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Pair transfer at high angular momenta
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Realistic calculations of the pair transfer strength functions were performed for the nuclei ' Dy
and ' Dy as a function of the angular momentum and excitation energy in the frame of the self-

consistent, cranked Hartree-Fock-Bogoliubov and random-phase-approximation theories. At low

angular momenta most of the strength is concentrated in the ground-to-ground transition, whereas
at high angular momenta, after the pairing correlation has dropped, the strength is spread among
several states located a few ( (4) MeV above the yrast line.

I. INTRODUCTION

In recent years high-spin physics has provided a large
share of the new and interesting problems in low-energy
nuclear physics. The monotony in the rotational mo-
ments of inertia was broken by the backbending
phenomenon afterwards, a large variety of experimental
findings emerged: superdeformed nuclei, terminating
bands, ' giant resonances built on rotational excited
states, and damping of rotational states, to mention a
few.

Many of the above-mentioned findings were unexpect-
ed. A theoretical prediction long sought is the
Mottelson-Valatin effect, which says that a deformed nu-
cleus which is superfluid in the ground state (I =0) will

experience a phase transition to a normal phase at high
angular momentum due to the Coriolis field, which breaks
the Cooper pairs. Since that notable 1960 prediction,
several new observations have been hailed as the pairing
collapse, but there has been no definitive proof. Proof is
difficult, in part, because there is a gapless superconduc-
tivity at high spins that makes it very hard to observe
spectral features directly related to the pairing. Theoreti-
cal studies, or interpretations, ' are in seeming disagree-
ment. Mean-field theories do predict a sharp collapse of
the pairing gap (at spins from 10' to 20fi for rare earths),
whereas projected theories find just a smooth weakening
of the pairing correlations up to very high spins. The pro-
jected theories take into account many more correlations,
and should therefore be more reliable. There exists, how-
ever, some arbitrariness in the definition of the pairing
gap.

It has long been suggested that more direct evidence
about pairing correlations could be found by looking at
pair transfer strengths, rather than at energy level pat-
terns. Recently, there has been some work in this direc-
tion. ' ' In particular, Cxuidry et al. ' developed classi-
cal orbital methods to estimate how well heavy ion
transfer reactions could be used to study pair transfer at
the higher rotational levels Coulomb excited on the in-
ward path of the projectile. While sufficiently heavy ions
have not yet been used in such studies to probe the in-
teresting backbending region, recent Oak Ridge work'
with Ni and Sn projectiles has already illuminated

features of one- and two-neutron transfer at higher spins.
In particular the reactions seem predominantly to be "cold
transfer, " going to states fairly close to the yrast line.

Theoretical studies of pair transfer matrix elements at
high angular momenta have been scarce and limited to
simplified model calculations. The purpose of this paper
is to carry out more realistic calculations of the pair
transfer matrix elements as a function of the angular
momentum for the recently-measured' nuclei ' Dy and

Dy. We hope that this work may shed some light on
the process and on the understanding of the experimental
situation. The calculations were done in the frame of the
self-consistent cranked Hartree-Fock-Bogoliubov theory
(CHFB), using the Hamiltonian and configuration space
of Baranger and Kumar. ' To take into account transfer
to collective pairing vibrations we also calculated the
transfer with random-phase-approximation wave func-
tions based on the self-consistent field (CRPA).

II. THEORY

The general theory of pair transfer in nonrotational nu-
clei can be found in work of Bohr and Mottelson, ' but
since there is not a "standard" description of the pair-
transfer amplitude for the case of deformed rotating nu-

clei, we shall introduce some notation and justify our ap-
proximations.

A. Amplitudes for pair transfer

The situation we try to describe is illustrated in Fig. 1.
In a pair transfer reaction a Cooper pair is deposited (re-
moved) from the rotating nucleus ( A, E„„„„I)leading to
the nucleus (A+2, I) at the yrast level or at an excited
state. One could also have pair transfer involving transfer
of angular momentum; this would correspond to a transi-
tion mediated by higher multipolarities, and such will not
be considered in this paper. We shall, in what follows,
refer specifically to neutron transfer, but obviously all the
formulas apply equally well for proton transfer by merely
replacing N by Z.

