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A method for solving integral equations is developed and applied to the homogeneous
Lippmann-Schwinger equation in momentum space. It has been used with Yukawa-type poten-
tials, V(r) = g, V, [exp( p, r)—])/(p, r), and yields solutions that are analytic expressions rational
in the variable k'. More specifically, the principal-value form of the homogeneous Lippmann-
Schwinger equation is solved by making an analytic series expansion of the integral, which is then
summed using Pade approximants. An application to the Malfliet-Tjon potential V in s wave is

given. In a finite subspace of rational functions with fixed denominators, the solutions, referred to
as Sturmian functions, are obtained corresponding to the energy —0.35 MeV, which is the physi-
cal bound state energy for this potential. With these analytic eigenfunctions as form factors and
with the associated eigenvalues, a separable expansion, namely, the unitary pole expansion, is con-
structed for the local potential. The unitary pole expansion is then used for analytic k-matrix cal-
culations. At intermediate energies through E, =666 MeV, and at ultrahigh momenta, as the
rank of the unitary pole expansion approaches 13, analytic wave functions (or, equivalently, half-

shell k matrices) and phase shifts are found that are in good agreement with exact results. This is

in accord with our observation that separable expansions should not be regarded as low energy ap-
proximations, but instead are finite I approximations, for the following reason. For the class of
potentials we consider, the partial wave two-body operators V~(p, q), t&(p, q, E), and kl(p, q, E) are
compact even though V(r), T(p, q, E), and K(p, q, E) are not compact. Therefore, in principle,
these partial wave operators can be approximated by sequences of separable expansions which

converge to them in norm. We show that the unitary pole expansion may be such a sequence.
There is a practical need for analytic separable expansions that converge more rapidly. In this
light we illustrate how our solutions can be used with the Ernst-Shakin-Thaler formulation of se-

parable expansions, and we also discuss the application of our method to the calculation of
Gamow states.

I. INTRODUCTION

Strong interactions are perhaps put in their simplest
form with the use of separable expansions of potentials.
Such a separable expansion for a two-body potential, for
example, may be written

where the
~
g; ) and (fj ~

are referred to as form factors,
N is the rank, and the C;~ is a constant matrix when the
potential is energy-independent. Because the two-nucleon
interaction is so complex' as to be unwieldy in all ap-
plications except the two-body problem, much effort has
been devoted to the development of various schemes for
making separable expansions (SE). Early demonstrations
of the technical simplicity of using separable interactions
in nuclear two-body and three-body systems were fol-
lowed by a host of SE formalisms, many of which have
their origins in degenerate kernel approximants of two-
body scattering equations.

It is beyond the scope of this paper to dwell on in-
teresting interconnections among these formalisms and
their relative merits in achieving convergence. Howev-
er, we should like to categorize some of the better-
known methods. One category includes methods that

arise from solving either the Schrodinger or the
Lippmann-Schwinger equation and have therefore found
their most natural formulations in terms of numerical
solutions out of which the form factors are constructed.
This includes the Weinberg expansion, the unitary pole
approximation (UPA), the unitary pole expansion
(UPE), and others, ' which employ Sturmian functions.
In addition, Ernst, Shakin, and Thaler" (EST) intro-
duced solutions of the Lippmann-Schwinger equation at
an arbitrary discrete set of energies. Numerous other in-
vestigations have utilized Cxamow states, ' '' wherein en-
ergies are not arbitrary, but are prescribed by resonance,
bound-state and antibound-state poles of the S matrix.
Other schemes that are iterative are associated with col-
location rriethods' ' and the use of continued frac-
tions. '

A second category includes methods that emphasize
the use of analytic expressions for form factors over nu-
merical solutions. ' It is generally helpful in few-
body problems to use form factors given in terms of ana-
lytic expressions. This is essentially true when the use of
contour deformation techniques is desired. ' When form
factors are given in terms of a set of basis functions, it
has been found that a significant degree of basis optimi-
zation is possible, in part through appeal to variational
principles. ' '' In the most extensive series of applica-
tions to date to NN, NN, and mN interactions, analytic
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form factors containing many parameters adjusted to ap-
proximate two-body scattering states have been carefully
developed. The EST formalism has been used here.
Scattering states have been approximated at up to four
discrete energies. Some of the intended applications are
at relativistic energies; nuclear matter calculations
have been reported; numerous three-nucleon calcula-
tions have been performed. The usefulness of these
low rank potentials provides encouragement to attempt
to extend separable expansions still further.

