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Relativistic Hartree orbitals for nonspherical (even-even) nuclei have been calculated self-
consistently from a Lagrangian field theory using the mean field approximation. All parameters in
this model are determined from the properties of infinite nuclear matter, so there are no parameters
which can be adjusted in the calculation of the orbitals. The energy levels, rms radii, and quadrupole
moments are in qualitative agreement with earlier nonrelativistic calculations and with experiment;
however, the overall deformations (which are fixed by the self-consistency) are somewhat smaller
than those obtained experimentally and from nonrelativistic calculations. The difference may be due
to the large compressibility characteristic of relativistic mean field calculations. These orbitals and
the self-consistently determined mean fields provide a framework for a detailed investigation of the

compressibility as well as other relativistic effects.

I. INTRODUCTION

In the past few years there has been considerable in-
terest in the role of the Dirac equation in nuclear physics,
both in scattering processes,! and in nuclear structure.’
This interest has been encouraged by the promising re-
sults of Dirac phenomenology® and by the development of
a consistent relativistic mean-field theory.*

Using the Dirac equation with phenomenological
Lorentz scalar and vector potentials, it is possible to ob-
tain good fits to both the cross section and analyzing
power for a wide range of intermediate energy nucleon-
nucleus elastic scattering processes. Furthermore, having
determined the free parameters of the potentials from
these fits, it is possible to predict the correct angular
dependence of the spin rotation parameter,’> Q. Tradition-
al nonrelativistic calculations were unable to achieve these
results at energies above approximately 400 MeV, particu-
larly with respect to the spin observables.

Another indication of the potential importance of rela-
tivity in nuclear physics comes from the development of
quantum hadrodynamics® (QHD) and the relativistic Har-
tree approximation for nuclear structure. The basis of
QHD is a renormalizable quantum field theory Lagrang-
ian which explicitly contains Lorentz scalar and four-
vector meson fields. In the high density limit of infinite
nuclear matter, the quantum meson fields may be re-
placed by their expectation values which are classical
fields. In fact, the mean field approximation has been uti-
lized at normal nuclear densities. In this case the un-
known coupling constants and masses of these mean
meson fields are adjusted to reproduce the correct binding
energy and saturation density of nuclear matter. In agree-
ment with the results of Dirac phenomenology, it is found
that this procedure leads to very large (roughly 400 MeV)
attractive scalar and repulsive vector fields whose net con-
tribution to the potential is comparable to nonrelativistic
models. This makes it possible to see large relativistic
effects arising from situations in which these fields do not
cancel. Such a situation is seen when this model is ex-
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tended to calculations for finite nuclei. By allowing a ra-
dial spatial dependence in the mean fields, a self-
consistent relativistic shell model can be developed for
spherical nuclei using the Hartree approximation.” In
these calculations it is found that the simple scalar and
vector fields are sufficient to give the correct spin-orbit
splittings of the energy levels. This is possible because the
spin-orbit force arises from the sum of the scalar and vec-
tor fields rather than their difference. QHD and the rela-
tivistic Hartree approximation provide a well-defined
method for obtaining relativistic spherical shell model or-
bitals, which include much of the important physics.

The results of this work have been applied to calcula-
tions of nuclear magnetic moments,®° relativistic nuclear
structure (RPA),>'© muon capture, beta decay and elec-
tron scattering form factors,'! and the electric dipole sum
rule;'? the results are encouraging. However, the validity
of the mean field approximation and of the appropriate-
ness of the Lagrangians used in the simple relativistic
theories to date are largely untested. Corrections to the
mean field approximation due to the inclusion of Fock
terms or vacuum polarization effects can be appreciable
(~10-209%).° Moreover, a successful theory involving
pions (in the limit where their contribution is nonvanish-
ing) does not yet exist. Because of these uncertainties it is
useful to test the existing models in other domains. For
these reasons, we have developed a calculational pro-
cedure for making predictions for a certain class of de-
formed nuclei in a relativistic model. It is important to
stress that the reason for pursuing this work was not that
there exists some deficiency in previous nonrelativistic
structure calculations in deformed nuclei which this cal-
culation is expected to rectify. The early work on de-
formed nuclei'*'* was on the same general level as the
current calculation. It involved Hartree-Fock calculations
in a limited basis, and, in general, gave reasonable results
for many of the nuclei considered. The major advantage
of the present calculation is that the interaction is derived
self-consistently from a relativistic nuclear field theory in
which the parameters are determined from the bulk prop-

354 ©1987 The American Physical Society



36 SELF-CONSISTENT HARTREE DESCRIPTION OF DEFORMED . . . 355

erties of nuclear matter. When applied to the deformed
system there are no adjustable parameters and the equilib-
rium deformation is determined through the self-
consistency of the solution.