Let Ick, cq ) be a complete set of single particle opera-
tors characterized by the quantum numbers k
=—(r, n, ij,m). The operator
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gular momentum and particle number, i.e., the cranking
velocity co and the chemical potential A. are adjusted to
fulfill the given constraints.

The variational problem which one faces is

FIG. 1. Schematic illustration of a pair-transfer at finite
spin.

P = i gckcg
k

with

((5
I J„ I P & =&I(I + I )

(y IN Iy&=N .

(6)

Now, to calculate the amplitudes (2) and (3) in the mean
field approximation one should, at least in principle, solve
the Eqs. (5) and (6) for the system with N neutrons to ob-
tain

I
P&~ and for N+2 neutrons for

I P&&+2. Solving
the equations is not so bad compared with the formidable
task of trying to evaluate the overlaps in Eq. (3) for the
thousands of excited states which already appear at a few
MeV of excitation energy in realistic calculations.

Fortunately, in most of the cases it is not necessary to
work with two different bases

I
N & and

I
¹2& for the

following reasons. At low spins, where the pairing corre-
lations are sufficiently strong, the nucleus behaves, to a
large extent, as a Cooper pair condensate so that in going
from N to N+2 one does not expect drastic changes in
the wave functions. At the very high spin limit I ~~1 in
the mean-field approximation, the gap goes to zero and
one gets eigenstates of the particle number. Therefore the
states of the nucleus with N+2 (N —2) particles can be
described approximately as the two particle (hole) states of
the nucleus with ¹ particles. In the region of medium
spins and high excitation energy we need not be concerned
because these states are pure holes or pure particles and
we again have good particle number for such excitation.
The questionable region is for medium spins and for states
near the yrast band. Nevertheless, we shall describe the
states of the ¹ 2 particle nuclides in terms of the ¹ par-
ticle nuclide, recognizing the limitations of this approach.

Summarizing the discussion above, we make the follow-
ing approximations.

(i) For the ground-to-ground transfer at angular
momentum I; in the presence of pairing correlations,

Sr(g, N~N+2)=
I &+2(%0(I) I

P
I
+0(I)&~ I

and that to an excited state f given by

$r(f~N~N +2)=
I N+2('pf(I)

I
P

I
pQ(I) &Ã I

(2)

(3)

A similar definition to expressions (2) and (3) has been
given by Kumar' for I =0 and deformed nuclei. The
amplitudes for the removal of a Cooper pair are given by
using the operator P instead of P and using the wave
functions corresponding to a nucleus with N —2 particles.

B. Wave functions

The next important task is to specify the approxirna-
tions we use for the states

I
'Po(I) &~ and

I
9'~(I) &~+2. In

dealing with high-spin states one has to consider suffi-
ciently general wave functions to include collective as well
as a single particle degree of freedom which will allow for
changes in the shape, the pairing potential, and the
single-particle alignments. A theory that includes such
features and that has explained most of the high-spin phe-
nomena is the HFB approximation combined with the
cranking procedure, also known as self-consistent crank-
ing. ' We shall denote the mean field approximation to

I
Vii(I) & of Eqs. (2) and (3) by I P&. One might be tempt-

ed to make a better approximation by particle number
projection combined eventually with some kind of genera-
tor coordinate method to describe properly the collective
states. Such types of calculations could be done' for the
ground-to-ground transfer where only a single final state
is involved, but for the thousands of excited states of Eq.
(3) in which we are mainly interested, it is numerically not
feasible.

In the cranked HFB approximation the expectation
value of the operator

H' =H —coJ„—A, ¹ (4)

is minimized in the space of generalized Slater deter-
minants

I P &, under the constraint of correct average an-

creates a Cooper pair for protons (r—=p) or neutrons
(r=n). Now let 4'0(I)&~ and

I
illo(I)&&+2 represent the

yrast states at angular momentum I for the nucleus (N, Z)
and (N+2, Z), respectively, and

I
VI(I) &&+2 an excited

state of the (N+2, Z) nucleus. We shall omit the indices
Z, from now on, to simplify the notation.

The ground-to-ground transfer at angular momentum I
is given by

$r(g N~N+2) =
I N &+421P'I 4&~ I

'
2

In the last part we have used the definition of the gap pa-
rameter 5, and introduced the pairing strength G. It has
been shown in Ref. 12, in agreement with the discussion
above, that the approximation (7) in the bandcrossing re-
gion is not a good one.

