p,p;pz)=——(ﬁz/Z,u)eisl(p)sin&(p)/p, (14)
kf™p)=k;(p,p;p*)= —(#/2u)tand;(p)/p . (15)

For the coupled states, there are two conventions in com-
mon use: the Blatt-Biedenharn!* and Stapp-Ypsilantis-
Metropolis'®> conventions. We will present our results us-
ing the latter (nuclear bar phase shifts). In this conven-
tion, the on-shell K matrices are related to the phase shift
8, and 6_ (corresponding to orbital angular momenta
j+1 and j —1, respectively) and mixing parameter €. If
we define

k_ k
K= kK ok, | (16)
S=Qup /fic)k_—k,),
A=Qup /fic)k _k,), (17)
L=0up /fic)k_k, —k?),
tan2o=2/(1—-L) ,
(18)

tan2r=A/(1+.L) ,

then the phase shifts and mixing parameter are given by
S_=o+71,
S,=0—71, (19)
tan2e =2k /[(1+.L)*+A%]'? .

III. THE RSC AND P80 POTENTIALS

In this section we describe the structure of the Reid soft
core and the Paris-80 potentials paying particular atten-
tion to their momentum space matrix elements.

A. The RSC potential

Reid’s soft-core potential’ is given explicitly in coordi-
nate space for the partial waves of total angular momen-
tum less than or equal to 2. It is specified individually in
each partial wave as a local radial potential written as the
sum of Yukawas and Yukawas times powers of 1/r. The
fact that the radial potential differs in different partial
waves implies that when the momentum space matrix ele-
ments of the potential are built up by Eq. (6b), the poten-
tial will be L dependent (i.e., have some angular nonlocal-
ity). This will not be easily represented by the standard
angular nonlocalities such as spin-orbit, quadratic spin-
orbit, or simple L dependent forces, since the ranges and
number of terms vary from one partial wave to the next.

The strengths and ranges of the potential terms are set
up in the spirit of the one-boson-exchange (OBE) model.
The longest range term is taken to be that arising from
one-pion exchange (OPE) with the appropriate strength

and range. Shorter ranged terms are taken to correspond
approximately to a midrange attraction coming from the
exchange of a fictitious sigma meson (with a mass of 4
pion masses) and a short range repulsion arising from the
exchange of an omega (with a mass of 7 pion masses).
Ranges of 2, 3, and 6 pion masses are also used in some
channels. The strengths of the non-OPE terms were ad-
justed to fit the two-body bound-state and phase-shift in-
formation available at the time.

The matrix elements of the RSC potential in momen-
tum space require the partial wave Fourier transform of
the potentials:

(20a)
(20b)

A(x)=exp(—x)/x ,
B(x)=(143/x +3/x%)exp(—x)/x

for x =ur, where p is the inverse range (meson mass).
These are given by

Oulk, k', )= [ r¥dr ji(kr)O(ur)jik'r) 21

for O =4 and B. The particular matrix elements re-
quired are Oy=0; and O;_;;,1=0’ (for the coupled
states). For A4;, B;, and B’ the closed form results are'®

Ak, k' u)=Q(p) /2kk'n | (22)
By(k, k', )= A;(k,k')

+3[Q )= QM1 /2pP214+1),  (23)
Bik,k")=[k'Q; _1(y)/2k +kQ; +1/2k'—Q;(»]/u*, (24)

where Q; is the ith Legendre function of the second kind!’
and y is the combination

y =(k2+k'24+u?/2kk" . (25)

The off-diagonal matrix element A4/ is obtained recursive-
ly. Using the recursion relation for the spherical Bessel

functions,'’ we obtain the result
Al= {[(2j +1)/(2j — DK /7K)Q;i(»)—Q; _1(»)} /2uk’'?
+[25 +1)/(2j — 1)k 7k A7~ (26)

For j=0 the integral can be performed explicitly and
yields

A/=(6kk’+(32+k'2—3k2)Qo(y)
+6k{ tan"u/(k'—k)]
—tan~'[u/(k'+K)1})/4kk 3 . 27

It is well known that recursing Bessel functions upwards
is inherently unstable. Nonetheless, we find that for
z=k’'/pu <0.5 the upward recursion is accurate when the
index j is less than 6. For larger values of k’ we begin at
a large value of j and recurse downward. For large j, the
Bessel functions in (21) may be approximated by their
small argument form and the integrals done analytically.
The result is

A= (C; /KK /UK 7K) (28)

where
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C=4(2j + 1)jIj +2)1/(2j +4) . (29)

The downward recursion is stable and the results are in-
dependent of the starting value of j once it is above a criti-
cal value. This value is dependent on z, since if z is too
large one must go to a larger value of the index j before
the small argument expansion of the Bessel function can
be used.

If the starting j gets too large, very many terms must be
calculated and the code slows down significantly. Since
the upward and downward recursions have complementa-
ry regions of validity, we use upward recursion for z <0.5
and downward for z >0.5. We begin our downward re-
cursion at j =10 for z less than 0.1 and at 20 otherwise.
This procedure provides six-figure accuracy throughout.

For partial waves with j >2 Reid recommends using
OPEP, although for energies near the upper end of the
potential scattering region (E ~350 MeV) this may not
be adequate. An extended version of the Reid potential
describing partial waves with j greater than 2 has been
created by Day.!®* We do not consider these states here.

The natural scale of the RSC potential in momentum
space is determined by the shortest range (largest mass)
used in the parametrization. Since this is 4.9 fm~—! (7
pion masses), we expect that most of the action in solving
the integral equation (15) in momentum space will occur
inside about 8—10 fm~".

B. The Paris-80 potential

The potential known as Paris-80 (P80) was obtained as
a result of many years of effort.!>® The primary improve-
ment over earlier potentials is the combination of a de-
tailed treatment of the intermediate range attraction, to-
gether with a high quality phenomenological adjustment
to the two-body data.

In the model of the nucleon-nucleon force arising from
the suppression of mesonic degrees of freedom, the poten-
tial arises from the exchange of one or more mesons. One
possible way of handling multiple meson exchange is by
observing that much of the low energy meson spectrum is
dominated by resonances. If these are treated as single
mesons with well defined masses, potentials arising from
their exchange can be calculated. Such a model is re-
ferred to as one-boson-exchange potential (OBEP).?

Unfortunately, the midrange part of the force does not
seem to be well approximated in this way. The S-wave
interaction of two pions shows a broad maximum in the
neighborhood of about 500 MeV, but it is not sharp
enough to be called a resonance. In addition, one expects
significant contributions to the midrange potential from
the exchange of two pions in which one of the nucleons
becomes a delta between the exchanges. This is also not
easily representable as the exchange of a single boson.

The Paris group uses dispersion relations to extrapolate
the on-shell 7-nucleon scattering amplitude to unphysical
values of the momentum. This sums the result of all
two-pion exchanges including uncrossed and crossed pion
lines, strongly interacting pions and exchanges in which
one of the intermediate nucleons is in an excited state. In
order to use this result in a potential, it must be continued

off shell. An arbitrary ansatz is chosen to provide the
off-shell continuation. (The off-shell amplitude is assumed
local.) This yields an effective two-pion exchange poten-
tial (TPEP). The three-meson exchange terms are approx-
imated by an o meson, generally assumed (in OBEP mod-
els) to be responsible for the strong short-range repulsion.