The purpose of this paper is twofold. First, we present
a computational method for solving the HLS equation at
the bound state energy of the potential. For the MalAiet-
Tjon (MT) potential V, this energy is —0.35 MeV. In
this paper, we only obtain s wave solutions. Our solutions
are a finite set of functions IY; I, called Sturmian func-
tions, that are rational in the variable x =k .

The second purpose is to apply our method to a known
formalism, the UPE, and to investigate convergence
through a larger range of energies than previously studied.
A separable expansion makes nonhomogeneous
Schrodinger or Lippmann-Schwinger integral scattering
equations especially simple, reducing them to one-
dimensional degenerate kernel equations with algebraic
solutions. Furthermore, using our separable potentials,
with the X;(x) serving as form factors in the momentum
representation, reduces the main work in calculating the k
matrix to evaluation of integrals of the form

y'X;(y')Xj(y')
I,z ——P dy

oc
2 y2

Such integrals are especially easy to perform analytically
using residue calculus, since in all cases the X;(y ) are
found to have simple poles on the imaginary axis. As our
Pade method produces X;(y ) in the form of rational func-
tions, analytic residue calculations are in any case possible
as long as the X, (y ) possess no singularities on the real
axis and vanish sufficiently rapidly at infinity. We adopt
the k-matrix formalism throughout this paper, and all
singular integrals are henceforth understood to be Cau-
chy principal values.

We obtain a new result: at intermediate energies
through E, =666 MeV, and at ultrahigh momenta, as
the rank of the UPE approaches 13, analytic wave func-
tions (or, equivalently, half-skell k matrices) and phase
shifts are found that are in good agreement with precise
numerical results. This supplements earlier less complete
investigations made at lower energies. '

We thus address two important issues, analyticity and
convergence. That these issues can be treated simultane-
ously reAects creditably upon our new methods for solv-
ing integral equations analytically, which we expect to be
applicable to a variety of separable expansion formalisms.
The initial choice for this paper, the UPE, was somewhat
arbitrary. Other results to be reported later include direct
solutions for scattering states. Also, preliminary results
show the formalism developed by Harms allows the ana-
lytic calculation of Gamow states in momentum space.
Hence, we can envision an expanding third category of se-
parable expansions in which the Schrodinger equation or
the Lippmann-Schwinger equation is solved to high pre-

Then as shown in I, the s wave HLS equation

~
XJ ) =&, VGO(E)

~ Xj ),
where Go(E) = [E —(k /M)] ', is expressible in the form

N

Xj(k)=k, g f dy — In[ILt~+(y+k) ],
2'7l —oc k y +go

(1.3)

where natural units are used (fi=c = 1), the strengths are
gt = —MV~/p~ (M/2 is the reduced mass), and @0=MB
(& = E is the—binding energy). For the Sturmian state
with the eigenvalue of smallest modulus, an accurate solu-
tion was found, expressed as a rational function of
x=k .

The present work makes use of a redefined inner prod-
uct; we give a prescription for transforming between two
difT'erent Hilbert spaces, one a weighted version of the oth-
er. This step simplifies the formalism and enables us to
find a sequence of N orthonormal Sturmian functions
with little change in the computational procedures. In the
present application we go to N =15. Our Sturmian func-
tions are particularly useful in the UPE, which is simply
given by

with

/YJ) (X,
i

kj
(1.4)

(1.5)

The new inner product, defined so as to agree with Eq.
(1.5), is used for Gram-Schmidt orthonormalization,
which is carried out as an essential part of the construc-
tion of the Sturmian functions. Section II presents the
formalism, and the Sturmian functions are analyzed in
Sec. III.

The issue of convergence of separable expansions was
sharpened a long time ago by the observation that a local
two-body potential is noncompact in the full two-body
Hilbert space, ' although a separable expansion is neces-
sarily compact. A sequence of compact operators does
not produce a convergence approximation to a noncom-
pact operator. Hence no separable expansion can con-
verge in norm to a local potential. It has been pointed
out that approximating a local potential by a separable ex-
pansion produces the most pronounced discrepancies at
high energies, which could be unimportant for low energy
nuclear phenomena; ' also, in three-body problems, the
relevant operator is not the noncompact t(z), but the
compact t (z)(z —hp) '. Although these early con-

cision and the resulting momentum space form factors are
simple analytic expressions.

