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Compatibility of the nuclear shell and nucleon bag models
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It is shown that the standard self-consistency argument, reconciling the nuclear independent-
particle model with the large low-energy nucleon-nucleon cross sections, loses its validity for nucleon
bags with a radius larger than about 1 fm.

I. INTRODUCTION

For the theoretical treatment of a realistic many-body
system it is necessary to introduce a model with a
manageable number of degrees of freedom as a zero order
approximation. In most cases the choice of such a model
is suggested by the experimental observation of some
qualitative properties of the system. The hope is that the
more detailed properties will be given by calculable
corrections to the zero order model.

Once a model has been formulated, the theory has the
minimum task of showing its self-consistency: the essen-
tial assumptions of the model should not be clearly invali-
dated by the corrections. The present paper studies this
self-consistency problem for the case of the nuclear
independent-particle model with bag-like nucleons.

A good part of the successful calculations performed in
nuclear physics during the last thirty years has been based
on the assumption that the independent-particle model is
a good zero order approximation to the nucleus. The
essence of this model is the hypothesis that any particular
nucleon behaves in the nucleus as a particle of a Fermi
sea, moving in a smooth potential and having a mean free
path which is large compared to the nuclear dimension.

Historically, the experimentally observed validity of the
nuclear shell model' was quite surprising, because the
large nucleon-nucleon cross sections had earlier lead to
the belief that the nucleons in a nucleus would be similar
to the molecules in a liquid drop, having a very small
mean free path.

In respect to the experimental situation, it should be
stressed that the validity of the shell model is a much
stronger statement than the existence of low energy
single-particle-like excitations, which are not uncommon
in Fermi systems. In fact, the single-particle behavior of
the nucleons appears to be almost literally true. This be-
havior is, for example, evident in quasifree scattering and
in the often quite nontrivial quantum numbers of the
loosely bound nucleons in heavy nuclei.

The compatibility of the large size of the low energy
cross sections with the shell model was recognized by
Weisskopf. He remarked that in the independent-pair
model the Pauli exclusion principle drastically reduces the
effects of the nucleon-nucleon interaction because the
low-lying single-nucleon states are already occupied. This
argument was quantitatively confirmed by means of the
Bethe-Goldstone equation, which allows us to show that

in the independent-pair approximation in nuclear matter
not only the effective two-particle cross section vanishes
exactly, but also a typical pair is only quite locally corre-
lated.

With the advent of quantum chromodynamics a nu-
cleon became to be described as a bag containing three
elementary quarks. This model satisfactorily explains
many properties of free hadrons and their interactions.
The assumed bag radii vary between 0.3 and 1.2 fm, de-
pending on the model considered. In the present paper
we mean by the expression "bag" the region in which the
three valence quarks of a nucleon are contained, without
having any specific model in mind.

It is the purpose of the present paper to show that a nu-
cleon bag model with a radius larger than about one fermi
invalidates the usual explanation of the independent-pair
approximation. We do this by trying to apply, as good as
we see it possible, the usual argument for a vanishing
effective cross section to nucleon pairs consisting of bag
nucleons. Instead of having a vanishing cross section for
the collision of a nucleon pair, we find that for bag nu-
cleons this cross section is finite and grows fast with the
assumed bag radius for bags larger than 0.7 fm, where it
is still small. For a radius of about one fermi the mean
free nucleon path becomes equal to the radius of a heavy
nucleus.

Our argument has the typical awkwardness and limita-
tion of many ad absurdum reasonings. One might, for ex-
ample, remark that, looking at the complete N-body prob-
lem, the cross section of the scattering of a nucleon pair
into occupied states makes no sense. It is a ground state
to ground state transition which should not cause an in-
stability of this ground state. Such a reasoning implies,
however, the giving up of the two-body equation, thus in-
validating the usual argument for the near locality of the
two-particle correlations necessary to argue the stability of
the single-particle ground state. In fact, the finite cross
section we found is caused by the nonorthogonality of the
two-particle —two-hole states in respect to the ground state
and this will just have a delocalizing effect on the contri-
butions of these states to the transition matrix element.
We do not further follow this line of thought, as it seems
that once the Bethe-Goldstone equation is not even ap-
proximately valid because of the existence of quarks de-
grees of freedom, one should make a fresh start, taking
the quark dynamics more explicitly into account. The
simple point of the present paper is to remark that for bag
radii of a size often considered in the literature, the shell
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model has at present no explanation. This conclusion is
in agreement with our earlier estimate of the degradation
of the single-particle states in a Fermi sea of bag nu-
cleons. It is hoped that these observations may stimulate
the invention of a quantitative treatment of the important
and perhaps somewhat neglected problem of understand-
ing the experimentally observed validity of the
independent-particle model for bag nucleons.