The three terms together (OPEP, TPEP, and o ex-
change) yield an intermediate range potential which is in
good qualitative agreement with older, more phenomeno-
logical potentials for r > 1.4 fm.

In order to obtain a complete potential, the midrange
part was taken to go over smoothly to a flat core in the in-
terior. The height of the core was adjusted to fit the
empirical phase shifts at each energy. The central and
spin-orbit potentials were found to vary linearly with en-
ergy.

For the Paris-80 parametrization the linear energy
dependence has been transformed into a momentum
dependence. This may be done as follows. Assume that
1 satisfies the Schrodinger equation with a linear energy-
dependent potential

[p22u+U(r)+EW (Nr)=Ed(r) . (30)

A new wave function may be defined,
(1) =1—W)"(r), (31)
which satisfies a related equation
[(1—W) " Y2p2/2u) 1= W)~V 24 U /(1= W) ]d(r)
=E¢(r). (32)

If we expand (1—W)~'"? in powers of W and only keep
the first term, we will see that ¢ satisfies an approximate
Schrodinger equation with the effective potential

Ver(r,p)=U/(1— W)+ L(p>W + Wp?) . (33)

The p’s in this equation are to be considered operators.

One should note two things about this procedure.
First, in making the transformation (31), we are not
changing the phase shifts. The function W vanishes at
large distances to ¢ and 1, which are identical asymptoti-
cally. However, if we interpret ¢ to be the Schrodinger
wave function rather than v, then the off-shell T matrix
will be changed since it depends on the wave function in-
side the range of the potential. Second, this phase
equivalence only holds for Egs. (30) and (32). The ap-
proximate potential (33) does not give the same phase
shifts as Eq. (32).

As a final step, the Paris group provides a convenient
form for use in nuclear calculations by fitting the coordi-
nate space forms with the sum of (a rather large number
of) Yukawas. Since a potential of the form (33) is used,
the parameters of the Yukawian form had to be adjusted
to produce a better fit to the two-nucleon data.® Twelve
terms are used with ranges corresponding to exchanged
meson masses varying between 135 MeV (range of 1.46
fm, the OPEP) and 2.226 GeV (a range of 0.09 fm).

The use of the p? terms in the potential produces
some unusual effects. First, the introduction of an expli-
cit nonlocality into the potential reduces the coupling
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between various elements of the two-body input and per-
mits somewhat more flexibility than is obtained with lo-
cal potentials.’® For example, the percentage deuteron
D state is an off-shell parameter since it measures a
property of the wave function inside the range of the po-
tential. (In contrast, the asymptotic D /S ratio may be
thought of as an on-shell property.) In a local model,
this is strongly constrained by the experimental value of
the deuteron’s quadrupole moment, and usually comes
out to be about 7% (RSC=6.5%, Reid hard
core=6.5%, Hamada-Johnson=7.0%, Bressel-Kerman-
Rouben=6.5%).>' In a nonlocal model such as Paris-80,
this can be reduced and turns out to be 5.8%.% (In some
of the new Bonn potentials’ it is as low as 4.3%.)

Second, it has been known for many years?? that nu-
clear matter is infinitely bound when p’-type potentials
are present which have coefficient functions that have
some negative part in coordinate space. The collapse
occurs because sharply oscillatory two body correlations
at the right distance lead to an arbitrarily strong attrac-
tion. The p? pair potentials contribute an attraction pro-
portional to N? and dominate the kinetic energy operator
which contributes a repulsion proportional to N for large
numbers of particles. This problem is avoided in practice
by working with variational wave functions which do not
have the types of two-body correlations that would lead to
collapse. It has yet to be demonstrated that this is a sen-
sible resolution of the problem.

Third, the use of p? terms in the potential drives the
natural momentum scale up to very high values—even
higher than the 11.3 fm~! associated with the Yukawa of
shortest range that is present in the Paris-80 expansion.
To see why this occurs, let us consider the asymptotic
form of the nonlocal, central part of the P80 potential. In

momentum space this is
(K| Ve k) =(k*+k'D) 3 (g /uj)ui+q>) ™", (34)

J
When we make a partial wave ex-

where qzz‘(k’—k)z.
pansion of this, we get

vk’ k) =(1/4m) (k> +k'>) S (g /u,)Qi(y;) /2kK" ,  (35)

J

where y; is the function of Eq. (25), but with u replaced
by ;.

Consider two limits: the case where one of the momen-
tum arguments becomes large and the other is fixed, and
where they become large together. In the first case, y is
conveniently written

LI (36)
Y=otk
where C; = (k' 2 +u?)/2k’.

For k— o, k’ fixed, we require the limiting value'” of
o
2k'Ci !

Qiy))—k =11+ P (k— oo, k' fixed)

—k "ok Y. (37)
In the second case, we take k and k' to infinity together.
Then y becomes

yi—>14+u2/2k? (k=k'—>w) . (38)

To analyze this behavior we need the asymptotic value!’
of Q; in the neighborhood of its branch point at 1:

Or(14+u?/kY)— —y —p(l +1)—Inu; +Ink
(k=k'—>w), (39

where ¥ is the Euler constant and ¢ is the digamma func-
tion.

For the first case, each term in the sum in Eq. (35)
behaves like k ~/, a constant for S waves. For the second
case, each term behaves like Ink, diverging as k becomes
large. In order to suppress these bad behaviors, the Paris
group has chosen the coupling constants so that the sum
satisfies

This causes any i-independent terms in the asymptotic
form of Q; to cancel, including the kK ~/~! term in the first
case and the Ink term in the second. The result for k’
fixed is a k /2 falloff; even the S wave vanishes. For
k =k’'— « the potential approaches a constant propor-
tional to the sum ¥ ; gjlnu; /p;.

Although these are well behaved in principle, in prac-
tice the momentum space potential matrix elements do
not fall off until the cancellation begins to occur: at
values of k which are 2 or 3 times larger than the largest
;. We therefore find matrix elements of the Paris poten-
tial continuing to grow until momenta of 20-30 fm~! or
higher. When solving the equation in momentum space
this means that quadrature points at much larger momen-
ta must be included, compared to the set used for the
RSC potential. This difficulty translates into problems
with the very short range behavior in coordinate space,
where considerable care must also be employed.

This high momentum dependence makes the potential
strongly off diagonal. For example, in the 'S, state, the
matrix element (k'S,|v |k'S,) for k fixed at 1 fm~!
peaks at a value of k’=22 fm~!. As can be seen from
Fig. 2(a), for the S waves the worst behavior occurs for
the diagonal matrix elements which go to a constant at
infinity. This does not cause a serious problem in solv-
ing the equation for low momentum initial states, as can
be seen from the discussion of convergence in the next
section.

This behavior should serve as a warning to those who
use this potential in nuclear matter calculations. The
momenta of the most-favored intermediate states could
be very high, even if the final G-matrix elements desired
are to be evaluated for low momenta. Approximations
to the Pauli operator may not be appropriate if they do
not take this into account.

The P80 potential includes central, spin-orbit, tensor,
and quadratic spin-orbit terms. The quadratic spin orbit
is also a second-rank (reducible) tensor in spin, like the
usual tensor force, but it does not couple state of
different orbital angular momentum. The forms in
momentum space, including matrix elements of the
operators, are as follows (isospin indices have been
suppressed):
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vﬁ;'s(k’k’)zsll’z [gja‘f‘gjb(kz'*’k' 2)/#]]/4[](#]) )
J

ol (k, k) =81 3 (g [Buw))— Ap(u) LG+ D=1 +1)—s(s +1)1/6 ,

J

vjirs(k,k)=8:, 3 g Buru)
J

vilsk, k=8 3, gF2CulupI (1 +1)
J

The large curly braces denote 6j symbols. We follow the notation of Brink and Satchler.?