Our method is an extension of a recent analytic solu-
tion of the s state homogeneous Lippmann-Schwinger
(HLS) equation, applied to the UPA, which we refer to
in the sequel as I. A restriction has been made to
Yukawa-type potentials

exp( p, r—)
V(r)= g V,

PJ f'
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siderations continue to be aired, relativistic applications
of separable expansions are also being made. The in
principle justification of such high energy applications of
separable expansions lies in the compactness of the partial
wave operators Vi(p, q), t~(p, q, E), and k~(p, q, E). Several
years ago, Chisholm gave a proof that V~ (p, q ) and
t~(p, q, E) are compact, for a Yukawa potential. This re-
sult is trivially extended to Yukawa-type potentials and to
include k~(p, q, E); also, the proof has recently been ex-
tended to include a wider class of local potentials. It
therefore follows that for a class of physically meaningful
local potentials, separable expansions are not low energy
approximations, but instead are finite angular momentum
approximations. The noncompactness property only dic-
tates against convergence when the limit l~ oo is taken.

It is in the light of this insight concerning convergence
that we reexamine the UPE for the MT V potential up
to a higher energy than before. The earliest UPE calcu-
lation for MT V already showed good convergence at
E, &0, as needed for trinucleon problems, at rank
3. ' A subsequent investigation' of MT V showed 1%
errors of phase shifts at E, = 176 MeV with a rank 12
UPE (the rank 24 UPE did not do any better). A heuris-
tic analytic basis, when optimized, did significantly
better with phase shifts but still showed some 20%
discrepancies in the off-shell rank-10 t matrix at
E, =72 MeV. Whether these investigations were ap-
proaching an energy barrier of convergence peculiar to
the UPE has not been resolved. Graz potentials have
been carefully fitted to wave functions at several discrete
energies up to E],b ——300 MeV. This has been done in
the EST framework, where special care must be taken to
avoid unwanted oscillations, even singularities, at ener-
gies not fitted.

One way to test the fit of an l-wave rank X separable
expansion V~ „~ to an 1-wave local interaction V~ is to cal-
culate a norm error, definable as

Compactness of V~ guarantees the existence of a sequence
such that lim~ e (N) =0. We are not aware

of NN separable expansions having been tested in this
rather exacting way. We conclude there is still some need
to better characterize the nature of the practical conver-
gence of separable expansions. In a future paper, we shall
address the formal convergence of an SE. Here, we con-
tinue to adopt the more informal comparison of phase
shifts and k-matrices. Our UPE k matrices give evidence
of convergence up to ultrahigh momenta. This is dis-
cussed in Sec. IV, where we also illustrate how our solu-
tions can be used with the Ernst-Shakin-Thaler formula-
tion of separable expansions. In the conclusions in Sec. V
we also comment further on an extension to Cxamow
states.

II. FORMALISM

A. Subspace of rational functions

Finding analytic solutions to Eq. (1.3) satisfying the
condition Eq. (1.5) is the central problem of this paper.
The state of smallest modulus of k, labeled L'~, shall be re-

ferred to as the HLS ground state. It is found by an itera-
tion procedure that uses Pade approximants. A Pade
approximant (PA) is a rational function, here a ratio of
two polynomials in the variable x, written [L/M](x) or
just [L/M], where L and M are the degrees, respectively,
of the numerator polynomial PL, (x) and the denominator
polynomial QM(x). For normalization, the constant term
of QM(x) is taken to be just 1. The coefficients of Pr and

QM may be obtained by solving linear equations that ex-
press the equality of the Taylor series of Pz. (x)/Q (x)
and of the function being approximated, through terms of
order ~L+M 38

The solutions [g; ) are assumed to be rational functions
of x =k and are found to have poles on the imaginary k
axis. To satisfy normalizability of the [X;), we have set
M =L+ 1. If a rational function PJ (y ) satisfying these
conditions is inserted into the right-hand side of Eq. (1.3),
the integral is easily evaluated analytically and expanded
to obtain a series expansion. More details about this ex-
pansion can be found in I. The series is then used to
reconstruct the left-hand side of Eq. (1.3) in the same
[L/L +1] Pade form, which is then reinserted into the
integral on the right-hand side for further iteration. Just a
few iterations usually suffice to reach convergence to P&

and A, ~. This is similar to the power method for Hermi-
tian matrices.

As with the power method, the task of finding other
eigenstates is more complicated. The ansatz has been
adopted that the Pade denominators, the QM(x), can all
be the same as found for X~. Then if I is the number of
poles on the positive imaginary k axis, the PA's are of the
type [I—1/I] and form a natural I-dimensional manifold.
Orthogonalization is particularly simple because the
denominators are identical. If the denominators of two
[I—1/I] rational functions are different, a linear com-
bination of them will have a denominator of degree
greater than I. Therefore, functions must have the same
Qq(x) denominator to lie in the same I-dimensional space
of [I—1/I] functions. An essential step has been to
characterize the remaining problem in terms of an Hermi-
tian operator. We now explain how this is done before
giving the final details of our procedure.