Modern nonrelativistic structure calculations are much
more sophisticated than the present model, for example,
utilizing Hartree-Fock Bogoliubov techniques'” or the in-
teracting boson model.'® It is not expected that the
present work could replace these calculations, but it hope-
fully represents a first step toward sophisticated, self-
consistent, relativistic calculations in deformed nuclei as

J

well as testing the present relativistic approach in a new
domain.

II. FORMALISM

As in the work of Serot and Horowitz, we chose as our
starting point a quantum field theory Lagrangian which
includes the coupling of the nucleons (¥) to sigma (¢),
omegzb(V), pi (7), and rho (b) mesons and the photon
(A):"

L = Plid— M)+ 13,43 ¢ —mld?) — 1G ., G* + 1mJV, V¥
+ 8PV — g Py WVF + Ly T —miar-m) —ig 0y sT-mh— 1By B¥ + Im b, b — Lg Py b Y — LF, R
—e A, (P L1+ 1300+ (b, X B¥)3+ [ X [3#7+g,(m X b)]}3) , (1)

where
F,,=0,4,—09,4, ,
G#vza‘qu_ava )
B“\,Eaubv~8vb# —gp(b,Xb,) . (2)

The particular form of the pion couplings given in Eq.
(1) and the fact that a relativistic theory satisfactorily in-
corporating pions has still not been developed is not cen-
tral to our discussion, because as will be discussed below,
the pion contributions vanish in the mean field approxi-
mation. Thus for our purposes, pion terms could be sim-
ply dropped from the model Lagrangian equation (1).
From this Lagrangian, using the mean field approxima-
tion for the meson fields and following the techniques dis-
cussed in Ref. 7, we can derive the following general
equations of motion:

(V2—mP)p(x)= —g, Tr[iGy(x,x)] , 3)
(V2—m2)VHx)= —g, Tr[iv*Gy(x,%)], (4)
(V2—m2)m%(x)= —g, Trliyst°Gy(x,x)] , (5)
(V2—m2)bHa(x)= — g, Tr[iy*m°Gy(x,x)] , (6)
VZAH(x)= —e Tr[iy"1(14+7)Gy(x,x)] , 7
[—ia-V4+yeM +vo2y(X)]UL(x)=€,Uq4(x) , (8)

where U, is a nucleon orbital with quantum numbers a,

Sp(x)=—gd(x)+ g ¥ VHX)+ 8,V sTam (X)
+1g,y,mab"(x)+ Ley, (14730 AH(x)  (9)

is the Hartree self-energy, and
iGy(x,y)=3 Uy(x)Ua(y)[ 0(x°—y®)0(e,—€F)

—0(y°—x%0(er—e,)]  (10)

I

is the Hartree propagator (€r is the energy of the highest
filled level). For the purposes of this calculation we have
chosen to limit the type of deformation considered to az-
imuthally and reflection symmetric systems (i.e., prolate
and oblate ellipsoids for the lowest order deformation).
This limitation effectively limits the calculation to even-
even nuclei in which states with j, =*m are degenerate.
The advantage of this limitation is that for this symmetry
many of the traces in Egs. (3)-(7) vanish. It is simple to
show that the traces in Egs. (4), (6), and (7) vanish if
15=0; this eliminates all of the three vector components of
the boson fields. Also, the isospin traces in Egs. (5) and
(6) vanish if a=£0; this eliminates all of the charged
mesons (70 and p° remain). Finally, the remaining trace
in Eq. (5) vanishes due to the presence of the ys; this
eliminates the contribution of the pion in the Hartree ap-
proximation for a nucleus possessing good parity. So, the
limitation on the type of deformation to be considered
greatly simplifies the calculation by limiting the contribut-
ing bosons to the scalar meson, the zero components of
the isoscalar vector meson and the photon, and the zero
component of the neutral rho meson. This is the same set
of bosons that was required for spherical nuclei; however,
these boson fields now have an additional angular depen-
dence.