, o2 20
(—=1)YT12v30v (21 +1)(2'+1) 11 00 0

(4s —3)/3—s(—1)'*t10021 +1)

(41a)
(41b)
j y (41C)
11212
111 (41d)

3 Ay and By are defined in

Eqgs. (20) and (21) and Cj(u) is the Il matrix element [in the notation of Eq. (21)] of the function

C(x)=(143/x +3/x%e /x> .
Explicitly, one obtains

Coolp) =0,

Ci(u)=(k%k"2/3u*)(—(1/4kk'w)In{[1+ (k + k") /)1 +(k —k')?/u]} + A33/5—6A4,/5) ,
Culp)=(k*k">/uh[1/QI+ D[ A; 21 2/ = 1)+ A; 427 42/(21 +3)— (4] +2) Ay /(2] —1)(21 4-3)] .

C. Comparison of the potentials

Both potentials are “realistic’” in the sense that they
produce good fits to the phase shifts up to 350 MeV and
both include physical inputs assumed to be consistent
with a nonrelativistic reduction of a relativistic meson ex-
change model. Thus, both have an OPEP tail, similar po-
tentials in the TPEP region, smooth relative wave func-
tions with an interior suppression, and no ‘“extra’” nodes
or discontinuities at distances inside of 1 fm.>* On the
other hand, these two cases are about as different as po-
tential models possessing these properties can be. The
RSC potential is local in each partial wave, while the P80
is strongly nonlocal. When partial waves are added to-
gether and the potential matrix elements are considered in
momentum space, the RSC has a slight nonlocality, while
P80 is decidedly nonlocal. Thus, we expect them to be
substantially different in their predictions at very high en-
ergies and very far from the energy shell. They illustrate
the kind of ‘“model dependence” which is permissible
within the potential models of traditional nuclear physics.

We complete this section by comparing the
momentum-space matrix elements of the two potentials.
In addition to the usual spectroscopic notation we also
label the states with the 3(4) integer strings slj (s/l’j) for
uncoupled (coupled) states. In Figs. 2 and 3 we show
the matrix elements for the 'S, and 3P,-*P, states. Oth-
er states are qualitatively similar, with none of the states
considered showing any significant similarities between
RSC and P80. Notice that the largest matrix elements
for RSC occur for both momenta less than about 10
fm~!, while for P80 they are still growing at 20 fm~',
especially along the diagonal. These figures confirm our
expectations about the difference in the natural scales for
the two potentials.

(42)

(43a)
(43b)
(43c)

It seems extraordinary that two such strikingly different
potentials can produce similar on-shell behavior as a func-
tion of energy, much less off-shell behaviors that remotely
resemble each other. Nonetheless, we shall see below that
the off-shell amplitudes are indeed quite similar.

IV. THE SOLUTION OF THE OFF-SHELL
LS EQUATION

In this section we describe the method used to solve the
fully-off-shell LS equation and discuss the various conver-
gence tests applied.

A. Method of solution

The partial wave LS equation (9) presents two calcula-
tional problems. First, the principal value singularity cor-
responding to on-shell propagation must be handled nu-
merically. Second, one must deal with the fact that the
integral has an infinite range.

Choosing the principal value means that the integration
is done excluding the singular point, and a limit is taken
as the region of integration is allowed to approach the
singularity symmetrically. This permits the cancellation
of the positive and negative infinities on either side of the
pole. Two methods may be employed to accomplish this.
The singularity may be handled either by using a sym-
metric quadrature in the neighborhood of the pole (Sloan
method),?”® or by explicitly subtracting off an integral
which is identically zero but has the same pole structure
as the term we are trying to calculate (Haftel-Tabakin
method).'® In the former case we have to worry that we
will lose accuracy by having to subtract large numbers
near the pole. In the latter we not only have to worry
about the neighborhood of the pole, but that our quadra-
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FIG. 2. Momentum space potential matrix elements

vooo(k',k) as a function of k parametrically in k’. The value of
k’ in fm~' is placed near the relevant curve. (a) P80 (solid) and
(b) RSC (dashed).

ture is good enough over the entire region to give an accu-
rate zero for the vanishing integral that has been subtract-
ed.

We tried both methods and found the Sloan method to
give a more accurate evaluation of the integral with a
reasonable number of quadrature points. Our results in-
dicate that, as Sloan suggested, one does not have to ap-
proach the pole so closely that accuracy problems begin
to occur. We therefore simply select a symmetric bin of
small width (ranging from 0.25 to 1.0 fm~! half-width)
about the on shell point and use a Gaussian quadrature
in that bin with an even number of points. Our numeri-
cal studies indicate that 4 to 6 quadrature points in this
bin provides sufficient accuracy.

In order to handle the infinite range of the integral, we
go out to a cutoff momentum which is somewhat outside
the region where the dominant contributions occur and
use a Gauss-Laguerre rule for the integration region
beyond that cutoff. Again, numerically we find that 5 to
7 points are adequate to describe this region numerically.

As a result of these choices, we are led to the follow-
ing simple procedure. We divide the g integration in Eq.
(9) or (12) into four bins: a symmetric bin of half-width
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FIG. 3. Momentum space potential matrix elements

U2k’ k) as a function of k parametrically in k’. The value
of k' in fm~! is placed near the relevant curve. (a) P80 (solid)
and (b) RSC (dashed).

A about the on-shell momentum p, a semi-infinite bin
from a cutoff k to «, a linear bin from 0 to p —A, and a
second linear bin from p +A to k. The resulting equa-
tion takes the discrete form

k(qi,q;,p*)=0(gi,q;)+ 3, wn(p?)

Xv(qi,qmk (gm,q;,p?) . (44)

The weight function w,,(p?) includes the quadrature
weights, the phase space factor qz, the resolvent
(pz—qz)“l, and the numerical factor 4u/m. We have
suppressed the subscripts on k and v. If a tensor-coupled
state is being described, k and v are both 2 X2 matrices.

The on-shell point is included as a quadrature point
with weight zero. This means it will be calculated as one
of the values on the left-hand side of the equation, but it
will not contribute to the sum on the right.

Equation (44) for the unknowns k(g;,q;) is then
solved using a standard linear equation solver. The T
matrix is obtained from the K matrix by means of the
algebraic equations (10) or (13). The values of the T ma-



trix for arbitrary values of its arguments are then ob-
tained by a two dimensional fifth order Aitken interpola-
tion.”

B. Comparison with other approaches

The two most common approaches for handling the
singular denominator in the 7 matrix form of the LS
equation are the K matrix method!? and the Kowalski-
Noyes method.?® In the K-matrix method a supplemen-
tary quantity is introduced which solves the Lippman-
Schwinger equation with the ““ 4 i€ prescription in the
denominator replaced by the principal value. In the
Kowalski-Noyes method, the equation is multiplied by a
factor containing the ratio of potential matrix elements
and a subtraction is performed to cancel the numerator at
the pole. This method can only be used to calculate the
half-shell T matrix. The fully-off-shell amplitude may
then be constructed with a subtracted Low equation [see
Eqgs. (54) and (55) and the discussion in Sec. IV] first writ-
ten down by Baranger, Giraud, Mukhopadhyay, and
Sauer’’” (BGMS) and extended by Haftel®® to include
bound states.