In Sec. II we briefly review the points of the shell mod-
el and bag models which we need for our discussion and
consider an independent-pair equation for bags. The re-
sults are discussed in Sec. III and finally some remarks
are made.
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for our present purpose neglecting the modification of the
T matrix by many-body effects. Averaging over initial
spins isospins, and summing over final momenta and
spins isospins, we obtain for the average total cross section
cr;j of a pair with momenta p;,pj

II. THE INDEPENDENT-PAIR EQUATION
AND BAG NUCLEONS

The mean free path A.; for a nucleon in momentum state i
1S

A. The independent-pair equation for elementary nucleons A., =(po;) (9)

2
X exp[ i (pk r~+—pl. r&)] (2)

or more compactly written

o (kl, ij ) —
~

(kl
~

V
~ g;~ )

~

=
~

(kl
~

T ij ) ~, (3)

where we used the definition of the T matrix.
In the case of nucleons embedded in nuclear matter,

Eq. (1) is no longer valid even including a mean potential
and an efFective-mass approximation, since the Pauli ex-
clusion principle forbids any scattering into occupied
states which therefore must be excluded. The Pauli prin-
ciple can be taken into account by modifying the interac-
tion in such a way that it vanishes for final states inside
the Fermi sea. This is achieved by replacing J~ in Eq. (1)
by

J~(r~, r2) =2mQ~(r~, rq) V(r~, rq)QJ(r~, rq), (4)

where Q;, is an operator' which allows scattering into
states that are outside the Fermi sea:

Q) —~ij )(ij
~
+ g ~

mn)(mn ~,
m, n &kF

and the cross section is now given by

We first sketch the main line of thought in the formula-
tion of the problem of the scattering of a pair of elementa-
ry nucleons in a Fermi sea.

The scattering of an isolated pair of nucleons is
governed by the ordinary wave equation (with Ac =1):

(V&+ V2+p,'+p,')gj(r&, r&) =J;,(«, r2),

J;, (r~, rq)=2m V(r~, r2)Q,J(r~, r2),

where V(r~, r2) is the interaction potential and p; and p&

are the asymptotic momenta of the two nucleons. The
cross section for the scattering into the final states pk and

pI, is given by

cr(kl, ij)—I d r~d rqJ&(r~, r2)

where p is the average nuclear density and o.; is the aver-
age over pj of (p;, pj).

Both A and B in Eqs. (7) are trivially zero because of
the orthogonality of two different pair states and an
infinite mean free path follows.

B. Modification for bag nucleons

The equation

( kl
~ Q;, V

~
Q,J ) =0 (10)

for (kl&ij) and Ek~ =E;, , has, of course, the simple physi-
cal meaning that the projection operator Q,&

does not al-
low long range scattering because the energy conserving
states are occupied.

Suppose now we have bag nucleons and attempt to con-
struct an operator Q,J corresponding to the operator Q;~.
Immediately the difTiculty arises that the nucleon pair
states in this case are not orthonormal. To treat this
problem, we employ the formalism used in Ref. 9, which
we brielly restate, in Eqs. (11)—(16), to establish the nota-
tion.

We consider a Fermi sea of X noninteracting bag nu-
cleons in a box of volume 0 with periodic boundary con-
ditions implied, and later take the limits N~op, A~ac,
for constant density p=N/A. The ground state of this
system is written as

}
0) = Q Bt

~
0),

where B; and B; are creation and annihilation operators
for bag nucleons with c.m. momentum P;, spin projection
m;, and isospin projection t;, conjunctively denoted by
i = IP;, m;, t; I, with the momenta P; assuming the lowest
possible values consistent with the Pauli principle as ap-
plied to point nucleons.

For a nucleon creation operator we write

(12)

o(klij)
~

(kl ~Q)V ~P;, ) ~~=
~
3+B ~2,

where we defined A and B by

(6) where in the quark creation operators q 's the upper in-
dices 1, 2, and 3 denote color and the lower indices p's
denote momentum and spin-isospin projection of the
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quarks in the totally symmetrical nucleon wave functions
C,

"'" '. These C's are chosen such that the one-nucleon
states are normalized to one.

