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Electromagnetic properties of Li are studied using a microscopic (a+d) cluster model. In addi-
tion to the ground state of the clusters, their breathing excited states are included in the wave func-
tion in order to take into account the distortion of the clusters. The generator coordinate calculations
are free from the spurious center-of-mass motion and arbitrary parameters. The cluster stability con-
dition is satisfied. The elastic charge form factor Fcp is in good agreement with experiment up to
momentum transfer 8 fm . The discrepancy appearing at momentum transfer q & 8 fm must be
attributed to the omission of the short range nucleon correlation. The ground state magnetic form
factor F~l and the inelastic charge form factor FC2 are also well described. The breathing excited
states of d inhuence the behavior of F&p at high momentum transfer only, but they have an effect on
F~i and Fg2 even at low momentum transfer. The effect of the breathing states of a on the form fac-
tors proves to be negligible except at high momentum transfer. The ground-state charge density, rms
charge radius, the magnetic dipole moment and a reduced transition strength are also obtained in fair
agreement with experiment.

I. INTRODUCTION

It has been noted several times that among the p-shell
nuclei Li shows an anomalous behavior. In electron
scattering the exceptional behavior of Li appears in that
its form factors cannot be described in the framework of
the harmonic oscillator independent particle model con-
sistently with the other p-shell nuclei. ' Attempts were
made to describe the form factors of Li by using different
oscillator width parameters for the s- and p-shell nu-
cleons, ' configuration mixing, and a finite potential
well for the average field. ' On the other hand, it turned
out that the substantial residual two-body interaction
present in Li gives rise to short and long range correla-
tion between the nucleons of Li. " Furthermore, Li
has proved to be one of the best cluster nuclei' and a
huge amount of work has been devoted to understanding
its cluster structure. It has been confirmed that the states
of Li can be interpreted in terms of an alpha (ct) and a
deuteron (d) cluster and the other two- and three-cluster
structures play only a minor role. ' '

The charge form factors of Li have also been studied
by an approach that differs essentially from the fully mi-
croscopic shell and cluster models. Li was described by
the motion of three structureless point particles, but the
composite nature of a was approximately taken into ac-
count by the aid of Pauli-forbidden states. ' '' The three
body problem was solved variationally or the exact
Fadeev equations were considered.

In a previous paper' we introduced a cluster model in
which the distortion effects of the clusters were studied by
using a generator coordinate (GC) -type trial wave func-
tion in which, in addition to the intercluster separation,

the oscillator width parameters of the clusters are treated
as GC's. This amounts to improving the description of
the ground states of the clusters and including, in the
model, their breathing excitations. The specific (i.e., non-
Pauli) distortion of the clusters is particularly important
in an (a + d)-type cluster model description since the
loosely bound deuteron cluster can easily be distorted.

The effect of the specific distortion of the deuteron has
been thoroughly investigated in the o.d elastic scattering
process. ' However, there are relatively few papers
concerned with similar analyses of the electromagnetic
properties of the bound n+d system. Since the pioneer-
ing work of Kudeyarov et al. , nondynamical microscop-
ic harmonic oscillator cluster models have been widely
used in the description of electron scattering from
Li. ' Such a consistent phenomenological approach

has been recently developed. In this work the original
cluster model has been modified such as to allow the
deuteron to be deformed. In spite of the success of the
phenomenological description, better understanding of the
structure of Li requires dynamical cluster models, i.e.,
cluster models based on the nucleon-nucleon (NN) in-
teraction. Having solved the equation of motion for the
approximate wave function, we may turn to the calcula-
tion of the matrix element of the electromagnetic mul-
tipole operators. Dynamically determined cluster model
wave functions were used in Refs. 23, 24, and 33—37 in
the calculation of electromagnetic properties of Li. How-
ever, in these calculations the o; particle is kept undistort-
ed and for the deuteron only a few excited states are in-
cluded. In Ref. 23 it was pointed out that "one must ob-
viously try to calculate with a more Aexible deuteron wave
function. "
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In this work our aim is to study the e6'ect of reasonably
complete sets of breathing excited states of both the alpha
and the deuteron cluster on the electromagnetic properties
of Li. Essentially similar calculations have recently been
published for Li. ' The ground state properties we cal-
culated are the charge monopole and the magnetic dipole
form factors, the charge density distribution, and rms
charge radius, while the calculated excitation properties
are the reduced transition strength and the inelastic
charge quadrupole form factor for the transition leading
to the first excited state of Li.

The structure of the paper is the following. In the next
section the cluster model with breathing clusters as ap-
plied to Li is briefly reviewed. In Sec. III some standard
formulas of the theory of the electron scattering are sum-
marized and the procedure of calculating the GC kernels
of the electromagnetic multipole operators is shown. The
numerical results for the free clusters as well as for Li are
presented in Sec. IV.

II. BREATHING CLUSTER MODEL OF Li

The cluster model wave function of Li is constructed
from harmonic oscillator shell model states of the constit-
uent clusters. The Slater determinant of the lowest shell
model configuration of cluster c (c =a or d).

4, (M„P, ) =A, + P(r;, /3, )X, (2.1)

contains harmonic oscillator single-particle orbits of width
parameter /3,

' 3/4

but the harmonic oscillator orbits involved are centered at
s, instead of the origin:

3/4

p(r, p, s) = (2.7)

In Eq. (2.4) we used the relative and average position vec-
tor of the oscillator centers,

S=S~—Sd

1S= (A s + Adsd) .
+Ad

(2.8)

To proceed, we define translational invariant states.
The projecting of internal states N,'"'(M„/3, ) out of the
wave function (2.1) is unambiguous. To get intrinsic
states from (2.4), integration over S is chosen,

4""'(MaMd, P»Pd, s) = I d S P(Pa, Pd, s, S) . (2.9)

~ad[+a ™Pad)+d (Md~Pd)+(Rad~Pa~Pd~S)]

(2.10)

where the wave function of the relative motion is
3/2

X(R d, p, /3d, s ) =
2P +Pd

1 4P&d
Xexp —— (R d

—s)
2 2P +Pd

The function (2.9) may be written in a form imitating the
resonating group ansatz,

0""'(M Md, p, /3d, s)

P(r, /3) = exp( —Pr /2) (2.2)
(2. 1 1)

and appropriate spin-isospin function X, . The symbol M,
is the z component of the cluster spin angular momentum.
The fixed quantum numbers of the clusters (total angular
momentum, orbital momentum, spin and isospin) are
suppressed for brevity. The antisymmetrization operator
of the system c containing A, nucleons is, in obvious no-
tation,

R d ——R —Rd and R, is the center of mass of cluster c.
Finally, it remains to give the basis function of good to-

tal angular momentum VM. First, the relative orbital an-
gular momentum XAt between the a and d clusters is
projected out by the help of the method given in Refs. 17
and 41,

4'"'(X 11',M Md, p+d, s)
(2.3)

ds Y~~ s 'P'"' M~Md, ~, d, s (2.12)

In our GC method an unprojected basis function of Li
reads

P(Pa, Pd, S,S ) =A ad[ Ca(Pa, Sa )4 d(Pd, Sd ) ] (2.4)

where the internuclear antisymmetrizer is
1/2

A~!Ad!