The difficulty possessed by the Haftel-Tabakin method
described above (i.e., maintaining accuracy for the whole
integral, not just in the neighborhood of the singularity)
applies to the Kowalski-Noyes approach as well. Experi-
ence with this equation indicates that a substantially
larger number of quadrature points are required in order
to obtain an accuracy comparable to the one we report
here. In addition, this approach also suffers from the de-
fect of requiring solution of the half-shell equation at
many energies in order to produce fully-off-shell matrix
elements at a single energy. A quadrature is also required
for every off-shell matrix element constructed.

Our method has the advantage of. dealing with the
desired quantities directly in addition to being fast and
efficient. The direct solution of the off-shell LS K-matrix
equation and the associated Heitler equation to produce a
fully-off-shell T" matrix at a particular energy on a mesh
of momenta adequate for interpolation takes less than 2
min of central processing unit time (CPU) on a CDC 7600
for 20 distinct nucleon-nucleon partial waves.

36 OFF-ENERGY-SHELL BEHAVIOR OF REALISTIC POTENTIAL ... 521

C. Convergence studies: The phase shifts

We carried out extensive studies of the convergence and
the numerical stability with respect to the placement of
the quadrature points of the off-shell LS equation for the
K matrix for the two potentials both on and off shell.

A sample of the on-shell convergence results is shown

in Table 1. We display the phase shifts for the states
'Sy, 38,-*Dy, 3P,-*F,, 'P,, and 3D, at a c.m. energy of
100 MeV. We use a value of A of 0.5 for the uncoupled
states and 1.0 for the coupled states. For the RSC a
value of k=10 fm~! is used for the 19 and 24 point
quadratures, while for the 32 point rule « is increased to
15. The three quadratures displayed have points distri-
buted in the four bins by 19=3+4+8+4,
24=5+6+8+5, and 32=5+6+ 15+ 6. For the
P80 potential « is taken to be 30 fm~! and the quadra-
ture points in each bin are divided up as follows:
21=3+4+10+4, 24=3+4+12+5, 30=3+6
+ 15+ 6, and 32=5+4 6+ 15+ 6. All of the calcula-
tions reported here use a Gauss-Laguerre parameter of
1.0 fm~!. These values were selected after extensive
studies of the dependence of the results on the placement
of the cutoffand the other binning parameters.

Our conclusion is that the on-shell phase shifts at lab
energies between 25 and 350 MeV can be obtained to an
accuracy of about 0.01° (usually better than 1 part of
1000) with 24 points for the RSC and 30 points for P80.
For P80 we actually used 32 points since the stability of
the interpolation routine near zero required more values.

The on-shell amplitudes produced were compared
with the published versions of both Reid and Paris
groups. Reid only gives his results to three significant
figures (except for phase shifts greater than 1 rad, where
he gives 4). For all the T =0 phase shifts we agree with
his results to all places. For the coupling parameter €,
we agree to all figures given, except at the highest ener-
gies, where we agree to within 2% (about one-tenth of a
degree). Our T =1 phase shifts are not precisely compa-
rable with Reid’s published values since he includes
Coulomb amplitudes and we do not. Even after the ex-
traction of the Coulomb amplitude from his results, his

TABLE I. Convergence of the phase shifts (in deg) for a sample of partial waves. The number of
points in the quadrature rule (and the number of points in each bin) is, for RSC, (a)=19
B34+4+8+4), B)=24 (5+6+8+5), (c)=32 (54 6+ 15+ 6); for P80, (d)=21 3+4+ 10+ 4),

(e)=24 B+4+12+5), H=30 B+6+15+6), (g=32 (5+6+ 15+ 6).

covered by each bin.

See text for ranges

lSo 351 3l)] € lPl 3P2 3F2 €, 3D2

RSC

(a) 5.784 18.64 —19.15 5.649 —25.18 15.86 1.263 —2.968 24.46

(b) 5.779 18.60 —19.11 5.668 —25.18 15.85 1.266 —2.966 24.49

(c) 5.777 18.58 —19.11 5.673 —25.18 15.85 1.266 —2.966 24.49
P80

(d) 5.242 19.68 —20.45 3.061 —21.84 16.16 1.092 —2.748 27.09

(e) 4.758 19.31 —20.47 3.181 —21.76 16.29 1.092 —2.743 27.15

($9] 4.813 19.26 —20.43 3.203 —21.75 16.32 1.096 —2.739 27.15

(g) 4.811 19.27 —20.43 3.200 —21.74 16.32 1.096 —2.739 27.15
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nuclear phase shifts include the effects of second order
Coulomb amplitude. These produce differences of about
2% between our phase shifts and his (up to as much as
half a degree for the large phase shifts). For the Paris
potential our T'=0 phases agree with those published.
A comparison with the calculations of Friar and colla-
borators?® done in coordinate space without Coulomb
potential shows excellent agreement with our T =1
phase shifts.

We have also compared the on-shell behavior predict-
ed by the two potentials with the latest phase shift
analysis of the Virginia Tech (VPI) group we had avail-

able (spse).*°
The phase shifts for RSC, P80, and VPI are plotted in

Fig. 1. The agreement is good to excellent for most of the
phases, though discrepancies of 2° or 3° are not uncom-
mon. It should be noted that such discrepancies do not
necessarily indicate failures in the potential models. Vinh
Mau has stressed in his lecture in the Rho and Wilkerson
volume'? that his group fit the data directly and that their
X? values are comparable to those obtained by the VPI
group in obtaining their energy-dependent phase shift fits.
In producing such an energy-dependent phase shift, one
must make certain assumptions as to the possible forms
the energy dependence may take. These assumptions are
not well documented or understood. The extraction of
phase shifts at a single energy leads to error bars which
are comparable to the differences seen in Fig. 1. Note
also that Van Oers has pointed out®! that potential model
and phase shift predictions for some observables which
have not been measured may differ substantially.

There are a few cases where the discrepancies between
individual phase shifts are significant. The three predic-
tions for the 'P; state look only qualitatively similar,
while the singlet and triplet D, states show up to 20%
variations, especially at the higher energies. The coupling
parameter for the J =1 states also does not seem to be
well determined. Klages has recently reported'® that new
data from Karlsruhe pin down the !P; phase shift, which
now agrees well with P80. The J =1 coupling parameter
is still poorly determined at low energies. We will see in
Sec. V that only the 'P, discrepancy corresponds to large
off-shell differences.

D. Off-shell convergence

The fact that our calculations have converged for the
on-shell value does not necessarily imply that we have
comparable convergence for all off-shell values. We there-
fore also investigated the convergence of the off-shell ma-
trix elements. This was done by comparing the curves for
the t;(k',k;p?) real and imaginary parts for an on-shell
energy of 200 MeV (lab) as a function of k from O to 3.0
fm~! parametrically for values of k’ from O to 2.5 fm™'
in steps of 0.5 fm~!. For the coupled states we compared
the K matrices in the same way.

Our conclusion is that the number of points which
yields good results for the phase shift also yields excellent
results off shell in the ranges indicated. For the RSC cal-
culations the results with 24 and 32 points were indistin-
guishable for all states. We used 24 points for all the cal-
culations shown below. For P80 the results showed small
differences between 24 and 30 point quadratures and none

between 30 and 32. We used 32 points for all the calcula-
tions displayed.

