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A 6-mediated effective three-nucleon potential which takes into proper account of the
propagation effects is derived. A reliable estimate of the 6 contribution to three-body force effects
can be obtained only if this representation of the three-nucleon potential is used.

The calculation of the effects of three-nucleon force in
the bound three-nucleon system has recently become quite
sophisticated and reliable. ' It appears to be a good
time to reexamine more critically the approximations used
in deriving these three-nucleon potentials (3NP s). In this
Brief Report we would like to do this for the type of
three-nucleon force which arises from the excitation of a
bound nucleon to a virtual 6 isobar.

Two approaches have been used to treat the effects of
6-mediated three-nucleon force. , The traditional approach
is to obtain an effective three-nucleon potential for 6 to be
used in pure nucleonic Hilbert space. " The second ap-
proach' is to enlarge the Hilbert space by including ex-
plicitly the 6's degrees of freedom in coupled channels. It
was found' in the resulting coupled-channel calculations
that proper inclusion of the propagation of 6 substantially
reduces the 6 effects. However, static approximation, i.e.,
the kinetic energy in the propagation of 6 is neglected, is
widely used in the effective operator treatment. Most of
the recent "state of the art" Faddeev calculations of
the three-body force effects are performed in pure nu-
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one can easily write the T matrix for the process depicted
in Fig. 1 as

cleonic Hilbert space. Thus we would like to expound the
point of including the propagation of 6 in the effective po-
tential approach so that the 6's contribution to the 3NP
would be properly evaluated.

It is instructive to see first how the static approximation
is commonly made in the derivation of the 6-mediated
3NP. The excitation of a negative energy 6 in the inter-
mediate states gives a negligible contribution to the 3NP
and we need to consider only the process of exciting a nu-
cleon into positive energy 6 states as shown in Fig. 1.
With the following effective Lagrangian as used in Refs. 9
and 11 (i.e., Z = ——,

' in the notation of Ref. 11),

T(&, +)
2f NN 1
tu (p & )t| 1 5u (p2 ) ]

q —m~

I f Nt Mg q'"A„„(Pg)q'
u(p3) "

u (p3)
jv~ &~ —p3o —qo

1X, , [u(pI )fy u(sp) )],
q —m~

(3)

where ~, N, and 6 denote, respectively, the pion, nucleon, and delta fields, whose masses are m, mN, and Mq.
q =p~ —p~ and q =p2 —pq. The intermediate positive energy is now on mass shell and Pt, =(Eq, Pq),
Ets=(Mt, +P~)' . f NN and f Nts are the nNN and trNb, coupling constants. The projection operator A„,(Pts) is
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We have omitted the isospin indices. To obtain the eft'ective 3NP, a nonrelativistic reduction is made on Eq. (3) and
terms of order (p Im N) are neglected. The nonrelativistic reduction of the numerator of Eq. (3) is straightforward and
no ambiguity arises. For the energy denominator of the b, propagator in Eq. (3), the nonrelativistic reduction keeping
terms up to p, gives
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The prescriptions for approximating Eq. (5) as adopted in Refs. 9 and 11 are identical; namely, throwing away the kinet-
ic energy difference terms inside the curly bracket in the second line of Eq. (5). This then leads to the followinr familiar
form of the 6-mediated 3NP in momentum space:
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and all permutation terms in (123).
The isospin structures are now exhibited explicitly in

Eq. (6). a and P denote the isospin indices of the pion ex-
changed between nucleon pairs (13) and (32), respectively.
The static approximation described above cannot be very
good, because in Eq. (5) M~ —mN=2m and the kinetic
energy difference term is at least of the order (p/mN) as
compared to M~ —m N for typical values of nucleon
momentum p=m . This is why large reduction of the 6
effects is found in the coupled-channels calculations of
Ref. 12, when the kinetic energy difference terms are
properly kept. The terms inside the curly brackets on the
right-hand side of Eq. (5) represent the nonrelativistic
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reduction of the relevant mN scattering amplitude. In the
derivation of the Tucson-Melbourne potential, ' only
terms up to the order (q /m N) are kept in the expansion
of the ~N scattering amplitude. However, keeping the ki-
netic energy terms in the 6 propagator amounts to retain-
ing terms of higher orders in the expansion of the mN
scattering amplitude. Thus, even though 6 contributions
are not dealt with explicitly in Ref. 10, the effects of 6
propagation are not included in the Tucson-Melbourne
potential.