B. Weighted Hilbert space

Although the potential V is Hermitian, the operator
VGO is not. As pointed out by Weinberg, Sturmian
functions for E = —B (0 are simply related to the eigen-
states of the Hermitian operator

Vp = [—Gp( —B)]' V[ —Gp( —B)]'

and their spectra, the [XJ ), are identical. Iteration and
use of the power method are cumbersome using Vq. It is
far simpler to redefine a Hilbert space in which the opera-
tor VG0 is Hermitian. We first note that the operator
p /M is closed and self-adjoint and —B is in its resolvent
set. Consequently, ' the operator R = —Gp( B) is-
bounded and is defined on the entire Hilbert space. Then
for all

~

X ), R has (B+p /M) as its left inverse:

(2.1)



478 K. HARTT AND P. V. A. YIDANA 36

R is also the left inverse of IB+p /M) in the domain of
definition of p /M.

Next, we note that the inner product, defined by

(2.2)

((b~ A ~it)'=(P RA 1t) . (2.3)

The usual definition of adjoint applied to the right-hand
side gives

(2.4)

It follows that the adjoint of 3, written 3 in the new
space, is given by

A=R '3 R. (2.5)

In the new space, we find VR =R 'RVR = VR and hence
VR is Hermitian. Henceforth, we shall work entirely in
the new space, writing (P

~
it) for (P

~

g)' and 3 for A.
The orthogonality condition of Eq. (1.5) is now simply ex-
pressed as

(2.6)

This completes the formulation of the eigenvalue prob-
lem in terms of a Hermitian operator. We may now easi-
ly take advantage of the simple structure of our [I—1/I]
manifold. We first construct the I —1 dimensional sub-
space orthogonal to the first Sturmian state by Gram-
Schmidt orthonormalization. Finally, we use the inverse
power method, which we have found to be a fast and ac-
curate way to determine the remaining eigenfunctions and
spectrum.

III. STURMIAN FUNCTIONS

satisfies the axioms for a Hilbert space. In the new
space, a weighted version of the old, the matrix element of
an operator 3 is given by

(32 figures). We have sometimes found such high pre-
cision to be necessary for accurately determining roots
of polynomials of our denominator of degree 15 or
greater. Excellent values of these roots are needed in the
residue calculations for analytic evaluation and series ex-
pansion of Eq. (1.3). When double precision is used, the
poles of the P;(y ) sometimes even erroneously appear
off the imaginary k axis. This occurs because polynomi-
al root finding is an intrinsically ill-conditioned problem
which loses much precision, even though the algorithm
we use, the Bairstow method, is easily programmed.
The rest of our results are fairly stable when 16-figure
precision is used. Although the MT V potential lacks a
tensor term, it provides a better example than a more
physically realistic central singlet np potential because it
has a bound state and an earlier numerical study of its
Lippmann-Schwinger spectrum is available. We have
determined the s-wave scattering function,
F(k )=k cot(5O); as shown in Fig. 1, there is a pole
near k = 2 fm ' where the phase shift is zero. Figure 1,
when compared with Fig. 3 of Ref. 44, indicates a weak-
er short-range repulsion than that of the Reid soft core
potential. The behavior of the phase shifts at k =100
fm ', far beyond the range of validity of our nonrela-
tivistic theory, is only relevant to nuclear physics insofar
as it is a measure of the strength of the saturating eft'ect
of the short-range repulsion.

Table I gives our computed spectrum through the first
nine eigenvalues. We see that as the dimension of the
subspace of Sturmian functions increases, the spectrum
approaches Harms's results. For a check, we have been
able to reproduce Harms's results to within one percent
by first converting the HLS equation to a system of
linear equations using 64 point Gaussian quadrature and
then applying standard methods for solving the eigenval-
ue problem for a general nonsymmetric matrix. Figure
2 shows our first two attractive eigenfunctions (i.e., for

&0); Fig. 3 shows the first repulsive eigenfunctions.
They are in good agreement with the tabulated values of

A. Spectrum for Malfliet-Tjon potential V

We present results for the Malfliet-Tjon potential V
(MT V), a spin-averaged np interaction with a two-body
bound state at E= —0.35 MeV. ' The parametrization is

exp( ppr )—exp( p i r)—V= Vi + V2
p~r

where, in natural units,

with the physical constants

(Pic )
' = 5.0676896 X 10 fm '/MeV = 1

and

(M) '=0.21016417 fm .