When 6 goes to zero, the ground-to-ground transfer is a
particular case of (ii) [or (iii)], since then the ground state
of the ¹ +2 nucleus is the lowest two-particle state of the
X nucleus.

(ii) For the ground-to-excited state transfer in CHFB
theory
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Sl(f»~N+2&= I x+z(0f IP 14'&x I

'

The operators ak define the vacuum
I p &, i.e.,

ak ly&=0

(8)

they are related to the operators c of Eq. (1) by the Bo-
goliubov transformation

+k yU kc +~ kc

The excitation energy of the state f is given by

Ef ——Ek+El, where Ek, El are quasiparticle energies. In
(7) and (8) the wave function

I P & satisfies the conditions
(6).

Another advantage of the CHFB approximation is that
it allows, relatively easy, to incorporate further correla-
tions in the wave functions as to describe collective vibra-
tions around the mean field values. This approximation,
the CRPA, has been used to describe the P and y collec-
tive vibrations at high spin, and good agreement with ex-
periment was found. ' In this paper we use the same ap-
proach to calculate the collective pair transfer. Expres-
sion (7) for the ground-ground transfer remains unaltered,
but expression (8) becomes, for the ground-excited
transfer in CRPA,

(iii) Si(f,N~N+2)=
I
(+

I
&pP (9)

where now
I

ql& is the vacuum for the one-boson states
Bp, which are solutions of the CRPA equations built on
the minimum described by I

P&. Energy Ef =—II& is the
excitation energy of B .

We shall refer to (8) as the uncorrelated transfer and to
(9) as the correlated transfer. Aside from the feature that
one can describe collective phenomena in the CRPA,
another important point is that in this approximation the
Goldstone modes associated with the broken symmetries
in the CHFB approximation separate exactly from the
normal modes and go to zero energy.

C. Hamiltonian and configuration space

For a realistic evaluation of the pair transfer amplitudes
in the CHFB and CRPA theories we shall use the Hamil-
tonian and configuration space of Kumar-Baranger, '

which has been used with considerable success by several
authors for the description of high-spin states. The in-
gredients of the Hamiltonian are the pairing-plus-
quadrupole effective interactions. In a compact notation

H =@+—, QX+p Dp, (10)
P

where e are the spherical single-particle energies and the
Hermitian (or anti-Hermitian) operator Dz, runs over the
five quadrupole operators Q, symmetrized with respect
to the Goodman Symmetry, and P +P. The operator
P defined in (1) creates proton (or neutron} Cooper pairs.
The configuration space contains the spherical oscillator
shells with the principal quantum numbers N =4 and 5
for protons and N =5 and 6 for neutrons. The force con-
stants X~, and Xp(=G~ or G„) were adjusted to the

ground state properties of the rare-earth nuclei. Further
details can be found in Ref. 14.

One of the more attractive features of the Hamiltonian
(10) is the separability of the forces, which allows drastic
simplifications in solving the CHFB equations (5) and (6).
In the RPA case it reduces the diagonalization of a huge
matrix to the simple problem of finding the zeroes of a
determinant of dimensionality equal to the number of
terms in expression (10). For the calculation of the
transfer amplitudes, Eq. (9), in the CRPA, the separability
allows one to evaluate those qualities without solving the
RPA equations.

For any Hermitian (anti-Hermitian operator) one-body

operator F, the strength function at energy E is given by

S(E)=g I (f I
F Ii & I

5(E—(Ef —E, ))
f

1= ——ImR FF(E),
7T

where R (E) is the response function at energy E

R (E)= R'(E)
1 —XR (E)

(12}

and R (E) the free response function, with matrix ele-
ments

204 20
0 1 ~k) Bkl

Rgs(E) = —, g E—Ek —El+i g

g02~ B02*
kl kl

E+Ek+El+ig

Akl and Akl being the 20 and 02 parts of the representa-
tion of the operator A in the basis determined by the
CHFB solution and Ek the corresponding quasiparticles
energies. The operators A and B run over the Dp opera-
tors of Eq. (10) and determine the dimension of the ma-
trix R. This means that in the case of the CRPA, when

I f & are one boson states, once can obtain the correlated
strength function just by representing the corresponding
operators in the CHFB basis and making the matrix in-
version of Eq. (12).

