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Contributions of two-gluon exchange diagrams to the NN spin-orbit interaction
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Contributions of the two-gluon exchange diagrams to the nucleon-nucleon spin-orbit interaction
are investigated via the Glauber approximation, and comparisons are made with the gluon-quark ex-

change diagrams calculated in the resonating group method. Numerical results at Ei,b=800 MeV
show that contributions from these diagrams are relatively small as compared to those from the
resonating group calculations when the oscillator parameter A, of the three-quark cluster and the in-

teraction range a are fitted from the nucleon radius rN at 0.83 and 0.59 fm. A non-negligible contri-
bution for A, and a at rN =0.42 fm. Possible reasons are briefly discussed.

I. INTRODUCTIC)N

The understanding of the nucleon-nucleon (NN) in-
teraction has for a very long time been a fundamental
problem in nuclear physics. Although the characteristics
of NN medium- and long-range interactions can be well
described by meson exchange potentials, the short-range
part of the interaction is still not well understood. Unfor-
tunately, many important aspects of physics originate
from the short-range behavior of the NN force.

Because nucleons are made up of quarks, it is quite nat-
ural to expect that quarks may play an important role in
the short-range NN interaction. Extensive investigations
have been made of the NN short-range repulsion and the
spin-orbit interaction through quark models. The spin-
orbit interaction, particularly through its spin dependence,
may enable us to extract some valuable information on
the NN short-range force.

(a)

Much theoretical effort' has been devoted to studying
the NN spin-orbit force via quark models. Most of these
studies used the nonrelativistic resonating group method
(RGM) as their framework. In these calculations, the nu-
cleon is treated as a three-quark color singlet cluster, with
the quarks in the lowest (ls) state. The wave function of
the NN system is antisymmetrized in such a way that
quarks are allowed to interchange between different clus-
ters. Because the nucleon is a color singlet, the direct
one-gluon exchange interaction [Fig. 1(a)] vanishes.
Hence the lowest-order diagrams calculated in the RGM
are those of quark-gluon exchanges, as shown in Figs. 1(b)
and 1(c). Although the elementary quark-quark spin-orbit
force is not isospin dependent, the NN interactions de-
rived from the exchange of quarks are isospin dependent.

However, the question arises whether the diagrams cal-
culated in the RGM are really the lowest order ones. At
first, it is not clear whether the two-gluon exchange dia-
grams, as shown in Fig. 2, can be ignored when compared
to those calculated in the RGM. It is thus desirable to in-
vestigate the importance of the two-gluon exchange dia-
grams. This is the purpose of this paper.

The framework used in this work is the Glauber ap-
proximation, which has been used successfully to explain
medium and high energy nucleus-nucleus scattering prob-
lems. For the sake of convenience, the form and parame-
ters used for the quark-quark spin-orbit potential are ex-
actly the same as those in Ref. 2, where the t-matrix ele-
ments of the NN spin-orbit interaction were calculated via

(c)
FICx. 1. (a) The direct one-gluon exchange diagram, which

gives no contribution. (b), (c) The gluon-quark exchange dia-
grams considered in the RGM.

(b)

FICx. 2. (a),(b) Two-gluon exchange diagrams.
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the Born approximation. Comparisons are to be made in
the region where the Glauber approximation is applicable.

Formulas to estimate the contributions of two-gluon ex-
change diagrams to the NN spin-orbit t-matrix elements
will be derived in Sec. II. Except for the use of Glauber
theory, no further approximations will be made in the
derivations. Numerical results, with comparisons to those
calculated in the RGM, will be presented in Sec. III for
three different nucleon size parameters. Finally, a brief
discussion about the results will be given in Sec. IV.