In principle, we could solve these equations with no
further approximation; however, due to the difficulties
often encountered in solving coupled partial differential
equations, it is useful to expand the angular dependence
of the mean fields in some convenient basis. Therefore,
the boson fields are expanded in terms of Legendre poly-
nomials

é(r,0)= 3 ¢;(r)Pi(cosh) , (11)
1

where from symmetry considerations, only even values of
I are required; and the nucleon orbitals are expanded in
terms of spherical spin angle functions*
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U X)=Uppi = 3, —Fye(r) N (12)
« —q)—K'm
r

where, again, the symmetry limits the required values of
|
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K'. As is clear from Eq. (12), the total angular momen-
tum, j, of the individual orbitals is no longer a good quan-
tum number. This is a general result for deformed sys-
tems and will lead to additional difficulties which will be
discussed below.

Using these expansions the equations of motion have
the following form:

(V2—m2)p(r,0)= —g,py(r,0)=—g, S | 2L 1P1(c088) S [GueF)Grae (1) — Frae (P F ()] A (i sy m) (13)
4
! 7rr akk'
occ
(V2—m)Vr,0)= —g,pp(r,0)= —g, 3 %41 L1 py(cosh) ) 3 [Gax MG (r)+ Faxr)F e ()] A (L&' e,m) (14)
! 1Tr axk'
(V2—m2)b%(r,0)= — g, ps(r,)=—1g, 3 %4’“ P(cos8) S, (=)' VPG (PG (P)+ Fa (PF e (M A (k' i, m)
1 mr akk'
(15)
2 49,0)= —epy(N=—e S | L 1Pcost) 3 (104 1) [Ga(PGue(P) 4 Far P F (] ALy e,m) (16)
! akk’
diG,,K(r)Jr%Gak(r)—(ea+M)FaK(r)+2[g5¢,<r)+guVP(r)+tag,,bP(r>+(ta+ Je AP(r)] ALK ,k,m)F e (r)=0,  (17)
r Lk
(—j—FaK(r) fFaK<r)+(ea—M P+ S [g:bi(r)—g, VP(r) —tag,bl(r)— (1o +Le AP(P)]AUK ,k,m)G oo (r)=0,  (18)
r Lk
where
jK' jK jk' l Ik
A(Z’KlyK)m):(_)(1/2)+m[(2jx+1)(2jx'+1)]1/2 —m 0 m 1 0 —1 4 (19)
2 2

and pp and p; represent the baryon and scalar densities,
respectively. This set of equations, although somewhat
complicated, may be solved numerically in a straightfor-
ward manner. (The details of the numerical methods are
outlined in the Appendix.) The value of using the expan-
sions given above is clear from the form of Egs. (13)-(19)
which are now simply coupled ordinary differential equa-
tions rather than coupled partial differential equations.
These equations contain all information about the static
ground state including the equilibrium deformation.

The six parameters in Eqgs. (13)-(18) must be deter-
mined before proceeding with the solution of a deformed
system. The ratios of the coupling constants and the cor-
responding meson masses are determined in the limit of
infinite nuclear matter by requiring that the model repro-
duce the correct saturation density (corresponding to
kr=1.3 fm~!), bulk binding energy (15.75 MeV/nucleon)
and bulk symmetry energy (35 MeV/nucleon). The vec-
tor and rho couplings are then fixed by taking the corre-
sponding masses from the empirically observed « and p
mesons. Since there is no low-lying scalar meson, the sca-
lar mass (at constant g2/m?) is adjusted to reproduce the
charge radius of *°Ca in a finite nucleus calculation using
the spherical limit of Eqgs. (13)-(19). For more detail on

the determination of the parameters and on QHD in gen-
eral see Ref. 6.

III. ANGULAR MOMENTUM PROJECTION

As mentioned above the single particle states obtained
by solving the Hartree equations of motion in the de-
formed system do not have good total angular momentum
(although the z projection is still a good quantum number
for the assumed symmetry), so it is not expected that a
simple product wave function for the ground state will
have good total angular momentum, J. For this reason,
the Hartree ground state obtained as outlined above and
in the Appendix is only an intrinsic state which must still
be related to the actual ground state. For even-even nu-
clei the ground state should have J =0 and in order to
obtain such a state from the product wave function it is
necessary to project out a state with good total angular
momentum.?"?2 This is generally done by the projection
method of Peierls and Yoccoz.?) The Hartree intrinsic
wave function actually represents a class of many particle
wave functions, ®(r;w), that are distinguished by the pa-
rameter w which designates the orientation in space of the
axis of symmetry. Clearly, wave functions that differ only



