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Sum rule for two-particle excitation processes in heavy-ion reactions
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A measure of the strength available for the excitation of collective pair transfer channels in heavy-
ion reactions is introduced. This combines direct pair pickup and stripping processes, and is ex-
pressed in the form of an energy-weighted sum rule. Distributions of strength and of coupling matrix
elements in the case of Pb are presented.

Formalisms for describing the excitation of two-particle
transfer modes are normally presented in a way in which
the structural aspects of the problem are closely linked
with the reaction mechanism which is used to probe them.
Microscopic calculations, which keep track of the
transferred nucleons, invariably bring the structure of the
projectile into the picture. Thus, it is often difficult to
trace properties which should be attributed to only one of
the reaction partners, such as enhanced transfer probabili-
ties resulting from residual interactions. Difficulties of
this sort have been encountered in previous attempts to
introduce sum rules for two-particle transfer reactions. '

An alternative to this traditional approach can be ob-
tained by assuming that a description in terms of elernen-
tary modes of excitation of the target alone is meaningful.
To this end one may use generalized degrees of freedom
which do not respect particle-number conservation. These
have been exploited to characterize the special relation of
a nuclear system with those neighbors in the mass table
whose particle numbers diff'er by +2, +4, etc. We em-
phasize that a study along these lines centers on the iso-
lated target nucleus. Consequently, the focus is placed on
quantities which are not affected by particular range of Q
values, separation distances, overlaps, etc. , which follow
from a given choice of projectile and bombarding energy.
The adoption of this point of view eases the implementa-
tion of a simple picture to describe the reaction mecha-
nism. Defining a collective coordinate for transfer and
modeling the local pair transition density, macroscopic
form factors can be introduced.

Within this context, a natural step to take is to exploit
the generalized one body character of the fields to define a
measure of the total excitation strength. This is a familiar
procedure for residual interactions which generate density
Auctuations. In the particle transfer case and for a
monopole field of the form

F = gf(rt )~pp(fbi, gk),

and its Hermitian conjugate. Here, a stands for n, l,j
and we have assumed that the interaction does not con-
nect states with different values of n. The square brackets
indicate coupling to total angular momentum zero.

To establish a point of contact with the case of inelastic
excitations, we introduce the Hermitian combination

FH =(F+F )/2,
which conserves the number of particles only as an aver-
age. An energy-weighted sum rule can then be obtained
through the expectation value

= g(E„+—Ep)
/
in+ fF )0)

f

+ g(E„Ep) /(—n F(0)
/

where E„+ are energies in the (A+2)-particles systems
and Eo is the energy of the reference state in the
particle system. While the sum on the right-hand side of
this equation combines transition matrix elements can-
necting systems with diff'erent numbers of particles, we
evaluate the expectation value on the left-hand side as
usually done for an ordinary (number conserving) Hermi-
tian one-body field. Thus we get

S =(fi /2')JV(, (dfldr) ) .

where the angular brackets represent the average per par-
ticle in the ground state of the system with JV particles of
mass M.

The excitation energies (E„~ Ep) in the absence o—f
correlations correspond to the use of an independent-
particle Hamiltonian of the form H = g ekal,.ai, The
single-particle energies are extracted from the relative
binding energies of the odd systems, i.e.,

(E + Ep)U = + 2[B ( A—+ 1)—Bp( A))

the relevant operators are

F =g(a[F (a)[a a ]p

The correlated excitation energies are instead identified
with the states of the 2+2 systems through the analogous
expressions
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(E„+ E—o)c = + [B„(A+2) —Bo( ~)] .

With these standard prescriptions the energies corre-
sponding to the bound states of the A +2 system are neg-
ative. Sometimes, however, an alternative definition of the
energies is introduced by subtracting from the absolute
scale a term which is linear in the number of particles.
Choosing the origin of the single particle levels in the
middle between the occupied and unoccupied shells, all
two-particle energies become positive. The estimation of
the sum rule is not affected by the substitution

FFlV—, insofar as we take the expectation value of
the number-conserving version of the field F. Consistent
with this step, the value of S should be rather insensitive
to the convention adopted to define the energy weighting
factors.

More than the sum rule in itself, one is often interested
in the distribution of strength which makes up its total
value. This function depends on the particular form of
the operator P since the relevant matrix elements are
given by

(n
~

F
~

0) = f f (r)op„(r)dr .

As we see from the expression above, however, the field

f (r) is common to all terms and thus the shape of the dis-
tribution actually reflects characteristics of the transition
densities 5p„(r) corresponding to the different states. The
choice of the radial dependence f (r) of the operator F can
then be inspired by the features of the transition densities
one wishes to emphasize. Since the applications in mind
correspond to the construction of transfer form factors
whose scale is determined by the magnitude of the. transi-
tion densities in the surface region, in what follows we use

f =[dp(r)/dr]lpo, where p is the density function with
Woods-Saxon shape and conventional parameters. In
Fig. 1 we display the sum rule S as a function of A for
both protons and neutrons.