II. TWO-GLUON EXCHANGE NN SPIN-ORBIT
INTERACTION IN THE GLAUBER APPROXIMATION

FNN(q)= f d be'q'
277

n =]
y(n)(b) (2.1)

with

In terms of quark-quark interactions, the NN scattering
amplitude in the Glauber approximation is given by

( 1)ll 3
f'"'(b)=

,
x' x' g, p rt I, , (b —S, +S, ) g, (123IQ,(456)),

'n=i » - ~n m =1
(2.2)

1I I (b)= d q e 'q F( (q),
Z~i k

(2.3)

k being the quark's relative momentum. The nucleon's
wave function t(; is composed of three parts, namely

where primes indicate that the summations never run over
the same (i„,j„)pair repeatedly, and kN and q are, respec-
tively, the incident nucleon's momentum and the momen-
tum transfer in the NN center of mass system, b the im-
pact parameter, and S; the transverse component of the
quark's position vector. The quark-quark scattering
profile function, I, is related to the quark-quark scatter-
ing amplitude as

fez)(q) f(2)(q)+f(2)(q) (2.10)

The form factors g&(q) and gz(q&, qz) in Eqs. (2.8) and
(2.9) are defined as

m

g (qi, , q )= f exp —g ~qi ri ~pR. (Ir;I) ~'

with the expectation values being taken over the color and
the spin-isospin spaces, and fI Iq representing the sum of
interactions similar to the diagram shown in Fig. 2(a),
while f~z '(q) represents that of those similar to the dia-
gram in Fig. 2(b). Of course,

f; =Pg (spatial)P (spin-isospin)P, (color), (2.4)
rl+rz+r3

j=1
(2. 1 1)

with the spatial part being

pR =(3k /~ ) exp. — [(r~ —rz) +(12—r3)2 2 3/4 2 2

2

+(r3 —r~) ]

where k can be determined from nucleon's radius.
Through the transformation of

y(n)( ) f d2b elq. by(n)(b)

(2.5)

(2.6)

for m (3. Use of the wave function of Eq. (2.5) therefore
leads to

g & (q ) = exp( —q /18K, ),
gz(q~, qz) = exp[ —(q ~

—q~. qz+q 2) /18K. ]
(2.12)

In order to keep the calculations simple, let us switch off
all the other potentials and keep only the spin-orbit one.
The quark-quark spin-orbit potential, as used in Ref. 2, is
of the form

Eq. (2.1) then yields

ikN
FNN(q) =

9
f(n)(q) (2.7)

where the second-order term, f I '(q), which contains two
different kinds of two-gluon exchange diagrams, as shown
in Fig. 2, is the main interest of the present work. After
some manipulations, interaction amplitudes for these dia-
grams can be expressed as

u „=A, A„f(r „)(r „. &.&p „).(s +s„), (2. 1 3)

r2f(r) = Voe (2.14)

p being determined from the mean square radius of in-
teraction and Vo from the spin-orbit splittings of p-wave
mesons, and chosen to be

where A, is the eight-component color SU(3) generator,
and the radial part f(r), for the sake of simplicity and to
enable it to be treated analytically, is chosen to be a
Gaussian form of

fI I(q)= —18 f d q~d qz
A. , c7

X&(q —qi —qz)[gz(qi, qz)]

Fi (q ) Fis(qz)
f~~"(q)= —18g, (q) f d'q&d'qz

X 6(q —q~ —qz)gz(q &, qz )

A. , o

(2.8)

(2.9)

p= 1.51

Vo= —17.25[1+@/(0.72 fm )] MeV .

(2.15)

To work out fP'(q) and f~z'(q) in Eqs. (2.8) and (2.9),
we first transform U „ into q space via the eikonal approx-
imation, and obtain



36 CONTRIBUTIONS OF TWO-GLUON EXCHANGE DIAGRAMS TO. . . 279

r

k .
b iVOF „(q)= e'q ~ exp

2mi Av p

1/2

e ""
A, A,„bXk.(s +s„) —1 d b . (2.16)

Inserting this together with Eq. (2.12) into Eq. (2.8), and performing q; integrations, one obtains

f] '(q)= exp( —q /36k, ) J d b]d bz exp[ —3jt.(b] —bz) /4]exp (bl+bz) E]425(b],bz),
2m 2

(2.17)

with

b 2 —b2
E]425(bl, bz) = & I exp[se " )]] )(4b] X k.(s]+s4)]—1 j t exp[se " )]2.A5bzXk. (sz+s5)] —1 j &2 ~ (2.18)

and

iVO

Av
(~/p)'r' . and

g dlmndlmt —
3 ftnt

l, m

(2.25)

E]425(b»bz) can be expanded further in a power series,

oo oo m+n
E]425(b]tbz) = Q g C]g 2(5m, n )

m=in=] ~'"'
—p(mb ~+nb2]2 2

XS]425(m, n;bl, bz)e

(2.20)
with

S]425(m, n;bl, bz) =
& [b]Xk (a]+st)]

g dmmn ~n =o,
m, n

which further give

(A,; Aj)"=C„+d„A,; Aj. ,

with

dn ='9'dn —2 —3dn —~ fOr n &2 .