36 SELF-CONSISTENT HARTREE DESCRIPTION OF DEFORMED . . .

by such an orientation are degenerate and must be super-
posed in the correct linear combination in order to form a
proper ground state. This class of wave functions may be
represented as

Pk (r;0)=R (0)Pk(r) , (20)

where K is the third component of angular momentum of

the intrinsic state, Pk (r), and R (w) is the rotation opera-
19

tor

R(w)=e "ig o= Mx @1
In Eq. 21) a, B, and y are the usual Euler angles corre-
sponding to the orientation . With this representation
the Peierls Yoccoz wave function is

Vikn (= [ doDix(0)®k(r0), (22)

where J and M represent the total angular momentum
and its z component for the projected state W kys. For the
present calculation K =0 since we have filled the +m
states in pairs, and J =M =0 since we are interested in
the ground state.

In practice, there are a variety of techniques for per-
forming the integrals necessary for a correct treatment of
the angular momentum projection; however, for the
remainder of this paper we will restrict the discussion to
intrinsic state properties or quantities which may be ex-
tracted from the intrinsic state by some reasonable ap-
proximation without performing the full angular momen-
tum projection.

IV. RESULTS

Using the Hartree equations and the solution methods
discussed in the Appendix we have solved for the intrinsic
states of the following nuclei: 2C, '°0, °Ne, **Mg, “Ca,
42Ca, “Ca, and **Ca. The two closed-shell nuclei, %0
and “’Ca, are expected to be spherical and the importance
of their solutions is discussed in the Appendix. For the
remaining nuclei which are expected to have an equilibri-
um deformation we must specify the level ordering which
is to be used in the calculation. This level ordering deter-
mines the orbitals that will be filled in the solution even
though they may not be the orbitals that lead to the
lowest energy ground state. For this reason the level or-
dering must be carefully chosen and the effects of using
different level orderings must be investigated. In practice,
we have used several criteria for selecting the level order-
ing. First, since strongly bound orbitals are expected to
be only slightly affected by the deformation, we used the
usual spherical well level ordering for orbitals whose ener-
gies are not near the energy surface. Second, for levels
which are relatively loosely bound we used as a guide
both previous nonrelativistic calculations'*!* and nonrela-
tivistic Nilsson diagrams.?* It is not possible for us to cal-
culate a relativistic equivalent of the Nilsson diagram be-
cause the deformation is determined through the self-
consistency of the solution, and any solution found by
artificially enforcing a specific deformation need not be re-
lated to the actual solution. For the nuclei presented
here, we have also used trial and error to vary the level
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TABLE I. Two alternative level orderings in *°Ne.

Prolate Oblate
Level Energy Level Energy
7 —45.6 1+ —464
- —28.6 3- —27.0
%‘ —22.9 % —25.4
? —15.6 ? —17.1
+ +
1 —12.1 5 —9.4
3+ —8.1 3t —7.8
Q =403 mb Q=—199 mb

Eo=—103.3 MeV Eo=—98.5 MeV

ordering and compare the binding energies of the solu-
tions. Thus far the level orderings found in this manner
are in agreement with the nonrelativistic work.

In Table I, we show the neutron energy levels for *°Ne
assuming two slightly different level orderings. The gen-
eral trend of the level energies is very similar, except for
the order of the lowest 1~ and J~ states. As expected
the 3~ is more tightly bound in the oblate solution and
the 1~ is more tightly bound in the prolate solution. In
both solutions, the energy gap between the bound and
valence orbitals is relatively small.

In Table II, we show the energy levels of the final orbit-
als for °Ne and ?*Mg and in Figs. 1 and 2, we show two
typical neutron wave functions for °Ne (the proton wave
functions are very similar).”> The upper (G) and lower
(F) components of the wave functions are labeled by the
(nlj) values of the corresponding spherical states. As ex-
pected, the mixing is important for levels whose energies
are close to the energy surface, while deeply bound levels
are almost pure spherical orbitals. As a numerical check
on the solution procedure, we have explicitly verified that

the two 1~ orbitals are orthogonal. This is essential,

2

TABLE II. The final energy eigenvalues of the bound levels
in ?Ne and *Mg.