The use of the linear response theory (LRT) formulas is
specially suitable for those cases where the level density is
high and it is very computationally time consuming to
find the main contributions to the strength function (11)
state by state. By setting a finite value g and doing calcu-
lations with a stepsize hE «g, one is able to reproduce
the main features of the strength function. The same ad-
vantage can be used for the CHFB case just by taking R
instead of R in expression (11).

III. RESULTS

We apply the described formalism to the nucleus ' Dy,
for which recent experiments on pair transfer were done. '

Since this nucleus turned out to have unexpectedly
longlasting pairing correlations, we also studied the neigh-
boring isotope ' Dy to investigate the effect of the pair-
ing collapse on the transfer strength at somewhat lower
angular momenta.
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Since the microscopic structure plays a major role, we
shall first discuss some properties of the underlying mean
field. In Fig. 2(a) we show, in the upper part, the crank-
ing velocity, left-hand side (lhs) scale, as a function of the
angular momentum for ' Dy. We observe a strong back-
bending at approximately I= 16k and some alignment at
I-26k. The gaps parameters, referred to the right-hand
side (rhs) scale, are also shown in Fig. 2(a). The neutron
gap decreases steadily until I=3%6, to 260 keV, and then
suddenly drops to zero. The proton gap shows a kink at
the I value where the backbending occurs, due to the fact
that at this point the cranking velocity is smaller than in
the former I value. For neutrons this effect does not
show up because, as we will see, their wavefunction
changes around this point. In the lower part of Fig. 2(a)
we show the amount of alignment for protons and neu-
trons. This quantity is defined for each type of nucleon as
the difference between the calculated contribution to the
expectation value of J and the one obtained using a cubic
extrapolation of the corresponding value at I=2k and 4A,
namely,

where

( Jx &s.s. =g o'~+7 1 ~

The parameters go and g &
are adjusted separately for

protons and neutrons. We also show the increment of
alignment between the spin I and I —2.

This quantity peaks whenever a nucleon pair aligns, and
the height of the peak indicates how fast the alignment
happens. The values of (J„&,~ refer to the left scale, and
those of b, (J„&,~ to the right one. We see now very clear-
ly that the cause of the backbending is the alignment of a
neutron pair and that the cause for the collapse of the
neutron gap at I—30k' is the alignment (small) of a
second pair. The proton alignment sets in around I=2(h6
and extends until I=30k, causing the decrease of the pro-
ton gap as well as the change in the slope of the cranking
velocity.

In Fig. 2(b) we show the corresponding quantities for
the nucleus ' Dy, seen here in a very clear example of the
oscillatory character of the backbending phenomenon.
The effect of adding two neutrons enhances the deforma-
tion and decreases the values of the gap parameters at
I=0; both effects contribute at high spin to make the gap
go to zero much faster than in the nucleus ' Dy. One
still can observe on the cranking velocity the effect of the
proton alignment which, as can be seen from the lower
part of the figure, behaves very similarly to ' Dy. On the
other hand, the backbending is smoothed out and only a
small peak can be found for the neutron alignment in the
lower part of Fig. 2(b). Thus, these nuclei provide two ex-
amples with different characteristics for which we shall
investigate the transfer strength properties.

In Figs. 3—5 we show the pair transfer strength as a
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function of the excitation energy for different values of
the angular momentum. Each individual graph corre-
sponds to a cut perpendicular to the x axis in Fig. 1 for a
given value of the angular momentum. One possibility
for choosing the energy origin in these graphs mould be to
measure the excitation energy with respect to the yrast
line of the final nucleus N+2 (X —2). In our approxi-
mation, as long as 6+0, the yrast state for the %+2 and
X —2 is