A more cursory investigation of the off-shell conver-
gence at other energies suggests that our off-shell ampli-
tudes are also well converged at all lab energies ranging
from 100 to 350 MeV. At 50 MeV some changes in the
off-shell amplitudes were observed at high momenta (k
and k’'22.0 fm~!), while at 20 MeV significant variations
were found even at low momenta, even though the on-
shell results were still accurate at both energies.

It is clear from these results that off-shell convergence
cannot be inferred from on-shell convergence. The accu-
racy of the specific matrix elements desired must be inves-
tigated directly.

V. OFF-SHELL COMPARISON OF RSC AND P80

In order to compare the off-shell amplitudes produced
by the RSC and P80 potentials, we have examined the re-
gion of lab energies ranging from 100 to 350 MeV by con-
sidering the off-shell K matrices k;(k’,k;p?) as functions
of k from 0 to 3.0 fm~! parametrically in k' for values of
k' ranging from O to 2.5 fm ! in steps of 0.5 fm~!. Since
a detailed comparison involves hundreds of curves (14
states, four energies, five k' curves, and two models), we
cannot display them all here. Rather, we will display a
comparison of the K matrices produced by the RSC and
P80 potentials for each partial wave at 200 MeV. The
variation with energy will be discussed in the text. For
some of the states we have also considered the behavior at
lab energies down to 20 and up to 400 MeV.

The relation between the K matrices shown and the T
matrices actually used in calculations is simple [Egs. (10)
and (13)]. For most of the states considered, the struc-
tures of the momentum dependence is very similar for the
K and the T matrices. This is particularly true in the
weaker states.

A. J =0 states

IS,(000). The off-shell K-matrix elements for this
state are shown in Fig. 4. In this and in the remaining
figures, the P80 curves are drawn as solid lines and the
RSC as dashes. The structure of this figure is similar at
all energies from 20 to 400 MeV. The magnitudes are
very large at low energies due to the antibound-state
pole and fall rapidly until about 100 MeV, where they
stabilize. The energy dependence in the 100-350 MeV
region is slight. This is exemplified by the energy depen-
dence of the values of kgg(0,0;p2) displayed in Fig. 5.
The variation between 100 and 350 MeV is only about
15%.

In this (and succeeding figures displaying the energy
dependence) the points actually calculated are marked
with a cross. The curves are interpolations provided by
the plotting program.

At energies below about 200 MeV the k' curves cross
(or nearly so) in the neighborhood of k =(1.85+0.005E)
fm~!. As the energy increases this point moves out and
becomes fuzzier, being replaced at the higher energies by
a narrowing. )

The RSC and P80 amplitudes agree to better than 20%
over the entire range of energy and momentum con-
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FIG. 4. Fully-off-shell K-matrix elements kgy(k',k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k' in fm™! is
placed near the relevant curve.

sidered. For k and k' <2.0 fm~! the agreement between
P80 and RSC is quantitatively excellent, i.e., better than
5% everywhere except where the value of the amplitude is
small in association with passing through zero.

In general, we will quote percentage discrepancies in
terms of percentages of the larger values of the amplitudes
displayed on the graphs. When the amplitude crosses
zero, the percentage differences may become very large.
We will henceforth drop the warning phrase ‘“‘except
when the amplitude becomes small.” If one is interested
in an integral over a broad range of momenta, our quoted
percentages then represent realistic ranges of variability.
If a single matrix element or a very narrow range is re-
quired, the differences can be much greater due to the
magnifying effect of small values.

3Py(110). The off-shell amplitudes for this state are
displayed in Fig. 6. The scale of these amplitudes
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FIG. 6. Fully-off-shell K-matrix elements kyjo(k’,k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k' in fm~! is
placed near the relevant curve.
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FIG. 5. Energy dependence of the K-matrix element

kooo(0,0;E) as a function of lab energy.

remains the same from 20 to 400 MeV. Below 50 MeV a
second peak appears in the k' curves inside the 3 fm~!.
The qualitative structure is very stable from 100 to 350
MeV, with the maximum values of the peaks changing by
less than 30% over the entire range.

The P80 and RSC amplitudes in this state are qualita-
tively similar over the entire range examined. They agree
to better than 10% for momenta k and k' < 1.5 fm~!. As
the momenta increase, the discrepancies grow slowly to a
maxilmum of about 15% when k =3 fm~! and k’'=2.5
fm~".

B. J =1 uncoupled states

3P,(111). The off-shell amplitudes for P80 and RSC
at 200 MeV are shown in Fig. 7. From 50 to 350 MeV
each k’ curve has a single peak which moves outward in
k as k' increases. The energy dependence is fairly small,
with the heights of the peaks changing by about 20% be-
tween 50 and 350 MeV. This behavior is illustrated in
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FIG. 7. Fully-off-shell K-matrix elements k,;,(k’,k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k’ in fm~! is
placed near the relevant curve.
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Fig. 8, where we have plotted (a) the position in k&’ and
(b) the value of the peak in the k'=0.5 and 2.0 fm~!
curves.

Again, the P80 and RSC amplitudes are qualitatively
similar (i.e., agree to better than 10%) in the energy range
from 50 to 350 MeV for k and k’<2.0 fm~', with the
discrepancies being slightly higher ( <20%) at higher mo-
menta and at 350 MeV.

1p,(011). The 'P, state is the only one we have found
in which P80 and RSC differ substantially. The
differences are so large that plotting them on the same
graph would result in a very confusing figure. We have
therefore plotted the P80 and RSC amplitudes separately
in Figs. 9(a) and 9(b). The P80 amplitudes have k' curves
which peak near the diagonal value, kK =k’. The shapes
remain similar as a function of energy from 100 to 350
MeV but grow in magnitude fairly substantially. For ex-
ample, the value at the peak of the k'=1.5 fm~—! curve
grows by more than 50% in that energy range.

The RSC amplitudes tend to have broader peaks in the
k' curves than do the P80 ones and they tend to be far-
ther out—mostly in the neighborhood of 2 fm~!. These
also have a fairly strong energy dependence with the
heights of the k' peaks growing by 30—50 % as the energy
grows from 100 to 350 MeV.
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FIG. 9. Fully-off-shell K-matrix elements kg, (k’,k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
(a) P80 (solid) and (b) RSC (dashed). The value of k" in fm~! is
placed near the relevant curve.

C. J =2 uncoupled states

'D,(022). The P80 and RSC amplitudes for this state
are shown in Fig. 12. For 100 to 400 MeV the k' curves
all form a single broad peak between k =0 and 3 fm~'.
Below 100 MeV the first nonzero k' curve (k'=0.5
fm~') develops a dip as well. Above 100 MeV the ener-
gy dependence is small. The peak value of the k'=2
fm~! curve falls by about 10% as the energy grows from
100 to 400 MeV. Most differences are less than that.

P80 and RSC are very close in this state, with most
discrepancies being less than 10%. There is some
difference in how the k'=2.5 fm~! curve heads down-
ward from its peak, which leads to differences for k > 2.5
fm~! for E > 100 MeV.

3D,(122). The P80 and RSC amplitudes for this state
are shown in Fig. 10. As in the singlet case, most of the
k’ curves have a single broad peak in the k£ =0 to 3
fm~! range, with the exception being low k' curves at
energies below 100 MeV. The energy dependence is fair-
ly strong, as is illustrated by the energy variation of the
maximum value in the k’'=1.5 fm~! at all energies in-
vestigated (Fig. 11).
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FIG. 10. Fully-off-shell K-matrix elements k5 (k' k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k&’ in fm~' is
placed near the relevant curve.