(A + Ad)!
(2.5)

and P, is a permutation operator between a and d. The
form of the wave functions C&, (p„s, ) is similar to Eq.
(2.1):

The total-angular-momentum —projected function emerges
from the coupling of the orbital momentum X with the
spin of the deuteron, which is the total spin (I) of the sys-
tem,

qi'"'( O'MX, p, pd, s )

(XJNIMd
i
PM), %'"'(XA,M Md, p, pd, s) .

Md&,

(2. 1 3)

4, (p„s, )=A, + p(r;, p„s, )X,
i =1

(2.6)
The wave function (2.13) is viewed as a generating func-

tion with s as well as P and Pd being the generator coor-
dinates. So the trial wave function of Li looks like
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q/'"'(VMX) = f"dp f"dpd f"ds f( VMS', pn, pd, s)

x q/'"'(VMX, p, pd, s).

X(P~,Pd, S,Pn Pd. S )

= (q/'"'(VMX, P,P,s)
~

q/'"'(PMX, P',P', s') ) .

(2.14)

The GC amplitudes f (VMX,P,Pd, s) of Eq. (2.14) are
determined by the variational principle

$( ( q/int
~

H
~

q/int) /( q/int
~

q/int) )

where the Hamiltonian has the form

$2

2M X~/;+ X I//( t

(2.15)

(2.16)

Here, V~ stands for the NN interactions and T, is the
kinetic energy operator of the center of mass. Using the
ansatz (2.14) in Eq. (2.15), we get the Gri%n-Hill-Wheeler
integral equations.

f "dp.' f™
dp df ds'[H(p. ,pd, s,pn, pd, s')

EX(p,pd—,s,p', pd, s ')]f(9'MX,p', pd, s ') =0,
N

q/,'~'(M, )= g f/"4',"'(M„P', ) . (2.19)

In the calculation the GC coordinates /3 and pd are
discretized, which means that in Eq. (2.14) the integra-
tions over p and /3d are to be changed to summations
over the discretization points, and, instead of
f(VML, pn, pd, s), the GC amplitudes f~(7MX, s) have to
be used (and in what follows will be used) corresponding
to the discretization (P' I; t iv and [Pg~
We can proceed with a few number of discretization
points provided their values are carefully selected. Here
they are determined by the stability condition, for the free
clusters, whose importance is emphasized in the litera-
ture. The wave function of the free cluster c is taken in
the following form:

(2.17)

where the Hamiltonian and overlap kernels are

H(P PdsP Pds)
=(q'"'(PM/, /3. ,pd, s)

~

H
i
q'"'(VMX, P.',pd, s')),

(2.18)

The symbol p distinguishes different orthogonal states of c
(p =1 corresponds to the ground state). The widths p,'
and amplitudes f/' are determined by minimizing the en-
ergy mean value of the c-cluster Hamiltonian. These op-
timum values of p,' are adopted for Li as well.

Using the cluster states (2.19), the trial wave function
(2.14) can be written in a more physical form,

Na Nd

q/'"'(VMX)= g g g (XAtlMd
~

VM)A d[q/' '(M )q/d'(Md)X(R d, VMX)~q],
p = 1 q = 1 Md Jkt

N~ Nd

g(R~d, 9MX)~~= 'g g tn~tp~ f"ds f~(VMS', s) f ds I'~ ~(s)g( R~ pdnp~ ds),
i=1 j=l 0

(2.20)

(2.21)

and the coeScients t,'p arise from the inversion of Eq.
(2.19), i.e.,

N

e',"'(M„p,') = y t,'&q,'~'(M, ) .
p =1

(2.22)

This inversion is always possible because of the fact that
the functions [ /I/', "'(M„P', ) I; i iv are linearly in-

dependent, the cluster states [ q/,'~'(M, ) I~ t /v are or-
thogonal by construction, and both sets span the same
subspace.

In addition to the ground state, the ansatz (2.19) pro-
duces N, —1 pseudostates, which may be interpreted as
the breathing modes. In the case of the a particle, the
first excited model state may be identified with the actual-
ly observed breathing mode at an excitation energy 20. 1

MeV.
The inclusion of the excited cluster states in the sum

(2.20) may take into account the specific distortion effects
of the clusters. We will denote this model by D Dd (D
standing for distortion). In order to study the influence of

the cluster distortion, restricted calculations were also car-
ried out, in which we simply "switch off" the cluster dis-
tortion. Here we do this for the a (d) cluster by making
the following ansatz for the GC amplitude

fJ(s)=f Id&'f/'„,
' '(s),

where the f "idion' are the known GC amplitudes of the
ground state of the free a (d); the remaining parts,
f~ i';i '(s), are determined variationally. We may also
switch off all distortion using the ansatz
fJ(s)=f"fd'f (s) and calculate f(s) variationally. We
will denote the restricted calculations by G Dd, 6 Gd,
and D Gd (G standing for ground state). In these models,
one or both of the clusters are only represented by their
ground states.

In addition to these models, called many-width (MW)
models, two simpler models are also considered: that in
which the clusters have one common width (CW) parame-
ter and that in which the clusters have two different single
width (DW) parameters. In the first case the common
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width parameter is selected by minimizing the sum of the
intrinsic energies of o. and d.

In order to study the force dependence of the results,
three eff'ective central NN interactions were employed:
the Volkov force No. 2 (V2), the Brink-Boeker force Bl
(BB1), given in the form

V~(r, —ri)= g Vk(r; —r~)(Wi, +MkP„+Bi,P Hi,—P, ),
k

(2.23)

scattering from a nucleus with mass M, may be writ-
ten4'4' as

~M
cr(0) =

2E+ sin 0/2
M

4 2

X Fi. (q )+ — +tanh —Fr(q ), (3.1)

and the central part of the Minnesota force (MN), which
has the form

V,"(r;—r~)=[V~(r; —ri)+ —,
' V, (r; —rj)(1+P )

+ —,
' V, (r; —r, )(1 P)][——,'u+ —,'(2 —u)]P„,

(2.24)

where P„, P, and P, are the space, spin, and isospin ex-
change operators, respectively, and we set
H k+Mk+Bk+Hk =1. The spatial dependence of the
nucleon-nucleon interaction used is pure Gaussian. The
Coulomb interaction is taken into account by a Gaussian
expansion.