~
P)~, but when b, =0 the yrast state for the

%+2 (X—2) nucleus is the lowest two-particle (hole)
state of

~
P)z. This produces a small overall shift in the

strengths when 6~0. This shift would not be present if
we had self-consistently calculated the states of the nu-
cleus %+2 (1V —2). In this case one would expect some
rearrangement around 6=0 in the states near the Fermi
surface but not an overall shift in the strength. To avoid
this unphysical shift around 6=0, we refer to the origin

of the excitation energies in these figures for all I to the
yrast line of

~
P)~. This means that the dips in the ener-

gy region below the first peak should be ignored. We
present the two above-mentioned approximations: (a) The
HFB approximation, i.e., we plot the quantity S(E) of
formula (11), but we use the free response function R of
(13), and (b) the RPA, where we plot S(F.) but now using
the correlated response function of Eq. (12). In both we
have used an rl (ri=I /2) corresponding to I =0.075
MeV. The choice of this value was made by taking it as
small as possible consistent with numerical feasibility.
We check in concrete examples the approximation of
working with a finite g and found no loss of information.
By using linear response theory in the RPA approxima-
tion, one has to be aware of a spurious nonzero contribu-
tion to the strength function of the Goldstone modes, if
any. This is due to the fact that by using a finite g we
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give to each RPA mode a Lorentzian shape of width
I FTHM. Since the Goldstone modes are not normalizable,
they could in principle contribute to the strength func-
tions, but we believe these contributions are quite small
here. We avoid these contributions by working in the first
two MeV with an effective pairing operator P orthogonal
to the number operator, instead of P. Lastly, to have a
direct comparison between the ground-to-ground and the
ground-excited-state t;ransfer we have smeared out the
ground-to-ground transfer (7), with the same width I as
used in the LRT, between the other modes.

In Fig. 3(a), we show the transfer strength for neutron-
pair transfer for the nucleus ' Dy in the HFB approxi-
mation. The dotted line at 0.1, used to guide the eye, cor-
responds approximately to the single particle strength.
For I=O the quantum number K is conserved and there
is high degeneracy. This is also the cause of the large in-

tervals without strength. The minimal values of -0.001
are due to contributions of other modes. The transfer to
excited states is of the order of magnitude of 0.1 and the
ground-to-ground transfer is 2 orders of magnitude larger.
For I=4, 8, and 12k, we see the effect of the Coriolis
force on the strength function; the time-reversal symme-
try is broken, and consequently the peaks split, and some
strength appears in different places. We also observe
some strength growing near the ground state. At I=(h6
the lowest excited state transfer appears around 2 MeV,
while at I=12% it is about 1 MeV. The second column,
I=16, 20, 24, and 286, corresponds to a regime charac-
terized mainly by the quenching of the ground-to-ground
transfer and by a further establishment of the high sp:in
regime. First, the holes in the spectrum are getting small-
er. In particular, the one at -5 MeV by I =16% is filled
by I=286; second the concentration of strength every-
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where in the spectrum and in particular the minimum
values are higher than before; third, a kind of new shell
structure emerges, probably due to the band crossing, in
this example at I= 16k, which brings about the new broad
dip at about 2.5 MeV excitation energy. The third
column, I=32, 36, 40, and 44%, shows how the strength
redistributes at the very high spin limit. In particular, for
I=40 and 446, we observe two bumps, one which extends
from 1.5 to 6 MeV, centered at 3 MeV, and the other
from 6 to 10 MeV centered around 7.5 MeV.

In the HFB approximation no collectivity is allowed in
the wave function; therefore, the transfer to excited states
could be changed, if some collectivity is present, in the
RPA approximation. This is displayed in Fig. 3(b). In
the first column for I=0, we observe at first sight a simi-
lar spectrum to the HFB one. In particular, we note simi-
larity in the spacing of the peaks. A more careful look

shows that some of the peaks, like that around 4.5 MeV,
split into two components which repel each other. Others,
such as those around 2 MeV in the HFB spectrum, com-
bine to produce a collective state of a strength about 10
times the single-particle estimate. At higher angular mo-
menta, as in the HFB approximation, we see the Coriolis
effects on the transfer strength. It is important to note in
going from I =OA' to I=12%, that whereas the collectivity
of the ground-to-ground transfer decreases, the collectivi-
ty of the strength for ground-low-lying excited states, al-
though split into several components, increases. The
upper part of the spectrum shows, as expected, a great
similarity with the HFB one, in particular, above -4
MeV. In the second column, the collectivity of several
states concentrates to a large extent in the lowest excited
state. At I=2%6, the strength of this peak reaches its
maximum value. By I=24 and 28% the first peak has
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FIG. 4. (a) Same as Fig. 3(a) for neutron-pair removal. (b) Same as Fig. (a) for neutron-pair removal and RPA approach.
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moved to slightly higher energies, and the total strength
to the excited states below 2.5 MeV has increased appreci-
ably.