The agreement between P80 and RSC is very good
(better than 15%) in the energy range from 100 to 350
MeV.

D. J =1 coupled state

’S;-’S,(1001). The *S-S block of the J=1 2X2 K
matrix has the largest matrix elements of any state at low
energies (below about 50 MeV). Its values falls rapidly
until about 200 MeV, after which it settles down to nearly
a constant. The momentum structure is similar at each
energy and is similar to that of the !Sy;. The matrix ele-
ments for P80 and RSC are shown at 200 MeV in Fig. 13.

RSC and P80 agree quite closely over the energy
range from 50 to 400 MeV. The differences are less than
5% for k and k' <2.0 fm~! for E <200 MeV and begin
to grow slightly larger above that. At 300 MeV and
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FIG. 12. Fully-off-shell K matrix elements ko2 (k',k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k" in fm ' is placed
near the relevant curve.
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FIG. 11. Energy dependence of the value at the peak in the
function f(k)=k (k' ,k;E) for k'=1.5 fm~!. The peak
occurs close to k =1.5 fm ™! for all energies considered.

above the differences are 15-20 % for large momenta.
The K'=2 fm~! curves agree almost perfectly at these
energies, with discrepancies increasing for higher mo-
menta. The energy dependence of the value of
k 1001(0,0;p?%) is shown in Fig. 14.

38,-3D1(1201-1021). The  off-diagonal  block
kioa1(k' k;p?) of the j=1 K matrix is shown at 200 MeV
in Fig. 15. The energy dependence from 200 to 400 MeV
is slow, with the peaks moving out slightly and decreasing
in magnitude somewhat. As the energy drops below 200
MeV the peaks grow and move inward, with the higher k&’
curves beginning to develop a minimum at high k values.
The energy dependence of the peak in the k curve
k1021(0,k ;p?) as a function of energy is shown in Fig. 16.

At 100 MeV and above the P80 and RSC amplitudes
agree to better than 10% everywhere with better than 5%
more typical. At 50 MeV the agreement is still good
(better than 15%) for k' <2.5 fm ' and k 2.0 fm~".

3D,*D;(1221). The P80 and RSC amplitudes at 200

20 T T T T T T T T T T T T T T T
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FIG. 13. Fully-off-shell K matrix elements kjo01(k’,k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k' in fm ™! is placed
near the relevant curve.
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FIG. 14. Energy dependence of the K-matrix element

k1001(0,0; E) as a function of lab energy.

MeV are shown in Fig. 17. The shapes of the curves are
similar at other energies, except at 50 MeV, where the
high k' curves have a zero in the k region examined.
There is a strong energy dependence up to 100 MeV
which weakens substantially from 200 to 400 MeV. P80
and RSC agree very well between 100 and 400 MeV. The
agreement is better than 20% everywhere and usually
better than 5%.

E. J =2 coupled states

3p,-3P,(1112). The P80 and RSC amplitudes for the
1112 block of the J =2 coupled K matrix are shown in
Fig. 18. The energy dependence of these amplitudes is
very small over the entire range from 50 to 400 MeV,
with an overall change of magnitude of only about 20%.
The two models, agree very well (to better than 5%) at all
the energies considered. .

3F,-3F,(1132-1312). The 1132 amplitudes are shown
in Fig. 19. The energy dependence of these amplitudes
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FIG. 15. Fully-off-shell K-matrix elements k oy, (k’,k ; E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k' in fm~' is
placed near the relevant curve.
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FIG. 17. Fully-off-shell K-matrix elements k5, (k’, k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k' in fm~' is
placed near the relevant curve.
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is again small, in the range 50-400 MeV. Figure 20
displays the movement of the peak height and position
in the k'=1.0 fm~! curve. RSC and P80 agree to
within better than 10% everywhere.

3F,-3F;(1332). The amplitudes for this block are
shown in Fig. 21. P80 and RSC agree here only for low
values of k and k’ (less than about 1.0 fm~!). Above that
they begin to differ substantially. As k' increases past 1.5
fm~! the curve changes character, moving from negative
to positive. P80 amplitudes do this more rapidly than
RSC amplitudes and the former wind up more positive at
large k. This effect is stronger for higher energies.

F. Discussion

The most striking observation about the set of ampli-
tudes displayed is the close similarity between the two
models in almost all states. This is particularly notable
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FIG. 19. Fully-off-shell K-matrix elements k3;(k’,k;E) for
E =200 MeV (lab) as a function of k parametrically in k' for
P80 (solid) and RSC (dashed). The value of k' in fm~!' is
placed near the relevant curve.
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given that the potential matrix elements in momentum
space fail to be even qualitatively similar in any of the
states examined. Despite this, the model amplitudes agree
to within better than 10% or 20% for almost all states,
energies, and momenta considered. The agreements are
particularly good for k,k' < 1.5 fm ™.

The two exceptions to these statements are the P, state
and the *F,-3F, block of the J =2 coupled state. The P
state discrepancy is signaled by the qualitative agreement
between the phase shifts in the two models [Fig. 1(c)].
The 3F, phase shifts [Fig. 1(f)] display a qualitative
difference in character in the way they behave at high en-
ergy.

Surprisingly, quantitative disagreements such as
displayed by the €; parameter [Fig. 1 (g)] or the uncou-
pled D states [Figs. 1(d) and 1(e)] do not signal off-shell
divergences between the models. The off-shell discrepan-
cies in these cases are less than or comparable to the on-
shell differences.

VI. ANALYSIS OF RESULTS

As a result of the calculations reported above, we con-
clude that the off-shell matrix elements of two very
different potential models are very similar over a
significant range of momenta and energies. Compelling
conclusions cannot be drawn from the comparison of only
two models (especially without a detailed analysis of the
most  sophisticated meson  exchange potentials®).
Nonetheless, in this section we consider some speculations
as to how this result might be understood and what some
implications might be for the analysis of many-particle
properties in the framework of nonrelativistic nuclear
physics.

We discuss how information about the two-nucleon sys-
tem is stored in the half and off-shell 7 matrices. Finally,
we discuss the implications of our results for some specific
many-body calculations.

A. The validity of potential models

In the traditional model of nuclear physics we assume
that nuclei can be described as consisting of nonrelativis-
tic nucleons interacting via energy-independent (possibly
nonlocal) two-body potentials. The two-body potentials
are constructed, as described above, by a mixture of
meson theory and phenomenology.

A nuclear system has a wide variety of properties, and
what it looks like depends to a certain extent of the char-
acter and energy of our probe. The bulk of traditional
nuclear physics deals with low energy properties such as
binding energies, spectroscopic factors, and reaction rates.
We will concentrate on such properties here.

At energies for which there is substantial pion produc-
tion, a real, energy-independent potential is inadequate
to describe the physics taking place. We therefore do
not expect a potential model to suffice above about 350
Mev. The limitations in relative momenta are less clear,
but 350 MeV corresponds to an on-shell relative momen-
tum of about 4.5 fm~!. Momentum transfers this high
can be produced on shell when the initial and final mo-
menta are half this size or about 2.5 fm~!. Above

momentum transfers of about 4 or 5 fm~!, many calcu-
lations show that contributions from mesons and deltas
are important even for a system as simple as the three-
nucleon bound state.*

From our studies of the two potentials it is clear that
the potential matrix elements are poorly determined even
at low energy and momentum. However, our results sug-
gest that we may be able to get reasonably well defined
nonrelativistic amplitudes in this regime.