V& = —4.4800608 fm V2 =22. 67 1974 fm

p) ——1.55 fm ', p2 ——3. 11 fm

(3.1)

L
-100-

-2QO—

10
) (fm-)

1QQ

Calculations have been performed on the URI IBM
4381-3 mainframe, almost entirely in extended precision

FICx. 1. Scattering function, F(k )=k cot(60), for MT V po-
tential. Pole is at k =1,991 fm
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TABLE I. PA spectrum of Lippmann-Schwinger kernel for
Malfliet-Tjon potential V (Ref. 26), which appears to converge
as I, the number of poles of Pj on the positive imaginary axis,
increases from 8 to 15. The last column gives the result of
Harms's numerical calculation, which we have independently
verified. All of Harms's A. 's are shown. Our [7/8] case did not
have a fourth repulsive eigenvalue, 1,6 ~

0.2-

Eigenvalue
Pade Approximant

[7/8] [ll/12] [14/15] Harms

CL
C)

-0.2-
X1

L2

A3

k4

g5

k7

~8
A,9

—0.433 889
0.999 999

—1.784 70
—5.397 74

7.269 52

22.4815
73.8954

484.393

—0.434 077
0.999 995

—1.777 60
—4.230 89

7.219 97
—15.4122

19.5634
41.2485
89.4164

—0.434 053
0.999 995

—1.776 81
—4.020 69

7.218 44
—9.527 03
19.3133
38.0491
73.4903

—0.4342
1.000

—1.777
—3.881

7.218

19.27
36.66

lt (fm ')

Harms. In Fig. 3, the third repulsive eigenfunction has
been smoothed to remove small oscillations at k (1 fm
These oscillations appear to be artifacts of our 64-point
Gauss-Legendre (GL) quadratures, used in this paper
throughout for calculating matrix elements and solving in-
tegral equations. %e have converted momentum space
integrals in the range 0 to ao to integrals in y in the range
—1 to + 1 by the transformation

1 —yk=c
1+y

and we have found c = 10 to be optimum. %'hen we have
used 200 point GL quadrature, and also when we have let
I increase to near 20, these oscillations are diminished,
but not eliminated.

FIG. 3. First three repulsive eigenfunctions of the HLS equa-
tion for MT V potential. Curves c, d, and e are in order of in-

creasing magnitude of A, .

B. Reconstructed potentials

If a bound state is known exactly and analytically, a lo-
cal potential which produces that state can be construct-
ed. In the present context, this amount to a reconstruc-
tion of the original local potential. An exacting check can
therefore be made of the accuracy of the wave function.
The potential is computed from the Schrodinger equation:

u "(r)—you(r)
V(r) =

u (r)
(3.2)

where the solution g(r)=u (r)/r is obtained by Fourier-
transforming the second HLS state t/r(k) =Y2(k)/(k +go)
to give

1
I Cj @or —q rP(r)= —g, , (e ' —e ' ) .—70

(3.3)

C)

~ -02

LL -O.i

k {fm')

FIG. 2. First two attractive eigenfunctions of the HLS equa-
tion for MT V potential. Curve a is associated with A, l ——1.000
and the bound states; it has a node at k = 1.982 fm

The poles of Xz(k) are given by I +iq~ I. The recon-
structed potential takes the form

g c,e
j=1

V( ) (3.4)
I —yoI —q r

2 2'
j=l qj Xo

The potential V(r) has been reconstructed from the [7/8],
the [11/12], and the [14/15] wave functions. In Table II
numerical values are given for these three potentials to-
gether with the exact potential.

Except for small and unimportant oscillations in the ex-
treme end of the tail (starting at 10.8 fm for the [14/15]
case), a high precision convergence is seen as I increases.
The extreme short-range asymptotic form is V(r )-ai /r,
where the exact a is 4.40, a8 ——5.98, a ~2

——4.33=a]5.
Finally, the reconstructed potentials have been used to
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TABLE II. Reconstructed MT V potential. The bound state t((p)=Xq(p)/(p +go) has been Fourier
transformed and then used in Eq. (3.4) to produce V(r) .Convergence with increasing I in [I—1/I] is

seen at all radial distances r (T. he entry 0.278 58[+2] reads 0.27858 X 10 .)