III. GENERATOR COORDINATE DESCRIPTION
OF ELECTROMAGNETIC PROPERTIES

where 0 is the scattering angle and the Mott cross section
2

Ze~M-
2E

cos 0/2
sin 0/2

(3.2)

FI'. (q ') = g I
Fc~(q)

I

'
X=O

describes electron scattering from the Coulomb field of a
point charge Ze. The quantity

q„=(p„—p„')/fi= (co/Pic, q)

is the four-momentum transfer divided by fi, where the in-
cident and scattered four-momenta of the electron are

pz ——(E/c, p) and p„'=(E'/c, p'). The longitudinal and
transverse form factors Fl (q ) and FT(q ) can be expand-
ed in terms of multipole components,

A. Formulas of the theory of electron scattering

In a plane-wave Born approximation, neglecting the
electron mass, the cross section for unpolarized electron and

2V;+1 Z

FT'(q')= 2 [ F~~(q) '+ F~~(q) I']=
2~ 1, 2 [I &&fllTi. (q)ll& & I'+1&&fllT~(q)ll&, & I']. (3.4)

Ti„(q)=—f dr VX[ji(qr)Y(q~(r)] V(r),
q

(3.6)

here, 7;) and Vf ) are the initial and final nuclear
states with total angular momentum 7; and Vf, respec-
tively.

The Coulomb, transverse magnetic, and transverse elec-
tric multipole operators are related to the charge and
current density operators p(r) and V(r) of the nucleus by

T~„(q)= f drj i,(qr) Y»(r)p(r), (3.5)

and

Tq„(q) = f drj i (qr)Y~~i &(r) V(r), (3.7)

where jz, Y», and Yxzt are the spherical Bessel function,
spherical harmonics, and vector spherical harmonics, re-
spectively. If the charge and current density operators of
the nucleus are taken to be sums of the corresponding free
densities of point-like nucleons, the multipole operators
become

(3.8)

T»(q)= g q.M lA

l
27+1

1/2

j),+, (qr; )Y~gg+ii(r, }

7+1
29+ 1

j/2 ]p,ji i(qr; )Y~iq ~i(r;) o(i) j i(qr; )Y~ii i(—r;)—V,
q

(3.9)

and
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Tz„(q)= g q 27+ 1

+ 9+1
29+1

1/2

j~+1(q«)Y6.+ i 1(«)

1/2
e; pi

jq i(qr; )Y~qq ii(r;) —V, . +j q(qr; )Y~qqi(r;) o (i)
q

' 2
(3.10)

where M is the nucleon mass, e; = —,
' [I+r3(i)],

p, ; =—,
' [1+F3(i)]pp + —,

' [1—r3(i)]p„,

pp
——2.79, p„=—1.91

and the Pauli spin and isospin operators of the ith nu-
cleon are o(i) and r(i) Th.e finite size effect of the proton
can be taken into account by multiplication by the ap-
propriate proton form factor. The charge form factor of
the proton may be approximated by

where the reduced transition strength is

8 (EX, 2; ~Vf ) = 1

q-0 2V;+1

2
(2A, + 1)!!

q

x
I (&fll~~(q)ll& &

I

' .

Following Uberall, the transition charge density is
defined by

exp( —a~q /4), a~ =0.43 fm (3.1 1) p f(")=(~flip'~(r)ll& & (3.18)

By studying the low momentum transfer behavior of
the form factors, further electromagnetic observables can
be deduced. In elastic scattering (9';=A=9') the mul-

tipole expansion of the total charge form factor is given by

FL(q')=Fco(q )'

where

pq„(r)= j dr Yq„(r)p(r) . (3.19)

The multipole component of the charge form factor can
be expressed in terms of the transition charge density as

+ g2 4

180 Z2

+ ~ ~ ~

V2 V'
(22+I) —7 0 V

(3.12)

Fc&(q)=, drj~(qr)p, f(r) .
Z (2V;+1)'"

Inversion of Eq. (3.20) gives

Z(2V;+1)'
p,f(r) = j dqj ~(qr)Fcz(q) .

7T'" 0

(3.20)

(3.21)

where Fco(q ) is the electric monopole form factor and Q
is the electric quadrupole moment. For q~0, the mono-
pole form factor may be expanded as

Fcp(q ) =(1—6(r )q + —,
' (r )q + )

where ( r ) is the mean square radius:

(3.13)

d F
( 2) co

dq q=0
(3.14)

From the behavior of the transverse form factor in the
long wavelength limit, the ground state magnetic dipole
moment can be obtained as

p =3 9+1
ZMg d FT

dq' q=0
(3.15)

where p is expressed in units of the nuclear magneton p~.
In the long wavelength limit the reduced matrix element
of the Coulomb multipole operator is related to the radia-
tive decay lifetime ~~ by

B. Generator coordinate kernels of the electromagnetic
multipole operators

To evaluate electromagnetic quantities in the frame-
work of the GC method, we need the GC kernels of the
electromagnetic multipole operators. In the following the
calculation of the longitudinal form factor is sketched and
the magnetic dipole form factor of the ground state is
shown.

In the calculation of the charge form factor the center-
of-mass motion has to be treated correctly ' since this
motion may have a great inhuence on the charge form
factor at high momentum transfer. Of course, using the
wave function (2.14) composed of the internal states (2.9),
we do not face the problem of the center-of-mass motion,
but a new difhculty arises. The calculation of the matrix
elements of electromagnetic multipole operators in terms
of internal wave functions, which are not Slater deter-
minants, is very complicated. A way to overcome this

difhculty is to keep all single particle coordinates and to
use the wave function

2A, + 1

Svr(k+ 1) 1 &I
A, [(2A, + 1)!!] fi A'c

8(EA, , 7;~9f),
(3.16)

4K(9MX)=, exp(iK R, )+'"'(O'MX) .(2')' (3.22)

The plane wave describing the center-of-mass motion can
be incorporated in the single particle orbits. The function
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q(K(VMX) is then to be constructed from single particle
orbits,

3/4
1

sr2(~ + w )(2'�)

X exp[i K.r/( 3 + 3 d ) —p(r —s) /2], (3.23)

just as %(VMX) is constructed from (t(r, p, s) of (2.7).
When the cluster width parameters are equal, the cumber-
some linear momentum projection can be avoided by tak-
ing into account the Tassie-Barker correction ' in the
charge form factor.