As an illustration of the use of these concepts, we ana-
lyze neutron pair excitations in Pb. For this purpose
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FICi. 1. Sum rule S (in MeV) as a function of the mass num-
ber 3 for protons (dashed line) and neutrons (solid line). The
field used is of the form [1+exp(r —1.1A ' )] ' and the
division between proton and neutron contributions was achieved
by assuming Z/2 = [0.5 —0. 106( 3 —40)/170], which is geared
to give Z =N for 2 =40 and Z =(,'26 )N for 2 =210.

we carried out a microscopic calculation within the
random-phase-approximation (RPA) formalism using a
residual interaction of the form V= —GF F and single-
particle levels generated with the parametrization of Ref.
6. The energy of the levels close to the Fermi surface
were taken from experiment. The radial matrix elements
for a pure configuration were constructed as

(
[a,a ]o0 — F 0 = fR (r)f(r)rdrV'2

+2J +1
XZ~

&2~
where R (r) is the single-particle radial wave function.
Diagonal matrix elements like the one listed above are
known to retain unrealistic high values within a discrete
basis which extends high into the continuum. This may
present a convergence problem even for a surface-peaked
function like f (r). The contributions of the high-energy
configurations are cut down by the attenuation factor Z,
taken from Ref. 7. The strength of the residual interac-
tion is adjusted to reproduce the empirically observed en-

ergy of the ground state of ' Pb. The energy for the
ground state of Pb is then predicted at —14. 16 MeV,
to be compared with the experimental value of —14. 10
MeV.

The sum rule displayed in Fig. 1 is estimated in a mod-
el independent way. Therefore, the accumulated strength
should not be dependent on the magnitude of the cou-
pling. The values accumulated for the uncorrelated and
correlated strengths are in our case SU ——38.6 MeV and
Sz ——38.3 MeV, respectively. The calculations were made
including 12 major oscillator shells. By adding or sub-
tracting a shell, the results obtained were found to be
stable within 12%. Note that the quantities SU and Sc,
calculated in this space, are thus close to the value of the
neutron sum rule shown in Fig. 1, namely -40 MeV.

In Fig. 2 we display the distribution of uncorrelated
and correlated energy weighted strength. A redistribution
of strength is induced by the residual interaction mostly
around the ground states of the A+2 nuclei. The rest of
the strength remains rather unchanged.

To eliminate the distortion introduced by the energy
weighting, we show in the lower part of Fig. 2 the distri-
bution of the matrix elements

l
(n

~

F
~

0)
~

. The histo-
gram displays prominently the twin peaks corresponding
to the ground states of Pb and ' Pb. Note that the
magnitude of the transition matrix elements reveals the
underlying symmetry between the two states. This result
lends support to the macroscopic interpretation of the two
levels as components of a single excitation mode. The
combination of addition and removal modes is indeed
used in the introduction of a macroscopic variable —the
number of particles —to describe collective pair transfer.

Besides the ground state transitions, additional coupling
strength is found at higher excitation energies in both the
A —2 and A +2 systems. This aspect may be related to
the high-lying resonances discussed in Ref. 9. The struc-
tures obtained in our calculations do not seem to be of
collective character, and their coupling strengths are, at
most, about a third as large as compared to the ground
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FIG. 2. (a) Distribution of the energy-weighted strength as a function of energy E (both in MeV), for neutron pair excitations in

Pb. The ground state energies are E( Pb)= —14. 11 MeV and E( ' Pb)= —9. 12 MeV. The dashed and solid lines correspond to

the uncorrelated and correlated contributions, respectively. The areas of both cures are SU —-5& —-38 MeV. (b) Same as (a), but for

protons. The ground state energies are E(' Hg)= —15.38 MeV and E(" Po)= —8.78 MeV. The areas of both curves are

SU-Sc —29 MeV. (c) Distribution of matrix elements (n P 0) as a function of energy E (in MeV) for the same case as shown in

(a) above. Dashed and solid curves correspond to the uncorrelated and correlated matrix elements, respectively. (d) Same as (c), but

for protons.

state transitions. Nevertheless, for a convenient reaction

Q value and selected bombarding energies they may
eftectively compete with the more collective ground state
transitions.

As a further check we have investigated the proton pair
transitions in Pb. The calculations were carried out as
described above, adjusting the coupling constant G in this
case to fit the ground state energy of ' Po. The results of
the RPA calculation were again found to be satisfactory,
since the calculated ground state energy of Hg turned
out to be —15.39 MeV, as compared with the empirical
value —15.38 MeV. The uncorrelated and correlated
strength content in the proton configurations were
SU ——29. 1 MeV and Sc ——29.0 MeV, respectively. These
quantities, calculated within 11 shells, correspond closely
to the value of -25 MeV extracted from the proton curve
in Fig. 1. We have also repeated the calculations using

diferent origins for the single-particle energies. The dis-
tributions of energy-weighted strength are, of course,
modified, but the total area of the curves is not
significantly aA'ected. The quantities of physical interest
[i.e., the distribution of matrix elements displayed in Figs.
2(c) and 2(d)] are, on the other hand, independent of the
energy scale.
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