(fm)

0.1

0.3
0.5
1.0
2.0
3,0
4.0
5.0
6.0
8.0

[7/8]
(fm ')

0.278 58[+2]
0.354 99[+1]
0.405 75[0]

—0.286 25[0]
—0.577 29[ —1 ]
—0.898 51[—2]
—0.166 28[ —2]
—0.226 55[ —3]
—0.3 33 87[ —4]
—0.188 25[ —4]

[11/12]
(fm ')

0.287 00[+2]
0.350 66[+ 1]
0.416 01[0]

—0.288 32[0]
—0.578 53[—1]
—0.899 47[ —2]
—0.14604[ —2]
—0.248 07[ —3]
—0.438 92[ —4]
—0.167 63[—5]

[14/15]
(fm ')

0.286 98[+2]
0.350 66[+ 1]
0.416 00[0]

—0.288 32[0]
—0.578 55[ —1]
—0.899 58[ —2]
—0.145 93[—2]
—0.248 67[ —3]
—0.442 65[ —4]
—0.147 04[ —5]

Exact
(fm ')

0.286 62[+2]
0.350 72[+ 1]
0.415 95[0]

—0.288 33[0]
—0.578 53[—1]
—0.899 66[ —2]
—0.145 92[ —2]
—0.248 74[ —3]
—0.440 32[—4]
—0.148 80[ —5]

calculate s wave phase shifts, and as seen in Table III, the
excellent agreement shown there is a final convincing
demonstration of the accuracy of the ground state wave
function.

The scattering length and effective range are simply

a = F(0) '—
, ro ——2

dF(0)
dk

(4.4)

IV. SEPARABLE EXPANSIONS

2, 2 1+J(k )

rrM ~M y'(k ')

where the Cauchy principal value integral J(k ) is

(4.2)

A. Unitary pole approximation (UPA)

It is convenient to renumber the HLS eigenfunctions so
that the first, X~(k), will be associated with the eigenvalue
1 and the first term in the expansion of Eq. (1.4). The
UPA is then the rank 1 s-wave potential

(4.1)

Solving for the s-wave k matrix (ko) gives the s-wave
scattering function F&(k ) =k cot(5o) as

These functions are easily evaluated in terms of the Pade
coeKcients. The effective range parameters of V~ are
given in the next section. These are in excellent agree-
ment with the effective range parameters calculated using
the MalAiet-Tjon potential V and the method of Ref. 47.
Other approximations shown in the tables are discussed in
the next two sections.

The node of 7] at k„=1.9822 fm ' produces a double
pole in F (k ) and a double zero in the phase shift remark-
ably close to the exact zero of the phase shift associated
with V at k=1.9901 fm '. Although the phase shift
from V~ does not change sign at this value of k, the form
factor X~(k ) clearly contains some effects of the repulsion
in the MT V potential. As seen in Table IV, the node of
7~ pulls the phase shifts for V] into qualitative agreement
with the phase shift for V up to k =2 fm

J(k )=M f d
p I 2 y2

(4.3) B. Unitary pole expansion (UPE)

k
(fm ')

[7/8]
(deg)

[11/12]
(deg)

[14/15]
(deg)

Exact
(deg)

TABLE III. S-wave phase shifts for the potentials defined in

Table II.

We consider a rank-2 approximant with
~

X
&

) and

~
Xz), which we call V2, a rank-3 approximant with

~
X& ) and

~
X2) and the next attractive form factor

~
Ys), labeled V3, and higher rank-n approximants, V„,

which use the first n terms. Scattering state wave func-
tions and effective range parameters are expressible in
terms of the scattering functions

0.1

0.3
0.5
1.0
1.3
1.5
2.0
3.0

10.0
20.0

—54.737
83.492
65.924
35.135
22.057
14.699

—27.313
—21.116
—61.181
—56.069

—54.767
85.516
66.003
35.088
22.057
14.738

—23.518
—21.163
—61.236
—56.400

—54.767
85.517
66.003
35.088
22.057
14.738

—23.514
—21.163
—61.235
—56.397

—54.767
85.517
66.003
35.088
22.057
14.738

—23.553
—21.163
—61.239
—56.348

where

and

y'X, (y ')X, (y ')
J;,(k )=M J dy zp I 2

y
2

(4.5)

(4.6)
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TABLE IV. 5-wave phase shifts for the MT V potential and various approximants. The rank-2 EST
potential was constructed so as to give the rank-15 wave function at k=2.9 fm '. The rank-15 and
rank-13 phase shifts are equal to four significant figures in the momentum range shown.