With the definitions of Sec. II, the wave function (3.22)
can be cast into the form

N Nd

O'K(VMX)= g g g (X&IMd
~

VM) f"ds f;, (VMX, s) f ds Y~„)((s) f dS)IiK(P', P~d, s, S),
i =1 j=1Md~

where

(3.24)

q K(p, pd, S,S)=A d Q QK(r;,p, s ) g QK(r, ,pd, sd) 2 Zd
isa j6d

(3.25)

The reduced matrix element of an irreducible tensor operator Og„of rank k between initial and final states of the form
(3.24) can be written as

N~ Nd

(q'Kf(&f/f)ll Oill q K(PX; )) = g g f ds fJ(Vf/f, s)* f ds'f ~'(7; C;,s')[Ol z,'1 (ss'),
i,i'=1 j,j'=1

where the angular-momentum-projected (AMP) kernel of 0).„ is defined by

(3.26)

[Ol~f;~'(ss')= g g ( —)
' '(XfJRflMd

l VfMf)(X(W;1Md l
7(M(),

M, A' ( fMfg, M, X,P—&

X f ds Y~ ~ (s) f ds' Y~ „)t (s')jOl;", (s, s'), (3.27)

and the linear-momentum-projected (LMP) kernel of Oi„ is given in the form

[O};,, ;,'(, ')= f dS f dS'(qr (p', pJ, , S)
~

O „~ @ (p', p) (3.28)

where s and s ' denote the angle variables of the vectors s
and s'. The integrand of Eq. (3.28) can be calculated
straightforwardly due to the fact that the wave functions
appearing in it are simple Slater determinants. Because of
computational convenience, the Coulomb multipole opera-
tor given in Eq. (3.8) was rewritten in the form

T~z(q) = g ek „ f dq Y&„(q)exp(iq rk ) . (3.29)
4~i

In the following the wave function (3.24) is assumed to be
normalized, i.e.,

( q Kf(~fMf+f )
l

q K;(~iMi+i ) i='5(Ki Kf )

and in the GC kernels the Dirac delta function
6(K;+q —Kf) expressing the conservation of the total
linear momentum will be omitted.

A lengthy but straightforward calculation gives the
linear-momentum-projected kernel of Tq„(q):

6
2 Z[Ti&(q)],~;~'(s, s')= g g( —)'M, exp( b, i, q —u, s —u~' +(L)—,s s') b, , f dq Y~z(q)exp(if, kqs+if', )qs'),

(3.30)

where, in obvious notation,

e —6),cr&(e() 6cr3(E6)~l, r)(E) ) , ti6, rp(E6) (3.31)

originates from the inner products of the spin and isospin
functions. The summations in Eq. (3.30) run over the
indexes of the nucleons and permutation s. The
coefficients M„b, k, u„. . . still depend on the cluster
width parameters P', Pd, P', and P~q. Out of 6X6! terms
of the sum in (3.30), only four different ones survive. The

l

terms in (3.30) may be classified according to how many
particles are exchanged between a and d and the manner
in which the photon interacts with a particular nucleon in
the clusters. Explicit expressions of the coefficients M„
b, q, u„. . . will be published elsewhere. Expanding the
exponential function in (3.30) into spherical harmonics of
the angles s and s ', the integration indicated in Eq. (3.27)
can easily be carried out, and after some angular momen-
tum algebraic manipulation, the AMP kernel of T;„(q)
can be written in the form
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6 00

t
TC( ) }AM~~P (4 )1/2~ ~

e k =1 L,L', L"=0
L +L'+kg 2f i2f ii2( )L'+k

L L" L; L' L"
0 0 0 0 0 0 0 0 0

X '

I ~ L- L JL(f., kqs VL (f', kqs')

X iL-(w, ss')exp( b, kq——u,s —u p' )( —)'M, b,~k, (3.32)

where iL is the modified spherical harmonics of the first kind and L =(2L + I )'~ .
For elastic scattering, V; = Vf =1 and X;=Xf=0, the expression (3.32) becomes simpler. Using Eq. (3.3) the AMP

kernel of the Coulomb monopole form factor emerges as
2

IF (
2)2}AMP 4~

3
( —)'M, ( —) (2L +1j)L(f,kqs)

k=-1L =0

XJL (fE kqs')iL (w, ss')exp( b, kq ——u, s —u p' )eke, , (3.33)

The AMP kernel of the mean square radius can be derived combining Eqs. (3.14) and (3.33):
6

I &r ) };,; (s,s')= —4ng g ( —)'M, exp( —u, s —u'p' )e„A,
k=1

X io(w, ss')(2b, k ——,'f, ks ——,'f,' ks' ) —,'i ~(w, s—s')f,kf,'kss' (3.34)

According to Eq. (3.21), the charge density of the ground state is the Fourier transform of the charge form factor Fco.
This transformation was done numerically in the actual calculation.

The charge form factor FC2 of the inelastic electron scattering leading to the first excited state of Li can be obtained
from the general results (3.32) and (3.3) by inserting the corresponding quantum numbers into these expressions. In our
model the quantum numbers /=0 and 2 are assigned to the ground and first excited states of Li. The AMP kernel of
FP 2(q) reads

112 6 oo L+2

k=1 L =OL'=
I
L —2~

2
2 L L'

( —)'M eki b., L L'
() () ()

2
Xexp( b, kq u, s ——u ~' j)L—(f kqs)J'L (f,'kqs')iL (w,ss')

(3.35)

Substituting expression (3.35) into Eq. (3.17) and taking the limit q~p, we obtain the general formula of the electric 2

pole reduced transition strength,
9' I

IB(EX, 2;~Vf)};~;~'(s,s')=Vf[(2K+ I)!!]X,X fA &
'( —)

' (4m)
1 !

e k =1 L,L', L"=0
( )EM ~ I. +L'+k( )L'+kP f 2L ~2L II2ex ( u s2 u

~ ~2)e

L L'
X lL (wEss )(fe,ks) (fe, ks')

O p O p p

L II

L' L"
'[(2L +1)!!(2L'+1)!!] (3.36)
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The specialization of the expression (3.36) for the transition 3+~1+ leads to

6 oo 2 I. I.'

2100m p p p i + 51 +r. ~ 2L E '
( —)'M, exp( —u, s u—er' )iz('w, ss')eke,

e k =1 L„L'=0

2

&& (f, ks) (f,' ks') [(2L + 1)!!(2L'+1)!!] (3.37)

6 oo

q g g g ( —)'( —) L MepkokJL(fekqsj~r. (f~kqs )ic(w, ss')
e k=1 L, =0

64
(q)2 ] AM~P(s i)

27

We note in passing that Eqs. (3.32) and (3.36) are not restricted to Li. They are generally valid for any two s-wave
cluster nucleus provided the summations over k and e run over the nucleons and permutations involved by the particular
nucleus. General expressions for the coe%cients M„b, k, u„. . . can also be given. They depend on the mass number
of the clusters and, of course, on the cluster width parameters.