20N\ 24Mg
Level Energy Level Energy
Protons
1 —40.61 1 —44.60
1 —23.90 - —29.78
3 —18.31 3- —21.54
1 —11.07 1 —14.35
1t —7.81 1+ —11.66
3+ —8.24
Neutrons
1 —45.58 o —50.38
1- —28.56 1- —35.26
3 —22.92 3- —26.94
1 —15.59 1- —19.69
1t —12.08 i —16.79
3 —13.28
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FIG. 1. The first -~ neutron level in Ne including the (p1)
(solid lines), (p%) (dashed lines), f(%) (dotted lines), and (f%)
(dotted-dashed lines) components. The upper components are in
the top panel and the lower components are in the bottom panel.

since the final orbitals should form an orthonormal set.
Figures 3 and 4 show the final baryon density in ONe.
As is seen in spherical nuclei’ (relativistically), the central
region is slightly depleted with the maximum densities
occurring at a distance of roughly 1.5 fm. Although it is
difficult to see from these figures, the shape of the surfaces
of equal density is a function of the density, with the
greatest deformations occurring at intermediate densities
(the surface region) and the smallest deformations at high
(interior) and low (outside the surface) densities. In gen-
eral, the shapes of the meson fields are very similar to the
shape of the densities. Unfortunately, it is difficult to see
any significant difference in the overall shapes of the sca-
lar and vector fields, so it is not possible to draw strong
conclusions about the possibility that these fields are driv-
ing the deformation. In order to answer the question of
how these fields effect the deformation it would be neces-
sary to examine their shapes for deformations other than
the equilibrium deformation. Since it is not possible to
determine these shapes in a consistent manner, it would
be necessary to develop a scheme to shift the meson fields
slightly away from equilibrium and observe the reaction
of the nucleon densities. As yet, this has not been carried
out, but because of its importance to understanding the
physics which drives the deformation, it will be the object
of future efforts.
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In order to make qualitative comparisons to nonrela-
tivistic calculations we must cast our results in a different
form. In the work of Bassichis er al.,'* and Pal and
Stamp'# the deformed orbitals were expanded in a har-
monic oscillator basis,

[AY=3 Ch | nljm) ,

nlj

(23)

where the admixture coefficients, C,f‘,j, are sufficient to de-
scribe the state. Therefore we have calculated the follow-
ing coefficients from our relativistic orbitals,

|Ch 2= [ dr[|Gulr) |2+ | Faclr)|?] 24)

which should be comparable to the C coefficients in Eq.
(23). Both sets of coefficients are normalized to unity:

S iCyl*=3 |ct|*=1.
nlj 3

(25)

The comparisons for *°Ne are shown in Table III. Simi-
lar results (not shown) are obtained for >*Mg. Clearly, the
relativistic orbitals are in approximate agreement with the
nonrelativistic work, and the discrepancy between the two
nonrelativistic calculations is at least as large as the
difference between the relativistic and nonrelativistic cal-
culations. A more direct comparison could be made by

TABLE III. A comparison, for 2°Ne, of the admixture coefficients (described in the text) found in this
work to two previous nonrelativistic calculations. There are some obvious differences that are simply
due to the different basis sizes used in the various calculations, but in general, the three calculations are

in qualitative agreement.

Levels
nlj Source 1t 1 %' i- T
1s3 This work 0.994
Ref. 13 0.995 —0.025
Ref. 14 0.989 0.007
1p4 This work —0.340 0.936
Ref. 13 —0.308 0.944
Ref. 14 —0.392 0.920
1p3 This work 0.932 0.996 0.344
Ref. 13 0.939 0.992 0.315
Ref. 14 0.920 1.00 0.392
ld—;— This work —0.079 —0.249
Ref. 13 —0.046 —0.310
Ref. 14 —0.042 —0.393
25t This work —0.049
Ref. 13 —0.077 —0.401
Ref. 14 0.132 -—-0.457
1d3 This work 0.077 0.869
Ref. 13 0.040 0.861
Ref. 14 0.046 0.798
lf% This work —0.082 —0.053 0.073
Ref. 13 —0.094 —0.026 0.070
Ref. 14
lf% This work 0.102 0.069
Ref. 13 0.110 0.032 —0.026

Ref. 14
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expanding the relativistic wave functions in an oscillator
basis, but the outcome should be qualitatively the same.