We therefore define scattering amplitudes at projectile
lab energies below 350 MeV and relative nucleon-nucleon
momenta below 2.5 fm ™! as in the potential regime. We
suspect that it is only within this regime and only when
we work with amplitudes that traditional nonrelativistic
nucleons-only nuclear physics might be expected to work
without the need for a careful evaluation of the dynamic
contribution of delta and mesonic degrees of freedom.

Note that the matrix elements of the potential are re-
quired outside the potential regime in order to calculate
amplitudes inside the potential regime. While individual
potential matrix elements outside this regime may not be
meaningful, they are required to yield fits to the on-shell
data at low energies and momenta and to respect the
long range constraints of meson theory. They are there-
fore constrained in a distinctly non-obvious way.

We must require that our method of constructing po-
tentials contains enough input physics that the resulting
theory is well determined. To construct a potential we
use some meson theory and then fit many parameters to
the two-body data. Different individuals and groups car-
rying out the procedure in distinct and idiosyncratic ways
have obtained potentials which appear to be widely
different. This casts doubt on whether the whole ap-
proach makes any sense.

However, the results we described in the preceding
section indicate that the fully-off-shell T-matrix elements
in the potential regime are much better determined than
we might have guessed by comparing the potentials
directly, either in coordinate or in momentum space.
This could mean that the physics information that is
common to all realistic potential models is sufficient to
adequately determine off-shell amplitudes in the poten-
tial regime. If this information is adequate for the calcu-
lation of any many-body properties, it may mean that at
least certain aspects of the nonrelativistic model are well
defined.

In order to understand how information about two-
nucleon physics determines the off-shell amplitudes, we
consider first the half-shell amplitudes.

B. Two-body information and the half-shell 7" matrix

If the potential is local and energy independent, then it
is a function of only one (vector) variable. We might then
expect that all the information about the potential is con-
tained in another function of one (vector) variable, the
half-shell T" matrix with the energy held fixed and the off-
shell momentum allowed to roam. This is indeed the case
since the scattering wave function at a given energy is
completely determined by the half-shell 7" matrix at that
energy through the equation!?

(K' | ) =8(K' —K)+(Ef —E; )"K' | T(E¢) | k) (45)
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for the component of the scattering wave function in the
momentum representation. Upon Fourier transforming to
coordinate space, the potential can then be, in principle,
extracted from the Schrodinger equation in the form

V(r)=[(Ex —Ho)(r)]/ () . (46)

This is not particularly convenient in practice, since the
half-shell T matrix must be very well known very far off
shell to construct the wave function. The information
contained in the half-shell T matrix is more conveniently
expressed using the form!2

(k' | T(EF) | k)=(K'| V| ¢y) . 47)

This shows that the half-shell T matrix is the Fourier
transform of the coordinate space function {(r|V |y)
[i.e., ¥V (r)yy(r) for a local potential], so it is a reasonably
direct measure of the wave function inside the range of
the potential. This makes the half-shell amplitudes of
particular importance in understanding the relation be-
tween physical constraints on the relative two-body wave
function and the off-shell amplitudes.

The information in the half-shell T can be understood
in greater detail when a partial-wave expansion is made.
In addition to the partial-wave decompositions (6), we
require the partial-wave expansion of the wave functions

(r|k)=3 Y1 (Q)*i)(kr) Y}, (Q) (48a)
(r| ) =3 Y (Q)*i 'y (k ;) Y1 (Q) . (48b)

We have ignored tensor forces for simplicity, but have
not assumed that the potential is local. These expan-
sions yield the expression for the half-shell partial-wave
T-matrix element

yk'ksk®) = [ [ ridr e 2dr ke (rr iy (ksr')
(49)

Although this appears to depend specifically on the po-
tential, we know from Eq. (45) that the half-shell T only
depends on the wave function. To see this in partial-
wave form, we use the (partial-wave) Schrodinger equa-
tion to replace Vi by (E —Hy)y. If we were to insist
that the potential were local, then, as we have seen, it
could be extracted from the wave function. However, if
we permit nonlocal potentials, then Vv is no longer pro-
portional to ¥ and we cannot extract V by using Eq.
(46). This means that different potentials may lead to
the same scattering wave function at a given energy and

therefore to the same half-shell 7" matrix at that energy.
A useful expression of this can be obtained by integrat-
ing the Hoy term by parts. This cannot be done directly,
]

because an indeterminate surface term would be picked
up at infinity. We can do it if we use the relation

(E —ho)Yy=(E —ho)(y—v;) , (50)
where v;(kr) is the phase-shifted free wave function

vi(kr)=hi (k) —e > r{ ) (kr) . (51)
We write

Aitksry=e " ke (k ;1) — v (kr)] (52)

for the difference function. This is the scattering state
analog of the defect function studied in nuclear matter. It
is real and goes to zero outside the range of the potential
where the wave function attains its asymptotic form.

The expression (49) with Vi replaced by (E —Hy)A
may now be integrated by parts. The result is

t(k',k;k?)= (k' /k)'t(k)
_ ei&,(k)[(k,z_kz)/k,k]
X [ druk'nAk;r), (53)

where ¢;,(k) is the on-shell partial-wave T matrix,
t;(k,k;k?), and u,(x) is the Ricatti-Bessel function,
xj;(x). Since on shell k’'2=k?2, this equation shows that
the behavior of the half-shell T matrix away from the
on-shell point is controlled by the Fourier transform of
the difference function. Equation (53) was first found by
Fulton and Shwed?® and was used in Ref. 6 to analyze
the sensitivity of the off-shell behavior to the interior
wave function. From that work we learn that the half-
shell T matrix within about 1-2 fm~! of the on-shell
point is well determined by the phase shift, the range
and strength of the long and medium range attractions,
the fact of short range repulsion, and the smoothness of
the wave function.

C. Information in the fully-off-shell 7 matrix

The change of the scattering wave function from one
energy to another tells us something about the nonlocali-
ty or the energy dependence of the potential. For an
energy-independent potential, the fully-off-shell 7" matrix
may be expressed in terms of half-shell T matrices.?’
This means that the fully-off-shell 7 matrices contain no
more information than do the half-shell ones, but the
way the information is distributed may be quite different.

The relation between the full and half-off-shell T ma-
trices may be obtained by writing the partial-wave version
of Eq. (1) for the half-shell energy E; and putting in com-
plete sets at the resolvent G. The result for an uncoupled
partial wave without a bound state is

k' kip)=t,(k",k;k)+2u [ q*dg t;(k',q;qMt(k,q;9P(p2—gq*+ie) ' —(kP—g?+ie) '] . (54)

(More general results may be found in Ref. 28.) We refer to this (and the analogous equations in the presence of coupled

and bound states) as the BGMS equation.?®

The BGMS argument may be carried a step further to yield a stronger result. If instead of a single subtraction on the
Low equation, we perform two, we can demonstrate the relationship>*
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a2y | A=p g2
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t(k,p;p?)

t(p,q;9Ht*(k,q;q?)