After similar steps, the transverse magnetic dipole form factor F~~ of the ground state can be cast into the form
2

&&exp( —b, kq —u, s —up' )b, (3.38)

jiu Iij i'j (s~s ) ='(pp +pn )Nji, i j (s, s )'' (3.39)

where the norm kernel of the ground state is given by

X~~'(s, s )=4~y( —)'M,

where o.k is —,
' for spin-up and ——,

' for spin-down states of
the k'th nucleon. It is worth mentioning that in the
present model of Li the convection current part of the
current density operator happens to give a vanishing con-
tribution to F~i. After taking into account Eqs. (3.38)
and (3.15), it turns out that the GC kernel of the ground
state magnetic dipole moment p is proportional to the
norm kernel

good description for d but fails for a. The rms radius of
d is strikingly large in the MW model using the V2 or
BB1 force. Direct numerical integrations of the
Schrodinger equation of the deuteron, using the computer
code GAMow, give virtually the same results as present-
ed in Table II (e.g. , the binding energies are —0.6083,
—1 0173, and —2 2018 MeV for V2, BB1, and MN
forces). Thus the MW model of d is essentially exact and
adequate for the interactions used.

The ground state charge form factor of a nucleus with
mass number less than five, assuming a normalized wave
function of the form (2.19), may be written in the follow-
ing form:

)&exp( —u, s —u p' )io(w, ss')b,
(3.40)

The coefficients u„u,', w„and M, in Eq. (3.30) are iden-
tical to those in the norm kernel (3.40). The consequence
of Eq. (3.39) is that the magnetic dipole moment of the
ground state, independent of the model and NN interac-
tion used, is p=0. 88 pN.

IV. RESULTS

A. Description of the free clusters

For the description of the ground state and breathing
excited states of the free clusters, the intrinsic wave func-
tions of the form (2.19) were used. In the MW model, to
get a rough energy convergence within 1 —2 keV it was
enough to use three and five width parameters for a and
d, respectively. They were determined by minimizing the
microscopic cluster Hamiltonian. The optimum values of
the widths are shown in Table I for the dift'erent models
and interactions used.

In Table II the calculated and experimental values of
the binding energies and root mean square (rms) radii of
the clusters are displayed. The interactions V2 and BB1
are better for a than for d, while the MN force gives a

V2 CW

DW

MW

P (fm ')

0.469

0.528

0.3159
0.6701
2.4367

pd (fm ')

0.469

0.164

0.0144, 0.7876
0.0602, 3.8191
0.23

BB1

MN

CW
DW

MW

CW
DW

MW

0.461
0.503

0.3275
0.6971
1.8139

0.582
0.606

0.3534
0.7917
2.6875

0.461
0.162

0.0233, 1.2075
0.0957, 5.0659
0.3596

0.582
0.4374

0.0411, 1.6028
0.1511, 5.7864
0.5151

TABLE I. The oscillator width parameters of the clusters us-

ing diFerent interactions and models. The cluster stability con-
dition is satisfied in the DW and MW models.



36 ELECTROMAGNETIC PROPERTIES OF Li IN A CLUSTER. . . 335

TABLE II. The binding energies (E, ) and rms radii ((r,') '~') of the free clusters using different mod-
els and interactions. The experimental data are taken from Refs. 53 and 54.

V2

BB1

CW
DW
MW

CW
DW
MW

CW
DW
MW

E (MeV)

—27.573
—27.957
—28.563

—27.097
—27.374
—28.460

—24.633
—24.687
—25.595

1.745
1.666
1.702

1.757
1.698
1.702

1.606
1.582
1.620

Ed (MeV)

2.567
0.579

—0.608

2.523
0.814

—1.016

0.189
—0.1318
—2.201

(r'&'" (fm)

1.498
2.284
3.530

1.507
2.297
2.848

1.391
1.536
2.105

Expt. —28.297 1.674+0.012 —2.225 2.095+0.006

~FI ( )
~

=4m g (f")'f'
A, /3', P,'

3A /4

expI —q (2, —I)/[2A, (P,'+fV, )]I . (4.1)

In Fig. 1 the measured values and some calculated elastic
charge form factors of the a particle are shown as func-
tions of the squared momentum transfer q . In a single-
width model the charge form factor depends only on the
width parameter (independently of the interaction) and,
according to expression (4.1), a diffraction dip cannot de-
velop. In the MW model the calculated diffraction mini-
ma appear around q =24.05, 16.25, and 23.45 fm for
the V2, 881, and MN interaction, respectively. The
failure of the simple shell-model —type description to
reproduce the diffraction dip is well known and it has

been shown that the short range correlation ' of the nu-
cleons and meson exchange currents ' play substantial
roles in the region of the minimum and the secondary
maximum. In the small momentum transfer (SMT) re-
gion (q &8 fm ) the best agreement with experiment
was obtained by using the BB1 force. In spite of the fact
that the rms radius of cz is quite good with the MN in-
teraction, the discrepancy in the binding energy also ap-
pears in the shape of the calculated charge form factor.
In the MW model the charge form factor of e changes,
with respect to the single width models, only very slightly

10' r r 10

(a)-

10 —10

10-2 —10

—10

0 2 4 6 8 10 12 14 16 18 20
Q2 {)$-2)

0 2 0 6 S 10 12 14 16 18 20

Q tfe )

FICx. 1. Charge form factor of the ground state of the alpha particle: (a) in the DW model, (b) in the MW model. The solid,
dashed, and dotted lines were calculated with the MN, V2, and BB1, interaction, respectively. The dots represent the data of Ref. 56.
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in the SMT region.
For practical reasons the elastic electron-deuteron

scattering cross sections is usually given in the form

Nd Nd

C ( ')'= g g (f")*f"
Pd+Pjd

3/2

~Mo(0)=
1+ sin 0/2

Mde'

[3 (q )+tanh (0/2)B(q )], X exp[ —q'/4(f3'd+P'z)] . (4.&)

(4.2)

M3 (q2)=CE(q2)2 1+ ,n(l+-~) (pp+p„)2 (4.3)

and

M
B(q )=Cz(q )' ', g(l+g—) I (p~+Iu„) (4.4)

where g =P q /4Mdg and

where the invariant structure function 3 (q ) is composed
of the longitudinal monopole (Fco), quadrupole (F&2), and
transverse dipole magnetic (FM~) form factors, and B(q )

is proportional to FM~. In our model it can be shown that

In Figs. 2 and 3 the experimental values and the calculat-
ed curves of the invariant structure functions 3 (q ) and
B(q ) are displayed. Using the MN interaction the MW
model gives a very good description of the structure func-
tion A (q ) and reproduces B(q ) satisfactorily in the
SMT region. With the BB1 and V2 interactions, on the
other hand, the curves of the MW model fall off too rap-
idly, and the agreement with experiment is bad. In the
single width models the better accord must be incidental
since MW is a better approximation. At momentum
transfers larger than 8 fm even our best model fails to
agree with experiment. The reason is that in this region
the quadrupole component of A (q ) becomes dominant, '

and, due to the lack of the tensor force, the F~q contribu-
tion is missing in A (q ) in our model. For a better agree-

— 10

(a):

10 —10

0 2 4 6
]

8 10 12 'l4 16 0

q (fm )

2 4 6 8 10 12 14 16

q (fm )

FIG. 2. The invariant structure function 3 (q ) of the deuteron: (a) dotted line in the CW model with force BBl, dashed-dotted
line in the DW model with force B81, solid line in the CW model with the MN force, and dashed line in the DW model with the MN
force; (b) in the MW model, the solid, dashed, and dotted lines denote calculation with MN, BB1, and V2, interactions, respectively.
The dots represent the data of Refs. 61—64.
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10 10

B(q )

110-5 -5
8 10 12 10 0

q {fm )

2 t 6 8
I I

10 12 14 16

q {fm )

FIG. 3. The invariant structure function 8(q') of the deuteron. The notation is the same as in Fig. 2. The dots represent the data
of Refs. 63—66.

ment at higher q values it seems inevitable to take into
account meson exchange currents and relativistic correc-
tions.