(2.26)

(2.27)

(2.28)

and

X [bz X k'(sz+ s5) ] &

C]425 (m, n ) = & (A, ].A4) (Az A5)" &] .

(2.21)

(2.22)

Apparently, Co ——1, do ——0 and Ci ——0, d ~

——1.
With the help of Eqs. (2.27) and (2.28), as well as the

nucleon's color singlet property, Eq. (2.22) then becomes
simply

Before evaluating C ~42', let us examine the eight-
component color operator A, . Taking the usual matrix
representation, the components of A. obey the following
well-known relationship when operating on the same par-
ticle j:

C]425(m, n)=C C„+d d„&A, ] A.4A, 2. A.5&2, (2.29)

where the color matrix element can readily be worked out
for two color-singlet clusters, and reads

~jl~jm =
3 8]m + g (dlmn +]ftmn +jn (2.23)

&A, ] j(,4A, 2.%,5&2=-', . (2.30)

gf]mnf]mt =3&nt
l, m

(2.24)

where the structure constants d] „and f] „are, respec-
tively, symmetric and antisymmetric under interchange of
any pair of indices. Using the explicit magnitudes of dl „
and f] „,one can deduce the following useful identities:

Also, in the case of fz '(q), one obtains

&A, ] A,4A, ] A, 5&],= ——", . (2.31)

Having evaluated the color part, we now proceed to work
on the spin expectation value of Eq. (2.21). With the z
axis along k, Eq. (2.21) is expanded in a power series as

m+n
m n m f n! k

S]&25(m, n;b], bz) = g j!rn —j!I! n —I! 2

X & (blyO']x blxO'ly ) (b]yO'4x —blxO'4y ) (b2yO2x b x z'yt)r(zbzytr5x bzxO 5y ) &tr

(2.32)

The complexity of Eq. (2.32) can be reduced further through the useful fact that

(bycr b„oy )j=—,
'

I [—1 —( —1)t]bi '(bycr„b„cry )+ [1+(—1)j]b—jj, (2.33)
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which can be verified by mathematical induction. After some algebraic steps, including the explicit use of the three-
quark cluster's spin-isospin wave function, Eq. (2.32) then becomes

krn+n
S~4qq(m, n;b~, bq) =

16 [ [1+( —1) ][1+( —1)"][5 ( b p + b P b p (b(.bp) /9]

—2[1—( —1) ][I—( —1)"]b P 'b
p '(b).bp)/3], (2.34)

which is nonzero only when integers m and n are both even or both odd. Thus starting from s, E~4qq(b~. bq) in Eq.
(2.20) includes only even powers of s. Inserting Eqs. (2.20), (2.29), (2.30), and (2.34) back into Eq. (2.17), one is then
able to obtain the analytic form for f I '(q ) to any order of s, although this is tedious and time consuming.

fF'(q) is calculated similarly and is given by

f(p) 27K
exp( —Sq /72K) f d b~d b& exp[ —3A(b~ —bz) /2]exp .(b~+bq) Ed~is(bt, b&), (2.35)

with

oo m+@
E~4~q(b~, bq)= g g (C C„——', d d„)S~4~5(m, n;b~, bq)e

m 1n 1
m'n

(2.36)

and

km+n
S)4)g(m, n;b), bp) =

+2[1—( —1) ][1—( —I)"]bP 'bp '(b).bp)/3I .

16 I [1+(—1) ][1+(—1) ][bgbz bP bz— (bi bz) /3]

(2.37)

This completes the derivation of formulas for the two-
gluon exchange contributions to the NN spin-orbit t-
matrix element, which differs from the scattering ampli-
tude FNN(q ) of Eq. (2.7) by only a simple constant factor.