Instead of the usual anticommutation rules for the

point nucleons case, now we have

[B;,B I=.5; —A;, [B;,B I
= IB;,B I =0,

where
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Using the anticommutation rules of Eqs. (13), one obtains

&kl
I
mn &=5k 5,„—6„„li, a(—kl, mn), (15a)

where

b(kl, m)n=3C 'k" ' C"'"' 'Ci ' ' ' C ' ' (m~n)—

(15b)

where the anticommutation rules for the quark operators
were used.

The analogues of the two-particle states occurring in
the Bethe-Goldstone equation are given by

(14)

the nonprojectivity of Q~J. Inserting Eq. (15b) into Eqs.
(7), one obtains
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To calculate these integrals we need the explicit form of
the quark wave functions of Eq. (12), which we take as in
Ref. 9:

C~ I~2I 3 1t 2t 3f
gp gp gp

Defining Q;~ by

Ql= Iii&&V I+ y. Imn
m, n &kF

(16)
X(18) ' T; ' ' 'q', (ki)q (k2)q, (k3),

(18)
where Iij & and

I
mn & are two bag-nucleon states in the

Fermi sea, Eq. (11), we find that this operator, in contra-
distinction to Q,J of Eq. (5), is not anymore a perfect pro-
jection operator, because of the term b.(kl, mn) on the
right-hand side of Eq. (15a). The nonorthogonality of the
two-particle states and the nonprojectivity of Qz have a
physical origin. The two-particle —two-hole states are not
anymore eigenstates of a zero order Hamiltonian, because
of the new quark degrees of freedom. There exists a state
space outside the nucleon space which may seriously
acct the Bethe-Goldstone equation and its consequences.

As a remedy for this trouble does not seem to be
known, let us attempt to estimate the damage caused by

where each of the a s specifies one of the four quark
a~a2a3spin-isospin states, the T; ' ' ' represents the generalized

Clebsch-Gordan coefficients" for our case, X; is a nor-
malization constant, and the 6 function guarantees the ex-
act c.m. momentum P; for the nucleon. As stated earlier,
we take for the single quark momentum wave functions

P(k)=(r /m)~ exp. ( ——,'r k ), (19)

where r is the rms radius of the quark distribution of the
nucleon, with the c.m. correction included.

With these wave functions, we obtain, for 5(kl, mn) in
Eq. (15b),

5(kl, mn)= 3(3r /4m) (8ir /Q)5p +p, p +p

&&X(kl, mn)exp[( —
—,', pi, + —,'pi ——'p„+ —,'pi, .pi+pk p„——,'p~ p„)r j—(m~n), (20a)

where X{kl,mn) is given by

X(kl, mn)=(18) T„' ' 'T ' ' 'T, ' ' 'T„' ' ' (20b)

The basic reason for this diferent behavior is that in Eq.
(7a) for A only one intermediate state contributes, in con-
tradistinction to the infinite sum occurring in Eq. {7b).

z(kl, ij) —
I

B'
I

' . (21)

As shown in Appendix A, from Eqs. (20), follows that,
in the limits 4'~ oo, A~ ~ with p=%/0 constant, the
contribution to the pair cross section coming from the
term corresponding to A in Eq (7a) rema. ins zero but the
contribution of 8' does not vanish anymore. We there-
fore have, instead of Eq. (6)

C. The mean free path

For the present crude estimate we choose in Eqs. (17)
an effective expression for T such that &mn

I
T

I
ij &

reproduces the experimental average total s-wave cross
section for free nucleon-nucleon scattering. We take for
the scattering matrix element
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(rs
~

T ~ij /= Vo/Q(&ra ) 5p +p p. +p [6„;fi„exp[—(p„—p;) a /4] —(i~j)I, (22)

where'' Vo ——0.25 frn ' and a =2 fm are, respectively,
the depth and the range of the effective potential and 6„
and 6,~ are spin-isospin Kronecker deltas.