To this point we have discussed only intrinsic state
properties. Now, it is useful to develop some approxima-
tions for extracting certain ground state properties from
the Hartree intrinsic state. First, since the intrinsic state
is a superposition of states with various total angular mo-
menta, it is possible to generate the entire ground state ro-
tational band through angular momentum projection.
Therefore, the binding energy of the ground state is not
equal to the binding energy of the intrinsic state. Howev-
er, the binding energy of the ground state may be ob-
tained approximately by recognizing that the ground state
band should have

2
EJ:Eg.s.+iJ(J+1) , (26)
21

where I is the nuclear momenta of inertia which may be
obtained from the experimental spreading of the levels in
the ground state rotational band. (This assumes that the
band identified from the experimental energy levels is in
fact due to rotational states.) Since the intrinsic ground
state has nonzero expectation value of J2, the energy of
the corresponding J =0 ground state is

#

E;=0=Ey——;

J* , 27

where Ey is the Hartree energy of the intrinsic state.
This is the same procedure used in the early nonrelativis-
tic work presented in Ref. 13.

Secondly, the rms charge radius may be obtained ap-

C. E. PRICE AND G. E. WALKER

proximately, by folding the spherical component of the
proton density over the proten form factor:’

pp(r)=ple =5, (28)
where 1 =843 MeV, using
panr)= [ drip(r —r')p,(r') . (29)

In addition, anomalous moment corrections may be add-
ed as discussed in Ref. 26 by including contributions to
the charge density arising from the anomalous moments
of the protons and neutrons folded with the appropriate
form factors. We also calculate the intrinsic quadrupole
moment;

Q =V167/5(r?Y3(Q)) (30)
and the corresponding deformation parameter
Q
P=T126z (r?)

Table IV shows the results for these quantities as well as
comparisons to nonrelativistic calculations and experi-
ment. The relativistic quadrupole moments and deforma-
tion parameters are somewhat smaller than those found in
the nonrelativistic calculations. This indicates that, in
general, the relativistic calculation finds smaller overall
deformations. This is probably due to the fact that QHD
overestimates the nuclear compressibility by almost a fac-
tor of 2 which should make the nucleus more resistant to
deformations. Since the compressibility is directly related
to the surface energy, a high compressibility implies a stiff

TABLE IV. Binding energies, quadrupole moments, deformation parameters and rms radii for various nuclei.

Nuclei Source Ey (MeV) # /21 (MeV) (J*) E’=0 (MeV) (r2)'? (fm) Q (mb) B
150 This work —78.2 0 0 —78.2 2.75 0 0
Ref. 13 —47.0 0 0 —47.0 0 0
Ref. 14 —108.4 —108.4 2.60 0 0
Experiment —127.6 2.73 0
“Ne This work -99.5 0.23 16.5 —103.3 2.97 403 0.36
Ref. 13 —51.8 0.23 18.57 —56.0 524
Ref. 14 —132.0 —132.0 2.75 391 0.41
Experiment —160.0 3.02 580
Mg This work —133.2 0.21 16.2 —136.6 3.07 510 0.36
Ref. 13 —64.7 0.21 17.1 —68.3 640
Ref. 14 —162.4 —162.4 2.85 486 0.47
Experiment —167.2 3.01 690
“Ca This work —252.0 0 0 —252.0 3.48 0 0
Ref. 13 —154.7 0 0 —154.7 0 0
Ref. 14 —228.2 0 —228.4 0 0
Experiment —342.1 3.48 0 0
2Ca This work —268.3 0.16 15.2 —270.7 3.47 94.9 0.031
Experiment —361.9
“Ca This work —285.9 0.13 13.2 —287.6 3.46 170.3 0.056
Experiment —381.0
“Ca This work —321.6 0 0 —321.6 3.44 0 0
Experiment —416.0 3.47
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FIG. 5. Charge density difference for “*Ca—“Ca. The upper
panel shows 8pcn(7) and the lower panel shows 47rr28pch(r). The
solid line represents the experimental results (Ref. 27), the
dashed line shows the results of this work and the dotted lines
represent the nonrelativistic calculations of Ref. 28.

surface which will have a large contribution to the total
energy of the deformed system. One should also notice
that the rms charge radii (after correction for the anoma-
lous moments) deviate slightly from the experiment. This
may be caused by not including the anomalous moment
corrections self consistently, since they are not included in
the Hartree equations for the fields and orbitals; or by us-
ing the same form factor to fold all of the densities.
Overall, the agreement of this calculation with previous
work and with experiment is quite reasonable.