Since the ground-to-ground strength has dropped from
the sizable value of I= 16k to exactly zero at I=28k and
since the strength above 3 MeV does not change very
much between these two I values, we conclude that the
accumulation of strength between 0 and 2.5 MeV is prob-
ably due to the weakening of the pairing correlations in
the nucleus. In the third column we perceive the shifting
of the strength to higher excitation energies as a function
of the angular momentum. In particular, for the highest
values (I =40 and 44k') we observe that the strength dis-
tribution looks very spread, concentrated below 4 MeV,
and does not show any structure.

Figure 4 displays the transfer strength for neutron-pair
removal (in Fig. 4(a) the HFB approximation; in Fig. 4(b)

the RPA). Since Fig. 4 has many common features with
the previous one, we shall now just comment on the
differences between them. In Fig. 4(a), at I=0 we have,
as before, a high degree of degeneracy. The spacings in

between are now smaller, and thus when we go to angular
momentum 12k we found that the strength is more uni-

formly distributed. In the second column we now find
that the valley that developed before at around 3 MeV
now is broader and appears at about 2 MeV. In the third
column we see that there is a peak at -0.5 MeV of con-
siderable strength. With respect to the RPA [Fig. 4(b)] we

find that, for all spin values, it shows more collectivity
than in the pair addition case. In particular, one can see
in the first column a bump about 2.5 MeV. In the second
column, where the pairing correlations quenching takes
place, we find again a shifting of strength from the
ground-to-ground to the ground-excited state transfer. In
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the very high spin limit we find most of the strength
under 4 MeV very dispersed and not showing any given
structure.

We now turn to discuss the nucleus ' Dy. We shall
not show all the transfer strength but just the neutron-pair
transfer correlated (RPA) results. The are shown in Fig.
5(a) for pair removal and Fig. 5(b) for pair addition. If we
compare with the analogous cases in the ' Dy nucleus we
see that aside from small details, due to the change in the
neutron number, most of the outstanding features are the
same. A somewhat awkward feature is that for I=166,
where the backbending occurs, the RPA breaks down. As
we can see, this problem only affects the vicinity of the
yrast state and just for this I value.

In our report ' we show analogous results for two-

proton transfer also. A quantitative comparison with the
experimental' results is difficult, since we are not calcu-
lating cross sections. However, our calculations do con-
firm the experimental findings of some spreading of the
transfer strength when going to high angular momentum.

We shall now concentrate on the behavior of the
strength function in the region where the simple-minded
theories (HFB) predict a pairing collapse. For ' Dy at
I= 16k, we have an energy gap for neutrons of 300 KeV;
for I=24k' it is zero. If we now look at Fig. 3(b), we find
the transfer strengths at these spin values rather similar.
In the same way, the neutron gap at I=24% for ' Dy is
0.4 MeV and for ' Dy, as mentioned, zero; if we compare
the strength functions at low excitation energy for these
nuclei at this spin value, i.e., Figs. 3(b) and 5(b), we again
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do not find qualitative differences. From these two exam-
ples, where we compare the transfer strength of two cases,
one with a pairing gap of the size expected at high spins,
the other with gap zero, we see that there is no signal for
a pairing collapse. Notice that this is not the case if one
looks at the corresponding figures in the HFB approxima-
tion. It appears ' as if, in the small amplitude limit,
correlation built in by the RPA were enough, to some ex-
tent, to smear out the sharp phase transition from a super-
conductor to a normal conductor. It is important to no-
tice that in our RPA approach we use as starting point
HFB wave functions that do experience a sharp pairing
collapse and nevertheless we do not get clear signals in the
strength functions. The use of projected theories, that do

not predict a sharp pairing collapse, as a starting point
will, probably, wash out even more the results shown.

IV. CONCLUSIONS

We have performed realistic calculations of the strength
functions for pair transfer for the nucleic ' Dy and

Dy, as a function of the angular momentum and the ex-
citation energy. %'e find in all cases a large increase of
the transfer strength to the excited states at high spins. It
concentrates somewhat within the lowest 4 MeV of excita-
tion energy, and it is rather spread out without any given
structure. We do not find in the strength functions any
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indication of a sharp phase transition from a supercon-
ductor to a normal conductor.
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