In order to obtain a typical value for the mean free path
we choose for cr; in Eq. (9) the cross section for nucleons
with initial momenta which are equal and opposite
p;= —p/, with

~ p;
~

=k equal to the rms momentum in
the Fermi distribution. Inserting the value of B', it is
shown in Appendix B that we obtain from Eq. (8) for the
cross section

o. = ~/24(m* Voa ) (3r)

dependence of the quark wave functions.
Introducing center-of-mass and relative coordinates

R= —,
' (r] + r2+ r3),

g = 1/&2(r) —rp),

g = 1/&6(r&+ rz —2r3)

in Eq. (18) for the quark wave functions one finds

tj'j (R,g, q)=(A) '/ e' N;„,(g, g)

(~)—1/2 iP.R( 2) —3/2 —(r +g )/2r

(24)

(25)

&&exp[ ( ,'r +——,'a—)k]F(kF,r), (23)

where F(kF, r) is a function, defined in Appendix B,
which depends on the Fermi momentum kF and on the
rms radius r of the quark distribution and m* is the
effective mass in nuclear matter.

The results of the calculation for the cross section 0.
and the mean free path A, =(per) ' are shown by the solid
lines in Figs. 1 and 2, respectively, with the effective mass
chosen to be 0.65 times the proton mass. ' Basically be-
cause of the steepness of the mean free path and cross sec-
tion curves, our conclusions are not sensitively dependent
on this value. The dotted, dashed, and dotted-dashed
curves in Figs. 1 and 2 represent the results of the
modified calculations discussed in Sec. II D.

The internal wave function 4;„, was modified to give
more uniform quark density distributions inside the bag:

qg (R g +) (~)—I/2 iPR

(26)

where N,'„'t' and 4;„,' are of the same Gaussian type of N;„,
in Eq. (25), but with different individual widths, r

&
and rq,

the parameter e is varied and C (e) is chosen to keep the
normalization constant. For @=0, one obtains the previ-
ously used wave function.

The results obtained with the wave functions of Eq. (25)
and two different shapes of Eq. (26), are shown by the
solid and dashed and dotted-dashed curves, respectively,

D. Modified calculations

In order to investigate the dependence of the results on
the shape of the nucleon wave functions, we also per-
formed the calculations for other choices of the radial

g( frn )
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FICr. 1. The average cross section for a typical nucleon in nu-
clear matter of normal density as a function of the rms radius of
the quark distribution (lower scale) and of the equivalent bag ra-
dius (Ref. 18) R =1.6r (upper scale). The solid, dotted-dashed,
and dashed curves correspond, respectively, to e=0, e =0.2S,
and a=0.5. In the inset, quark densities as functions of the dis-
tance d from the center of the bag, for the values of above, all
with the same rms radius of 0.8 fm. The dotted curve corre-
sponds to a different choice of the operator g;/, Eq. (27).

2.0

I

0.5 0.6 0.7

FIG. 2. The mean free paths corresponding to the cross sec-
tions of Fig. 1.
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in Figs. 1 and 2. Shown in the inset of Fig. 1 are the
quark densities for e =0 and r =0. 8 fm (solid lines),
E =0.5 and r

~
=0.7 fm, r2 =0.5 fm (dashed lines), and

E=0.3 and r ~ =0.75 fm, r2 =0.4 fm (dotted-dashed lines),
all giving the same rms radius of 0.8 fm. As can be seen,
there is no substantial sensitivity of the results on the
shape of the wave functions.

Another observation which can be made on our calcu-
lations is the following. Because the "projection opera-
tor" Q;,

' which we use in the independent-pair equation is
not anymore exact for composed nucleons, identities be-
tween projection operators for point nucleons are not
anymore identities for the corresponding operators Q;,

' in
the case of extended bags. It is then not anymore
indifferent in which form the exact operators, which we
translate into our picture, are written. In practice, this ar-
bitrariness seems not to make much difference in the re-
sults.

As an example, we have calculated the cross section by
writing for Q;~, instead of the expression of Eq. (16), the,
for point nucleons identical, expression

Q;,
' =

~

ij ) (ij
~
+ 1 — g ~

mn ) ( mn
~

m, n &kF

(27)

Instead of only allowing states outside the Fermi sea for
the scattering, this formulation excludes the states inside
the Fermi sea.

The calculation for this case has a rather different ap-
pearance from the previous one, but the results, for the
wave functions of Eq. (25), indicated by the dotted curves
in the figures, are evidently quite similar.

III. DISCUSSION AND CONCLUDING REMARKS

Figure 2 shows that, for a confinement radius up to 0.7
fm, the estimated mean free path is such that the argu-
ments on the basis of the Bethe-Goldstone equation for
the shell model are not invalidated in the case of compos-
ite nucleons, in agreement with the general expectation. '

But for radii larger than one fermi the mean free path ob-
tained following these arguments become equal or smaller
than the radius of a heavy nucleus and one would not
anymore expect the shell model to work.