k
(fm ')

0.1

O.S

1.0
1.9
2.0
2.5
3.0
4.0
5.0
6.0

V exact
(deg)

—54.77
66.00
35.09
2.45

—0.24
—11.86
—21.16
—34.95
—44.36
—50.83

Vl

{deg)

—54.79
64.55
29.15
0.21
0.01
5.99

13.39
13.67
8.37
4.47

Vp

(deg)

—54.79
64.4S
28.29

—9.36
—11.69
—19.10
—22.41
—28.44
—36.37
—43.61

V2 EST
(deg)

—54.80
64.41
28.05

—8.28
—10.08
—14.97
—21.30
—54.34
—90.05

—116.08

(deg)

—54.78
65.96
35.06
2.32

—0.42
—12.01
—21.13
—35.10
—44.99
—52.92

Ji(k )

AX; (k')X) (k')

For the rank-2 potential Vq, the scattering function is

Table IV shows convergence of phase shifts through 6.0
fm ', and Figs. 4 through 7 reveal half-shell. k-matrix
convergence at CM energies as high as 666 MeV (4.0
fm ') for wave numbers as high as 12 fm '. The
Noyes-Kowalski half-shell function

F= F)F2 —R )2

F) +F2 —2R )p
(4.8) kp(p, q, E)f (p,q)=, q /M=E

kp(q, q, E) ' (4.12)

while the scattering length and effective range are

a ) +az+2a )azR )z(0)

1 —a)azR fz(0)
(4.9)

has been shown here. A completely ofT'-shell k matrix is
also shown in Fig. 8. For fixed k, the rank-n half-shell k
matrix has the form

dR iz(0)
r = a, r, +a r z+z4a& Raz, (0z)

dk

n

W(q, p) = g b, (q)X, (p) .
j=1

(4.13)

dR iz(0)—a]az[1 —a/azR ]z(0)] r, +rz —4
dk

Q
z

(4.10)

where Q=a&+az+2a, azR, z(0). The rank 2 effective
range parameters (a, , r&) and (az, rz) are associated with
the form factors

~
X, ) and

~
Xz ), respectively. Our ex-

act values are a =12.1702 fm and r =2.30288 fm, com-
pared with our UPA values of a = 12. 1726 fm and
r =2.30990 fm. In accordance with expectations, our
higher rank values show very little variability: =0.01%
for a and =0. 1%%uo for r.

The Schrodinger equation for the s-wave scattering state
1s

1 .2—

l

I.Q p

Q.8 1-

Q.2—

I

1

t
1

I
1

s

/pe(p)= z + z z
W(k,p),5(p —k) M

p2 I 2 p2
(4. 1 1)

-Q.2—

where W(k, p) is the half-shell k matrix. Wave function
convergence, which is half-shell k-matrix convergence, is a
more stringent test of separable expansions than phase
shift convergence. %'e study both.

For V„, the k matrix is obtained by algebraic means,
the details of which we do not give. The precise numeri-
cal solution for the original potential follows a standard
procedure using 64-point gauss-Legendre quadrature.

1, 1, 1, 1

2 4 6 8 1Q

P ( fm-')
12

FICs. 4. S-wave Noyes-Kowalski function for MT V poten-
tial at E, =24.9 MeV. The solid curve is exact and coincides
with our rank-13 result. ———is our rank-3 UPE result.



482 . HARTT AND P. V. A. YIDANA

r

T

1

36

0.8I-

'1=1.21» fm-1
1.6

1.4

1.2

0.2-

1.0—
CT'

n.
' 0.8-

0.2— 4

0.8
2 4 6 8 10 12

P (fm-t )

0~I

2 6 8 10 12

P ( fm-')

~ ~

FIG. 5 Same as Fig. 4 at F, =61.7 MeV

This is a sim lep yet accurate rational a r
wave function St

approx&mant to the

would have
at&stical Fade approxrmant methods

ave enabled us to find an 1

b, ( ), too, h d h

1.6—

FIG. 7. SaSame as Fig. 6 at &,

0ur rank-15 calculations show conver ence ang
ruc ive proof of the abilit of

x ansion to approximate a localoca potential
one e ess, the value of a se

pansion diminishes as th
separable ex-

es as t e required rank rows

w ic attempts to o tim
is is one by treatin the ran-
i e i entt ying the rank-2 form factors

~
P&)

0.028—
I

'
I

'
I

1.2—

1.0

CJ

~ 0.8-

0.024

—0.020

u 0016

0.01 2

0.008

0.004

I s I ~ I i I

4 6 8 10 12

P ( fm-')

I, I

6 8 10

P (frn-~)

FIG. 6. S-wave Noyes-Kowalski function foct o o po
e . e solid curve is exact a

k 1 an our rank-2 EST re
rank-8 result; ——— result; . - - is our

, ———is our rank-5 result.