As a final application of this method, we consider the
charge density distributions of the calcium isotopes. In
Figs. 5-7 we show the -calculated charge density
differences for *Ca—*Ca, *#Ca—*Ca, and **Ca—*Ca.
These figures include the experimental results of Frosch
et al.,¥’ and the nonrelativistic calculations of Brown
et al.,”® for comparison. In general, the present calcula-
tions are in rough agreement with experiment, however,
the qualitative differences suggest that the calculations for
the open shell isotopes concentrate too much charge in the
central region of the nucleus. This result may also be
connected to the compressibility. The calculations
presented in these figures do not contain a correction for
the anomalous moment and assume that the neutron
charge form factor is identically zero. In general, it is
reasonable to assume that these effects will be small; how-
ever, since inclusion of the anomalous moment correc-
tions will have some effect on the charge distribution (par-
ticularly if Ns£Z) this approximation may have some
effect on the results.
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FIG. 6. Charge density difference for “Ca—“Ca.

V. SUMMARY AND CONCLUSIONS

In this work, we have developed a self-consistent, rela-
tivistic theory of deformed nuclei based on quantum hy-
drodynamics and the finite Hartree approximation, and
have applied this theory to the calculation of deformed or-
bitals in various light nuclei. Our calculations extend the
work of Serot and Horowitz’ and provide relativistic shell
model orbitals for even-even nuclei which may be used as
input to a variety of calculations in nuclear structure and
reactions. In general, the results of this calculation are in
qualitative agreement?® with experiment and with earlier
nonrelativistic calculations. The crucial point of this cal-
culation is that the equilibrium deformation as well as the
meson fields and orbitals are determined self-consistently.
No additional parameters or adjustments (other than the
standard requirements of angular momentum projection)
are required to obtain the correct qualitative behavior for
the ground states of the nuclei considered. Furthermore,
since there is no freedom in this model to enforce a
specific deformation, this calculation provides an excellent
framework for a detailed investigation of the source of de-
formations in closed subshell nuclei. Such a deformation
could arise from additional terms (possibly tensor cou-
plings) not included in the basic Lagrangian, or from the
proper inclusion of the Fock (exchange) terms.

The results of the present calculation indicates that the
equilibrium deformations are somewhat smaller than
those obtained from previous nonrelativistic calculations
and experiment. If this is due to the large compressibility
in the mean field model as we believe, it can be easily in-
vestigated. By including nonlinear couplings for the sca-
lar field, the compressibility can be lowered and the rela-
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FIG. 7. Charge density difference for **Ca—*Ca.

tionship between the compressibility and the equilibrium
deformation can be determined. This calculation is
currently in progress.

As a final note, we mention a few open problems in the
area of relativistic deformed nuclear structure that can be
addressed using this work as a starting point. First, this
model may be extended to odd-mass nuclei by relaxing
the restriction of azimuthal and reflection symmetry
placed on the equilibrium deformation. This will require
that more components of the meson fields be included,
but, in principle, the additional field equations may be
solved with the methods which are described in this pa-
per. Second, for this parameter set 2C and other closed
subshell nuclei are found to be spherically symmetric,
even though for many of these nuclei there is experimen-
tal evidence that there is a significant deformation in the
ground state. This behavior is also seen in many nonrela-
tivistic calculations that also find lower energy ground
states for these nuclei by adding a quadrupole term to the
Hamiltonian to enforce a nonzero deformation. Such a
procedure would be difficult to include self-consistently in
the relativistic model; however, it is possible that there are
additional, small interactions not included in the starting
Lagrangian (tensor terms for example) that could lead to
deformations for these nuclei without having a large effect
on closed-shell nuclei. This possibility may be easily in-
vestigated in the current framework. Finally, there are
numerous applications for the orbitals and mean fields
that are the results of this work. Some examples are: cal-
culation of electron scattering form factors for deformed
nuclei, calculation of transition rates among the members
of the rotational band that may be extracted from the in-
trinsic state, calculations of the effects of a lambda particle
impurity (hypernuclei) on the equilibrium deformation,
and calculation of vibrational states or fission by allowing
for an explicit time dependence. We are currently pursu-
ing various extensions to this calculation, including the

application of this technique to heavy nuclei ( 4 ~ 190).

Note added in proof. Other parameter sets have been
found that yield a deformed ground state for closed sub-
shell nuclei, C. E. Price, R. J. Furnstahl, and G. E. Walk-
er, Bull. Am. Phys. Soc. 32, 1031 (1987) and to be sub-
mitted for publication.
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APPENDIX: SOLUTION METHODS
FOR DEFORMED NUCLEI

The Hartree equations described in Ref. 7 are limited to
spherical systems, or doubly closed shell nuclei. These
equations and the corresponding solution methods may be
extended to nonspherical systems. For the purposes of
this work, we have considered only azimuthally sym-
metric deformations that conserve parity. This is the type
of deformation most often adopted nonrelativistically to
describe non-closed-shell, even-even nuclei.