4u 2 92y(n2__ 32 o 2
+ (k2= A2)p k)fodqq

This equation relates the fully-off-shell matrix elements
to the half-shell matrix elements with arguments in the
same region. The additional suppression factor in the
demominator in the integral suggests that if p, k, and A
are all in the potential regime the information required to
construct the matrix element t;(p,k;)\z) is limited to the
relative nucleon-nucleon wave functions for energies in
the potential regime. This would explain the lack of mod-
el dependence of our results since our two models yield
very similar wave functions in the potential regime, but
differ significantly at energies and momenta above that.

D. Implications

Relation (55), together with the half-shell analyses of
Picker, Redish, and Stephenson,® suggest that the near
model independence of the fully-off-shell 7' matrix ele-
ments in the potential regime follows from the strongly
constrained physical information common to most realis-
tic potential models.

Our results suggest that the model dependence in non-
relativistic many-body calculations may be better under-
stood if the calculations are formulated such that the T
matrix is the two-body input. A sensitivity analysis of the
output with respect to input 7 matrix elements should
then be performed. If many-body results can be found
which are sensitive only to the matrix elements in the po-
tential regime, then we can expect the nonrelativistic re-
sults to have limited model dependence. Sharp tests of
the model’s validity may then be possible.

There are a number of possible examples which such a
sensitivity analysis could be performed directly in existing
calculations or in ones which are being -currently
developed.

In the three-nucleon bound-state problem such sensi-
tivities were studied in the early 1970s. Levinger’s®
group at RPI and Lavine, Mukhopadhyay, and Stephen-
son>® at Maryland both found that the three-body nucleon
state for simple potentials (without short range repulsion)
only required momenta up to about 2 fm~'. More so-
phisticated calculations indicate that the use of more real-
istic potentials leads to sensitivities to somewhat larger
momenta.’

The three-nucleon scattering problem seems to be dom-
inated at low energies (Ej,, <50 MeV) by the bound state
and anti-bound-state poles in the 35->D and 'S states, re-
spectively,®® though input from the P and D states is im-
portant in correctly predicting the spin observables.*® Se-
parable fits to realistic potentials do quite well here and
may provide a clean case of a many-particle calculation
with sensitivity limited to the potential regime.

A second case which needs to be analyzed from this
point of view is the elastic and inelastic scattering of nu-
cleons from nuclei in the low-intermediate energy region

(M —g2)(pt—q’+ieNk?—qg+ie)

I

(50<E, 350 MeV). Calculations based on the single-
scattering approximation for the optical potential*® and
on the distorted-wave impulse approximation (DWIA)
for inelastic transitions*! do quite respectably in predict-
ing some observables. There is also some indication that
the calculations are not very sensitive to amplitudes far
from the on-shell point.*?

Unfortunately, all calculations either start from phe-
nomenological amplitudes or employ a local-density ap-
proximation for the treatment of Pauli effects. Although
the off-shell behavior of the phenomenological ampli-
tudes are qualitatively similar to the off-shell amplitudes
produced by potential models, they have not been stud-
ied sufficiently to determine whether they represent plau-
sible models of the short range behavior of the nucleon-
nucleon wave function. Those calculations that use real-
istic potential models do so by using a density dependent
nuclear matter calculation and a local-density approxi-
mation whose validity is not well understood.** Both ap-
proaches will have to be developed with more care be-
fore one can conclude that this is an appropriate place to
develop a sharp test of the nonrelativistic theory.**

The theory of nuclear matter is a third system in which
it is natural to formulate the calculation in terms of the
off-shell T matrix as two-body input by use of the refer-
ence spectrum method.>*® This approach gives the
Brueckner G matrix as the solution of an equation for
which the off-shell T matrix is the input. Unfortunately,
most nuclear matter calculations take the Bethe-
Goldstone equation as their starting point. This approach
relies heavily on the coordinate space representation of the
potential and thus mixes information in the potential re-
gime with information from higher energies.

The wide variation of results obtained in nuclear
matter with various realistic potentials® suggests that
this is a case in which the potential regime is inadequate.
Nevertheless, an analysis in terms of off-shell amplitudes
could be quite instructive in helping us to understand
what aspects of a nuclear matter calculation can plausi-
bly be expected to be reliable in a nonrelativistic
nucleons-only model. (Note that all potentials used in
these calculations are not on-shell equivalent. Some of
the sensitivity of the nuclear matter results may be a
consequence of on-shell differences or of the inadequa-
cies of particular approximations to the many-body cal-
culation.)

We suggest that any many-particle calculation which
requires information outside of the potential regime is
not consistent even in principle with the philosophy of a
nonrelativistic nucleons-only model. For such systems,
at least the effects of deltas and mesons must be exam-
ined (and possibly other effects as well—see below). If
no many-particle calculations exist which only require
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information which is reasonably well determined by the
procedure used to construct potentials, then the nonrela-
tivistic framework would have to be declared a failure
and not applicable to nuclear physics. (Even if this turns
out to be the case, it might still be possible to use it as a
phenomenology with a limited amount of information,
such as bound state properties, calculated in some other
framework.)

Broad questions of this character have come under ac-
tive consideration in the nuclear community during the
past few years. In particular, much attention has been
given to the question: What are the appropriate funda-
mental degrees of freedom which should be used to de-
scribe nuclei? New formalisms which have been con-
sidered include (1) relativistic Dirac nucleons with meson
exchange leading to strong coupling to the lower com-
ponents,*® (2) field theoretic models of point nucleons with
mesons treated classically but dynamically (QHD),*’ (3)
relativistic nonlocal models having only two spin com-
ponents,*®* and (4) quark models with partial
deconfinement.* These different approaches all give a
picture of nuclei which is substantially different from
traditional nonrelativistic nucleons-only model, and from
each other.*

Each of these new formalisms produces improvement
in some circumstances over the traditional model’s pre-
dictions. In order for us to understand precisely what
these successes imply, it would be exceedingly useful to
analyze the results of these formalisms in terms of the
effective pair and multiparticle interactions they lead to
when they are forced into a nonrelativistic nucleons-only
framework. If they only lead to modifications of the
effective amplitudes outside the potential regime, then
they are consistent with the nonrelativistic framework
(which is necessarily limited in its range of applicability)
and could be considered as a natural extension.

VII. CONCLUSIONS
In this paper we have compared the fully-off-shell be-

havior of the partial-wave T matrices produced by two
very different realistic nucleon-nucleon potentials, the
RSC and P80 potentials. The off-shell amplitudes are
straightforward to calculate, and do not require large
matrix inversions if the K-matrix equation is solved us-
ing the Sloan prescription for treating the principal
value singularity. We also note that the convergence of
the calculation for the phase shift (on-shell point) does
not necessarily indicate convergence for the off-shell am-
plitudes. They must be tested separately.

Our main conclusions are the following:

(i) Although the two potentials look totally different in
momentum space and have very different character (non-
locality), they yield off-shell amplitudes in the potential
regime (50 < Ejp <350 MeV, k and k’'S2 fm~') which
agree to within 20% in all states except the 'P; and better
than that (5-10 %) for the largest amplitudes.

(ii) Small disagreements (10-20 %) in the fits to the
phase shifts do not imply substantial disagreements of the
off-shell amplitudes, though qualitative deviations in the
energy dependence may signal qualitative differences off
shell.

These points suggest that using the off-shell 7" matrix
instead of the potential as two-body input to a many-
body calculation may be a good way to focus on the
model-dependent versus the model-independent features
of the calculation. We have suggested a number of
places where this might be profitably carried out.
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