B. Electromagnetic properties of Li in a cluster model
with breathing clusters

l. Bulk properties

For the discrete values of the width parameters in the
cluster model with breathing clusters, we adopted the
values that are optimal for the free clusters (Table I). The
generator coordinate s was also discretized and the select-
ed 11 points were equidistantly distributed in the interval
(I fm, l l fm).

In the calculation of the ground state of Li, one ex-
change parameter of each interaction was adjusted (see
Table III) so as to give the correct ad threshold energy
(1.47 MeV). The fact that the energies of the a and d par-
ticles depend only on the combinations 8'+M and
8 +M +8+H gives us the chance of modifying the in-
teractions without changing the properties of the free clus-
ters. The reason for the adjustment is that the elec-
tromagnetic properties are sensitive to the long range part
of the wave function, which depends strongly on the
threshold energy. The fact that the separation energy is
correct in each model makes possible a consistent compar-
ison between different interactions and models.

In Table IV some calculated bulk properties of Li are
compared with the experimental values. Since for each
interaction and model the alpha and deuteron separation

TABLE III. The space exchange parameters of the V2 and
BB1 interactions and the u parameter of the force MN using
different models. In the case of the force BB1,only its attractive
part was modified.

V2 CW
DW
D Dd
G Dd
G Gd

0.576 79
0.457 81
0.521 66
0.520 32
0.365 93

BB1 CW
DW
D Dd
G Dd
G Gd

0.4012
0.301 41
0.385 67
0.376 56
0.148 93

MN CW
DW
D Dd
G Dd
G Gd

0.925 55
0.9514
0.9735
0.9845
1.3276

energies are correct, the quantitative differences in the
binding energy of Li derive from the ground state ener-
gies of the free clusters. A comparison between the CW
and MW models with the same interaction can be found
in Ref. 17. In the model D Dd the calculated rms radii of
the ground state agree with the experimental value within
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TABLE IV. Bulk properties of Li using different models and interactions: binding energy (E), aver-
age of the energies of the first triplet 1+, 2+, and 3+ states (E*), rms radius of the ground state
((r')' ), and reduced transition strength for transition leading to the first excited state
[B(E2, 3+~1+)]. The experimental data are taken from Refs. 53, 54, and 68.

E
(MeV)

E g

(MeV)
( 2)1/2

(fm)
B(E2, 3+~1~}

(e' fm')

V2 CW
DW
D Dd
G Dd
G Gd

—26.48
—28.85

—30.64

3.34
2.25
2.65
2.82

—0.166

2.66
2.78
2.65
2.65
2.94

10.86
11.65
9.57
9.49
7.83

BB1 CW
DW
D Dd
G Dd
G Gd

—26.05
—28.03

—30.95

3.29
2.37
3.46
3.41

—3.38

2.66
2.77
2.65
2.67
2.83

10.86
10.95
9.02
9.06
7.83

MN CW
DW
D Dd
G Dd
G Gd

—25.92
—26.29

—27.27

3.98
3.85
3.60
3.62
0.42

2.48
2.50
2.50
2.51
2.51

7.91
8.05
7.69
7.69
5.24

Expt. —31.99 3.6 2.56+0. 1 10.9+2. 1

the error of the measurement for each interaction. It
shows the stability of the a particle that a switching off of
the distortion of a changes the rms radius of Li by at
most 0.02 fm. On the contrary, the neglect of the distor-
tion of d causes a considerable increase in the rms radius
in the case of the V2 and BB1 interactions. The rms ra-
dius proves to be stable as regards cluster distortions pro-
vided the MN force is used.

The calculated magnetic dipole moment of the ground
state, 0.88 pN, which is model and interaction indepen-
dent in our framework, compares satisfactorily with the
experimental value 0.82 pN.

The wave function of the first excited state of Li is also
assumed to have the form (2.14), and the same set of
GC's was used as in the description of the ground state,
but now the relative orbital angular momentum between
the clusters is taken to be 2 instead of 0. First, the same
interactions were considered as in the calculation of the
ground state. However, the effective forces applied do not
contain spin-orbit terms and it is expected that the energy
of the first excited state predicted by these models corre-
sponds to the weighted average of the excitation energies
of the first triplet 1+, 2+, and 3+ states of Li. Since the
inelastic electron scattering and y decay rate are sensitive
to the excitation energy, the nucleon-nucleon interactions
of Table III were readjusted so as to reproduce the correct
excitation energy. Two remarks concerning this readjust-
ment should be made. First, this procedure might be con-
sidered as the simulation of the neglected spin-orbit force,
and, second, because of the angular parts of the relative
wave functions, the orthogonality of the ground and excit-
ed states is still held.

With the model G Gd excepted, the results concerning
the excitation energy of the first excited 3+ state of Li

and the reduced transition strength B(E2, 3+~1+) were
obtained in fair agreement with experiment. Our results
show that the a cluster remains stable but the deuteron is
strongly distorted in the first excited state as well.

2. Electromagnetic form factors

The ground state charge form factors, calculated with
different models and interactions, are displayed in Figs. 4
and 5. The following features can be observed. In the
CW model the characteristic diffraction dip always ap-
pears, but two defects can be seen: First, the diffraction
dip is not at the right position and, second, even in the
SMT region there is no quantitative agreement with ex-
periment. We see that the best result is achieved by the
MN force; however, the choice of one common width pa-
rameter of the clusters is quite arbitrary, and a small
change in the width parameter destroys the good agree-
ment in the SMT region.

In the DW model the diffraction dip disappears, but at
the same time in the SMT region the agreement with ex-
periment is greatly improved. The diffraction dip disap-
pears also in the shell model description when the width
parameters of the s- and p-wave orbits are chosen to be
different in a particular way. Of course, in a phenomeno-
logical cluster model the different widths of the clusters
can be chosen so as to obtain a good description of

~
Fco

~

including the diffraction dip. However, fitting the
width parameters of the clusters to the form factor Fgo
leads to the result ' that the cluster d is more extended in-
side Li than the free deuteron. This is in contrast to the
results of the dynamical calculations, which predict the
shrinking of the deuteron' ' ' ' ' and thus seems unphys-
ical. We have adopted the viewpoint of the dynamical
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FIG. 4. Squared charge form factor of the ground state of Li: (a) in the CW model, (b) in the DW model. The solid, dashed, and
dotted lines denote calculations with the MN, V2, and BB1 interactions, respectively. The dots represent the data of Refs. 69 and 70.

cluster models, and want to carry it through with all its
implications.