FIG.IG. 8. S-wave completel off-IG. . - p e e y off-shell k matrix for MT V
n ia at, =350 MeV. The solid curve is e

po-

d h k 3 1result. ———is1 . ———is our rank-2 EST result.



36 ANALYTIC STURMIAN FUNCTIONS AND CONVERGENCE OF. . . 483

and
I kz& as

I
0&&= I&&& and Ikz&=X~=z~zj I&j&.

The a2; are determined by solving the rank-2 and rank-
15 problems and equating the two half-shell k matrices
at wave number q. The resulting equations for the a&~
are only consistent in a limited range of energy. Even
where they are consistent, we sometimes obtain two at-
tractive form factors. The lowest q at which a solution
exists that produces one repulsive and one attractive
form factor is q=2. 9 fm '. At this q, the rank-2 and
rank-15 analytical wave functions are identical. This
means the half-shell rank-2 k matrix is exact at this en-
ergy. As seen in Table IV, this potential gives phase
shifts comparable to or slightly better than those of the
UPE rank-2 potential, up through 3 fm ', but is
significantly over-repulsive at higher wave numbers.
This is because the strength of the rank-2 repulsive term
has become unrealistically large. Here we primarily
wish to draw attention to the ease with which the avail-
able analytic expressions can be manipulated, simplifying
heuristic EST calculations.

V. CONCLUSIONS

A new method for solving integral equations has been
developed and applied to the homogeneous Lippmann-
Schwinger equation in momentum space. The new
feature is that solutions are analytic expressions, ob-
tained as Pade approximants in the variable x =k . As
developed here, the method is applicable whenever the
energy assumed is less than or equal to zero. In con-
junction with the formulation of Harms, this method
has been extended to antibound states, which will be dis-
cussed in a future paper. We have presented results
for the Malfliet-Tjon V potential, where the assumed en-
ergy, E= —0.35 MeV, is the physical two-body bound
state energy associated with this potential ~ A finite sub-
space of rational functions with fixed denominators has
been constructed, wherein Sturmian eigenfunctions and
eigenvalues show convergence even for rather low
(X & 15) dimensions. Applications have so far been re-
stricted to Yukawa-type potentials in order for Eq. (1.3)
to be expanded as a series analytically and summed us-
ing Pade approximants. Future applications can be
made with a larger class of potentials, because if a strict-
ly numerical evaluation of the integrals is performed,
some statistical Pade techniques can achieve comparable

results.
As a further application and test of the method, a se-

parable expansion of the Malfliet-Tjon potential V, the
unitary pole expansion, has been directly constructed
from the Stumian eigenstates. As the rank N approaches
15, convergence is seen of phase shifts, the half-shell k
matrix, and the completely off-'shell k matrix up through
E, =666 MeV. Such high-energy convergence to accu-
rate values associated with the original local potential is a
new result. There is a straightforward explanation. All
partial wave projections of Yukawa-type central potentials
are compact, and can therefore be arbitrarily well approxi-
mated by operators of finite rank. Hence separable expan-
sions need not in principle be reserved for low-energy use.
Still, two-body local potentials are not compact in the full
two-particle Hilbert space. This noncompactness is asso-
ciated with the limit l= ao,' consequently, separable ex-
pansions should be applicable to any problem as long as
only a finite number of partial waves is involved.

The convergence rate of the UPE we obtain is probably
too slow for high-precision calculations of nuclear struc-
ture and nuclear reactions when several partial waves con-
tribute. Alternative separable expansion formalisms can
also utilize the method we present for constructing analyt-
ic form factors that are solutions of a dynamical problem.
As an illustration, we have carried out an EST calculation
to generate a rank-2 potential that gives exactly the same
wave functions for q =2.9 fm ' as the excellent rank-15
approximant. Gamow states appear to lead to a rapidly
converging separable expansion. ' They are currently un-
der investigation. A recent rational S-matrix method lo-
cates the bound state and antibound state poles and the
Gamow states nearest the origin, and appears to be a use-
ful tool in solving the Gamow state eigenvalue problem.
It is also our intention to extend the present investigations
to problems having coupled partial waves.
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