The use of the concept of the mean free path of a
bound nucleon may not be generally accepted, although it
has been regularly used in the literature. ' ' If desired,
one may translate the value of the mean free path or of
the average total cross section, via the optical theorem,
into the value of an imaginary shell model potential,
which may not be too large for the shell model to be val-
1d.

The nonorthogonality of the two-particle states, caused
by the quark statistics operating in overlapping nucleons,
implies the presence of quark configurations which tend to
have an increased kinetic energy. ' This effect may lead
to a repulsion in the nucleon-nucleon interaction, as has
indeed been observed for free nucleons. Such a repulsive
core, if su%ciently hard, will affect our lowest order treat-
ment, which is based on the overlapping of undeformed
nucleon wave functions. It is however well known that a

strongly repulsive core in the nucleon-nucleon interaction
must really remain small in order not to destroy by itself
the selfconsistency of the independent-pair approximation.
As long as the effective volume of such a core is small
compared to the volume of a bag with the critical radius
of about one fermi, our estimates will not be radically
modified.

Recently, ' the interesting remark has been made that
the antisymmetrization of the quark wave functions for a
shell model with 6-quark bag correlations does not neces-
sarily invalidate certain predictions of the original shell
model. This question differs from the one with which the
present paper is concerned, namely, how to justify the
relevance of single-particle states, as, for instance, used in
the just mentioned calculation.

As has been already remarked, our calculation can only
give a kind of first order deviation from the usual
independent-pair equation. This avoids the quark interac-
tions which would introduce, at the present stage of our
knowledge, a large complication and arbitrariness. Al-
though therefore our treatment is quite limited, as it con-
tains almost no dynamics, it has the virtue of not being
sensitively dependent on the details of bag models and
quark interactions. Of course, we cannot maintain that
even for radii larger than one fermi there cannot exist
another good argument for the observed single-particle be-
havior in nuclei. However, such an explanation seems not
yet to have been given and is almost certainly nontrivial.
For a hybrid soliton-bag model, for example, nonlocal
soliton-bag commutators presumably would play the part
of our bag commutators, Eqs. (13).

In the present situation, the only conclusion we can
draw with confidence is that the usual self-consistency ar-
gument for the independent-particle model for point nu-
cleons might well be applicable to bags with a radius
smaller than 0.7 fm, but the same reasoning throws seri-
ous doubts on the validity of the independent-particle
model for bags larger than about one fermi. An under-
standing of the intermediate region would require the in-
troduction of detailed dynamical assumptions. Clearly
there is a need for a better treatment of this problem,
namely to relate the vast experience obtained in nuclear
physics to an important model in elementary particle
physics. Such a study might lead to severe conditions to
be obeyed by the underlying models.
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APPENDIX A

Here we shall show explicitly that the contribution of
A' to the cross section vanishes. We begin with the well-
known expression for the cross section:"
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where U„i is the relative velocity. Using Eq. (6), one has
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The matrix element (mn
I

T
I
ij ) of Eq. (22) can be written as
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Substituting Eqs. (A3) and (A5) in Eq. (A2), we obtain
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we find for the total cross section
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From Eq. (A8), in the infinite volume limit, we can see that the term A does not contribute to the cross section.

APPENDIX B

Here we shall obtain result Eq. (23). Using Eqs. (A4) and (A6) in Eq. (AS), one has

o(p;, p~)= —,
' g f d pkd pi5' '(pk+pi —p; —pj)5(1/2m*(pk+pi —p; —pj))

(2~) Urei
'

spins
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X IX(kl, mn)exp[( —
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+ ppk Pm +Pk'Pn 3P P. )»'] —(m~n)I
2

X I5,5„;exp[ —(p —p;) a /4] —(i~j)I
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for initial momenta p; = —
p~ and

~
p; ~

=k, Eq. (Bl) becomes

cr=trl24(m*Voa ) (3r) exp[ —( —', r + —,'a )k ]F(k~,r),
M(x) is given by

M(x) = [I(x)] —0.6I(x)I( —x),
where I(x) is the following integral:

I(x)=—,
' A '(x) f„dpp exp[ —( ,', r —+—,'a )p ]sinh[pA (x)], A (x)= —,'(r +a +2r a x)'

From this follows Eq. (23), with F(kt;, r) given by

F(kF, r)= j dx M(x) .
—1
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