The D Dd model can record a remarkable success by
reproducing

~
Fco

~

in the SMT region. In the following
we shall give an account of the tests carried out to estab-
lish the cause of its failure to reproduce the diffraction
dip.

We tested the forces against another one optimized to
our D Dd model. This force gives virtually exact bind-
ing energies and rms radii for the nuclei H, H, He, and
He, reproduces the experimental binding energy of Li,

and, in addition, predicts the binding energies of the other

nuclei of two s-wave clusters, viz. , He, Li, Li, Be, and
Be, with an accuracy of 1 MeV. This force produced no

diifraction dip of
~
Fco

~

either.
It was observed that using fewer cluster width parame-

ters, for example, one for a and two for d as in Ref. 23,
the diffraction dip reappears. The position of the
diffraction minimum is very sensitive to the values of the
widths. Using the interaction and width parameters given
in Ref. 23, the minimum is obtained around 8.5 fm, but
when the cluster stability condition is imposed the dip is
shifted to a considerably higher q values (11.3 fm ).
However, as we have seen, a proper description of a and
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1O'

10
b)-

10o

10

10 10 10

1O' 1O' 10

10 10 10

1O' 10 1O'

10 10

10 10 10

10
0 1 2 3 5 6 7 8 9 10 11 12 13

q (fm )

10
0 1 2 3 4 5 6 7 8 9 10 11 12 13

q2(fm ~)

10
0 1 2 3 4 '5 6 7 8 9 10 11 12 13 14

q2(fm ~)

FIG. 5. Squared charge form factor of the ground state of 6Li in the MW model: (a) with the V2 force, (b) with the BBl force, and
(c) with the MN force. The solid, dashed, and dotted lines denote the results of the D Dd, G Gd, and G Dd models, respectively. The
dots represent the data of Refs. 69 and 70.



340 A. T. KRUPPA, R. BECK, AND F. DICKMANN 36

d requires more width parameters, and a corresponding
extension of the model space for Li invariably causes the
diffraction minimum to disappear.

A qualitative analysis of the form factor may be imple-
mented by neglecting the intercluster antisymmetrization.
In this approximation Fco reduces to

Fco(q) = 'F„d—( ,'q)F—(q)+—'F~d( —', q)Fd(q), (4.6)

where F (q) and Fd(q) are the charge form factors of the
clusters a and d, respectively, and F d(q) is the Fourier
transform of the wave function of the relative motion of
the clusters. In our models the presence of the diffraction
dip may be explained in the following way. The wave
function of the relative motion that can be used in a
nonantisymmetrized model looks like a 2s-type harmonic
oscillator wave function. The Fourier transform of a rela-
tive function of this type has both positive and negative
parts. In the CW, DW, and G Gd models the possible
diff'raction dip of

~
Fco(q)

~

can only be attributed to the
relative motion since, on one hand, according to Eq. (4.1),
the form factors of the clusters are positive everywhere
when each cluster is described by one width parameter,
and, on the other hand, in the MW model of a and d the
sign change in the form factors F (q) and Fd(q) are at q
values much higher than the minimum of the squared
form factor of Li ~

This picture becomes more complicated in the D Dd,
G Dd, and D Gd models because of interference with the
form factors of the cluster excited states. The effect of
these extra terms may be interpreted by saying that the
dip due to the relative motion is shifted away and that the
separate clusters are not brought down suSciently for Li.
Thus the diffraction dip of Li can be derived neither from
those present in the models of the separate clusters nor
from that of the relative motion. However, the actual ex-

perimental
~
Fco(q)

~

of the a particle does contain a
diffraction dip almost coinciding with that of Li. Our
analysis thus strongly indicates that the latter could only
be derived from the former. It has been proposed that the
diffraction minimum of the form factor of a can only be
explained by introducing Jastrow correlation into the
wave function. Thus our conclusion is that in the under-
standing of the ground state charge form factor of Li the
short range NN correlation must play a substantial role.
Our study of the ad fragmentation strength also points to
some missing short range correlation.

However, careful analyses have to be carried out since
the region of the dip of the squared charge form factor of
Li is just the momentum transfer area where the non-

nucleonic degrees of freedom come in to play. For exam-
ple, the meson exchange currents may help to explain the
second maximum of the squared form factor of Li.

Now let us turn to the study of the cluster distortions.
In Fig. 5 the calculated charge form factors of the D Dd,
G Dd, and G Gd models are shown. Both the alpha and
deuteron distortions have an effect on the shape of the
charge form factor only in high momentum transfer re-
gions (q & 8 fm ), but the former to a lesser extent.

Our results show that the good agreement with experi-
ment in the SMT region is a consequence of using realistic
ground states of the clusters.

The calculated charge density p(r) of the ground state is
shown in Figs. 6 and 7, together with the experimentally
fitted charge density distribution of Li et al. that con-
tains six adjustable parameters. Using the CW model the
calculated curves of p(r) deviate badly from the fitted one.
The charge density of the central region is considerably
underestimated using the V2 and BB1 forces and is
overshot using the MN interaction. Whichever interac-
tion is used, the distortion enhances the charge density in
the vicinity of the origin. With the model D Dd used, the

0.09 0.09

0.08— — 0.08 =

0.07 —0.07

0.06 —0.06

0.05 —0.05

0.04 —0.04

0.03 —0.03

0.02 —0.02

0.01 —0.01

I I ( ( I 0.0
P P P 5 1P 1,5 2.0 2.5 3.0 3.5 4.0 4.5 0.0 0.5 1.0 1.5 2.0 2. 5 30 3 5 Q Q l+ 5 5Q

r (fm) ( (fm)

FIG. 6. Charge density of the ground state of Li: (a) in the CW model, (bj in the DW model. The solid line represents the charge
density of' Li et a1. (Ref. 70) fitted to the experiment. The dashed, dotted, and dashed-dotted lines denote the result of the calculation
with the V2, BB1,and MN interactions, respectively.
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FIG. 7. Charge density of the ground state of Li in the MW model: (a) with the V2 force, (b) with the BBl force, and (c) with the
MN force. The solid line represents the density of Li et al. (Ref. 70) fitted to the experiment. The dashed, dotted, and dashed-dotted
lines denote the result of the D Dd, G D~, and G Gd models, respectively.