The procedure for the numerical solution of Egs.
(13)=(19) is outlined below. First, make an initial guess
for the scalar and baryon densities (including a deforma-
tion) and the single particle energies. Second, solve the
integral form of the boson equations by integrating the
densities over the static Greens functions

D(r,0,r',6;m;)=—m; 3 (21 +1)jlim;r )

[ even
X hiVim;r . )P(O)P(O') (A1)

for the mesons and
1

’
D(r,6,r',6)= 3 — 7 PIOIP(O)
leven V>

(A2)

for the proton. The angular integrations can be per-
formed trivially due to the simple angular dependence and
the remaining radial integrals for each term of the boson
expansions can be performed using Simpson’s rule or oth-
er standard techniques. Third, the boson mean fields are
substituted into the Dirac equations for the orbitals which
are then solved in differential form using a fourth order
Runge-Kutta scheme. This procedure is complicated by
the coupling between the various components of the orbit-
als. The difficulty arises because the exact solutions of
these equations at large and small » contain one unknown
constant for each value of « included in the summation in
Eq. (12). This means that the starting value for the
Runge-Kutta scheme contains a prohibitively large num-
ber of unknowns. For this reason, the coupled equations
are solved iteratively as follows. The equations for the
‘dominant’ « (this is the x that would have been correct
for a spherical system) are solved assuming that all of the
other components are zero. This is done by using the ex-
act solutions at large and small » to obtain two starting
points (with one unknown parameter each) for the
Runge-Kutta scheme. Then, the equations are integrated
into some matching radius®® and the unknowns are ad-
justed so that the upper components are continuous and
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the solution is normalized. Then the energy eigenvalue is
adjusted using

Ae:_[Gl?(rma!Ch)Fl? (7 match) — G & (P mateh )F & (rmatch)]
(A3)

and this procedure is iterated until the eigenvalue con-
verges. Then, the other components are added in se-
quence and are assumed to have the form

GK(r) — G'%eneral + GEartlcu]ar ,

. (A4)
Fk(r):F'g(eneral +F’|?artxcular .

After each addition, the general solution is obtained from
the Dirac equations [Eqgs. (17) and (18)] with no coupling
to other components (i.e., k'=k only) using the eigenvalue
found above. The exact solutions at large and small r are
used to provide starting values for the Runge-Kutta rou-
tine and again each contains one unknown parameter.
The general solution found in this manner is not continu-
ous at the matching radius. The particular solution is
found from Egs. (17) and (18) including the coupling to
the other components by assuming that, for the particular
solution, the unknown constants in the exact solutions at
large and small r are zero. This solution is also not con-
tinuous at the matching radius. The two unknowns in the
general solution are adjusted so that the complete solu-
tions (general plus particular) for both G,(r) and F,(r) are
continuous. When all necessary components have been
included,! the solution for the dominant « is reevaluated
including the coupling to the other components as a par-
ticular solution. One unknown constant in the general

solution is determined by insisting that G.(r) be continu-
ous at the matching radius and the other is taken from the
previous iteration. Then, after normalization

ST dr UG P+ | Fn | 7]=1 (A5)

the eigenvalue is adjusted using Eq. (A3) and the solution
for this « is repeated until the eigenvalue has converged to
within a given tolerance. Then in the last iteration both
unknowns may be adjusted by insisting that both G and F
be continuous at the matching radius. This procedure is
then iterated from the second step outlined above, and
when the eigenvalue has converged to within a smaller
tolerance (0.1 times the tolerance above is sufficient) the
complete solution for the given orbital has been obtained
and contains up to 2L .+ 1 consistently determined
components.>! Finally, the orbitals are used to determine
a new guess for the densities and the entire procedure is
iterated until all of the energy eigenvalues (and hence the
meson fields) have converged.

In addition to the routine tests involving the mesh size
in the Runge-Kutta routine and the tolerances used to
determine convergence, spherical nuclei, like '®O and
“Ca, provide a strong test of the computer code. By
making an initial guess for the densities which includes a
substantial deformation, the code may be tested by a
direct comparison to the results of Horowitz and Serot.”
We find that our results are in complete agreement with
their calculations, and that the inclusion of the initial de-
formation has very little effect on the rate of convergence
of the solution.

*Permanent address: Physics Division, Argonne National Labo-
ratory, Argonne, IL 60439.
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