Straightforward inclusion of the kinetic energy terms in
the 6 propagator leads to the following 3NP in momen-
tum space
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I.et I' be the projection operator onto the pure nucleonic
space and Q =1 P. Then the eq—uation satisfied by the
pure nucleonic component of the total wave function 4 is

T;(N)+ g VNN(ji)+ Vdr P%=EP%,
i=1 l (J

where

However, Eq. (7) is not suitable for bound state calcula-
tion because pole singularity will be encountered. To
overcome this problem, we proceed as follows.

For a system of nucleons and deltas, the Hamiltonian
takes the form

H = g [ T;(N)+ [T;(6)+(M~ —mN)]j+ VNN+ Vq,

where the T; refer to the kinetic energy operators, with
the T;(b, ) having the mass difference between the b and
the nucleon added. VNN is the sum of the potentials be-
tween NN. VN~ stands for the sum of the potentials be-
tween NA and AA pairs and transition potentials for
NN+ NA, Nh~AA, and NN~AA. The Schrodinger
equation for such a system can be written as

P

FIG. I. The two-pion —exchange three-nucleon force which
arises from the excitation of a nucleon into the 6 isobar. In nu-

clei the dominant contribution comes from positive energy b ex-
citation.
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The effective interaction V,z is, in general, a many-body
interaction (i.e., two-, three-, etc. nucleon force). The
two-body force component of the V,~, when combined
with VNN, is supposed to give a realistic description of the
two-nucleon system. V,~ also contains a three-body force
component which corresponds to that depicted in Fig. 1.
This is given by
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where VNN N~(m) is the NN~Nb transition potential
due to one pion exchange. It has the form
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where q=p' —p is the three-momentum of the pion ex-
changed; S~N and T~N are the spin and isospin transition
operators transforming a nucleon into a A. This leads to
the following representation of the 6-mediated three-
nucleon potential VI)

' in momentum space:
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mNMg
Pla=

mN+Mg

(mN+Mg)mN
Pl&, 2=

2mN+M~

Mgpl —mNPg
PlS=

mN+Mg

(m N+Mq )p2 —m N(p) + Pq)
q2=

2mN+Mg

with Pq ——pl+pq —pl. The energy E is understood not to
include the kinetic energy of the c.m. motion. For
scattering problems, Eqs. (7) and (14) are equivalent. In a
bound state, like a triton, the energy denominator in Eq.
(14) is reduced to

2
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and will not give rise to any singularity. Ez is the triton
binding energy.

In the coupled-channels calculations of Refs. 1 and 12,
the m Nb coupling constant is taken to be f N~ /4~
=0.35, which is determined' from the experimental
value of the b, width. A value off„N~/4m=0 27 is used. .
in the Brazil 3NP model, " which is obtained' from a fit
to a wide range of low energy experimental data. Since

the pions exchanged between nucleons in nuclei are most-
ly of about zero energy, we feel that the latter value of
f N~ is to be preferred. In a static approximation, this
value of f N~ leads to a 3NP with the following strength
parameter, b)),

———1.49m and dq= —0.373m (in the
notation of Ref. 10). The contribution of this b, -mediated
3NP to the triton binding energy E~, in a first-order per-
turbation approximation, can be readily obtained from
Table III of Ref. 6 by simple scaling. For the Reid soft-
core potential, it gives 0.67 MeV extra binding with the
18-channel Faddeev solution if a dipole pionic form factor
with cutoff momentum A=800 MeV is employed. The
3NP arising from other processes gives a net contribution
of 0.22 MeV to Eg. Experience from coupled-channels
calculations indicates that if the proper form of the 6-
mediated 3NP of Eq. (14) is used, the contribution of 0.67
MeV will be reduced by almost a factor of 2.

In summary, we have derived a 6-mediated effective
three-nucleon potential which takes into account the
effects of 6-propagation effects. Reliable estimate of the
b's contribution to three-body force effects can be ob-
tained only if this representation of the 3NP is used.
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