calculated charge densities are close to the phenomenolog-
ical one when V2 or BB1 interactions are used, but the
value remains too large at the center in the case of the
MN force. It was observed in cluster and shell model
studies that short range NN correlations through a Jas-
trow function depress the charge density around the
center but enhance it in the region between 2 and 4
fm. ' ' These are the very areas where our calculated
charge densities are not in agreement with the experimen-
tally fitted curve. Thus it may be hoped that with Jastrow
correlation the high momentum behavior of the charge
form factor of the cluster model with breathing clusters

can also be improved.
The calculated squared inelastic charge form factor

~
Fcq(q)

~

of the excitation of the 2. 18 MeV state is
presented in Figs. 8 and 9. The results of the CW model
in each case are in quite good agreement with the experi-
mental data. Although the introduction of different width
parameters for the clusters makes the results worse, espe-
cially beyond the maximum of the squared form factor

~

Fcq ~, the inelastic charge form factor of the model
D Dd reproduces the measured values very well. It is re-
markable that here the maximum in

~
Fcq ~, usually de-

scribed unsatisfactorily, " is predicted in good agree-

(a)
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FIG. 8. Squared inelastic charge form factor of Li: (a) in the CW model, (b) in the DW model. The solid, dashed, and dotted lines
denote calculations with the MN, V2, and BBl interactions, respectively. The dots represent the data of Refs. 74—77.
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ment with experiment.
The stability of the a cluster is nicely demonstrated in

the model calculations G Dd. In Fig. 9 the difference be-
tween the curves of ~FC2

~

calculated with the models
D Dd and G Dd is unobservable for each interaction.
According to the calculation with the G Gd model, the
distortion of the d cluster greatly influences the shape of
the squared inelastic charge form factor even at very small
momentum transfer.

For the magnetic form factor of the ground state of Li,
our calculation is the first in a dynamical microscopic
cluster model. Our calculated elastic transverse form fac-
tor of Li and the measured data are depicted in Figs. 10
and 11. The rough shape of the magnetic dipole form fac-
tor

~
FM~

~

is reproduced by each model and interaction
considered. Using the V2 or BB1 force the diffraction
minimum of

~
FM~

~

was predicted at too small momen-
tum transfer and after the first maximum of

~
FMI

~

the
calculated curves deviate significantly from the measured
values. However, the MN interaction produces nice
agreement with experiment over the whole region of mea-
sured momentum transfer. The good result gained with
the MN force may be attributed to the proper description
of the deuteron since the magnetic form factor of Li de-
pends mainly on the nucleons of the deuteron cluster.
The effect of the breathing excited states of a on the form
factor ~FM&

~

is almost unobservable in Fig. 11. The
breathing states of d, on the contrary, markedly influence
the behavior of

~
FMI around its second maximum and

shift the minimum of FMI
~

Simultaneous description of the longitudinal and trans-
verse form factors of Li has not been successful, neither
in terms of a three-body model' nor standard phenome-
nological cluster models. ' Our results show that, using
dynamically determined wave functions in a microscopic
cluster model with breathing clusters and a realistic in-
teraction, all form factors Fco, I'MI, and Fc2 can be ob-
tained with good accuracy in the SMT region.

V. SUMMARY

The effect of the breathing excited states of the deute-
ron and alpha clusters on the electromagnetic properties
of Li was examined using a GC-type cluster model of
Li. It should be emphasized that the calculations are

free from the spurious center-of-mass motion and arbi-
trary parameters. The oscillator width parameters of the
clusters and the exchange mixtures of the NN interaction
were determined by the cluster stability condition and by
the correct separation energy value, respectively. In order
to see the force dependence, the calculations were carried
out with three different central interactions. The follow-
ing conclusions are found to be general, independent of
the force.

It was found that at low momentum transfer (q & 8
fm ) the charge form factor of the ground state of Li
was modified very slightly by mixing the breathing excited
states of the clusters into the wave function. What is im-
portant in the low-q region is the quality of the ground
states of the clusters. With a realistic ground state of the
deuteron, the monopole charge form factor of Li is repro-
duced excellently in the low-q region. On the other
hand, around and beyond thb diffraction dip the shape of
the squared charge form factor is greatly influenced by the
breathing excited states of the deuteron.

An unexpected by-product of the increase of the model
space by including more and more breathing excited states
of the clusters into the wave function is the gradual disap-
pearance of the experimentally observed diffraction
minimum of the squared charge form factor

~
Fco(q)

~

As the extension of the model space is bound to improve
the wave function for a fixed Hamiltonian, this deficiency
most probably reflects the important role played by the
neglected non-nucleonic degrees of freedom in this
momentum transfer region. These non-nucleonic degrees
of freedom manifest themselves partly in the repulsive
core of the effective NN interaction. However, our
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FIG. 9. Squared inelastic charge form factor of Li in the MW model: (a) with the V2 force, (b) with the BB1 force, and (c) with
the MN force. The solid, dashed, and dotted lines denote the results of the D Dd, G Gd, and G Dd models, respectively. The curves
of the D Dd and G Dd models coincide in (a) and (b). The dots represent the data of Refs. 74—'7'7.
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netic form factor was reproduced with each model and in-
teraction used. However, good agreement over the whole
experimentally measured region was only reached by us-

ing an interaction which properly describes the deuteron
(e.g. , the Minnesota force). The excited states of the clus-
ter d affect the position of the diffraction minimum of

FM~(q)
~

and its shape around the second maximum.
The inhuence of the breathing excited states of d on the

squared inelastic charge quadrupole form factor

~

FC2(q)
~

is shown to be very important. The shape of
the squared form factor

~
Fc2(q)

~

below and around its
first maximum is reproduced only with the inclusion of
the breathing excited states of d. The predicted curve of

~
Fcz(q)

~

is in very good agreement with the measure-
ment. The effect of the excited states of d on

~

Fcz(q)
~

is larger than on
~
Fco(q) ~; it is considerable even in the

low-q region. This can be explained by assuming it is
more probable to find excited d configurations in an excit-
ed state than in the ground state of Li ~

The stability of the u particle was demonstrated in a
number of cluster model calculations for a scattering.
Our results also indicate the rigidity of the a cluster. In
the calculations of the form factors

~
Fco(q)

~

~
FM&(q) ~, and

~
FC2(q) ~, the breathing excited states of

a can be neglected, at least at small momentum transfer,

but even the distortion of the cluster a can be observed in
the high q region.

All in all, the cluster model with breathing clusters was
shown to be able to give a very good simultaneous
description of the elastic and inelastic charge form factors
and the elastic magnetic form factor in the low-q region.
However, in order to clarify the discrepancy found in the
high momentum behavior of the form factor

~
Fco

~

and
to describe the quadrupole moment of the ground state,
our model has to be improved in two respects: First, the
fiexibility of the wave function has to be increased by em-

ploying correlation functions of the Jastrow type to
reckon with the short range NN correlation, and, second,
the central NN interaction has to be replaced by a more
realistic one containing spin-orbit and tensor components.
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