I, O

III. NUMERICAL RESULTS

Since f' (q) contains only even powers of s, the t
matrix element so calculated is purely imaginary. Curves
denoted by t' ' in Figs. 3—7 are actually the t-matrix ele-
ments divided by i.

Calculations are done at E],b ——800 MeV, with all the
parameters being the same as those used in Ref. 2. Three
sets of size parameter —X=A.O, 2XO, and 4A, O

—are used
with A,o ———,

' r ~
=0.484 fm, and are taken to fit the

proton's radius at r~ =0.83 fm.
To avoid using the quark's momentum k and velocity u

explicitly, one notes that s of Eq. (2.19) is inversely pro-
portional to U, while s and k are in the same power
throughout the calculations, as can be seen from Eqs.
(2.20), (2.34), (2.36), and (2.37). One thus has

0.5-

-05-

t (2)y t(2)
I 2

~ ~ e ~ ~ ~ ~ ~

q(fm ')

imq VO
sk = — (rr/IJ, )'

$2
(3.1) —1.0

with mq ——0. 17 GeV, the reduced quark mass.
Shown in Fig. 3 are contributions from fI '(q), fq '(q),

and their sum for the case of A, =ho. We see that tI '(q)
and tP'(q) display quite different characteristics. While
the former stays positive and varies slowly through the
calculated region, the latter increases from a negative
value with a much sharper slope and becomes positive at
around q = 1.7 fm '. At the energy under consideration,

FICx. 3. T-matrix elements calculated from diagrams in Fig. 2
at E~,b =800 MeV and A. =A.o.
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FIG. 6. Same as Fig. 5, except X=2XO.
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FIG. 4. Convergence test with t' '(N) indicating that calcula-
tion is done up to the Nth power of s.

the Cxlauber approximation may not give accurate results
for q) 2 fm '. The curves go beyond this only to show
the characteristics of the series expansions for fI '(q) in
Eq. (2.17) and f~2 '(q) in Eq. (2.35).

Calculations have been done up to s' in the power
series expansions of Eqs. (2.20) and (2.36). Convergence
of these series are satisfactory. In Fig. 4, t' '(N) denotes
that calculation is done up to s . For the case of A, =ko,
convergence is already reached at X=6, while for cases of
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FIG. 5. Comparison for contributions from two-gluon ex-

change diagrams and from the RGM results in Ref. 2 at
E~,b=800 MeV and A, =A,O. FIG. 7. Same as Fig. 5, except A, =4k,O.
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larger A, , higher X may be required for convergence. In
both of the other two cases, N = 10 is adequate.

Since no isospin operator and no quark exchange are
involved in the two-gluon exchange diagrams, the results
of this work should be isospin independent. Hence the re-
sults are compared with both the T=0 and the 1 t-matrix
elements calculated from the RGM, denoted by t in
Figs. 5 —7 up to momentum transfer q=1.5 fm ', where
the Glauber approximation should be applicable for the
energy currently considered.

In Fig. 5, comparisons are made for the X=A.O case.
As in Figs. 3 and 4, t' ' changes sign at around q =1.25
fm '. The absolute value of t' ' starts at about one order
of magnitude smaller than t, and then drops to more
than two orders of magnitude smaller.

For the A, =2k, O case, although the magnitudes of tI (q)
are greater than those in the A. =ko case, strong cancella-
tion occurs between tI '(q) and tI2 '(q) because, for most
of the time, they have close absolute magnitudes, but with
opposite signs. The resulting sum t '(q) is thus two or-
ders of magnitude smaller than t, as seen from Fig. 6.
In this case, the sign of t (q ) does not change.

For the A, =4k.O case, t'2 '(q) becomes positive and about
one order of magnitude smaller than t~2 '(q). In the re-
gion of q =0. 1 —1.5 fm ', t

~
'(q) decreases slightly, while

t q '(q ) increases slightly. As a result, their sum t' I(q )

drops only a few percent in this region. Another impor-
tant fact shown in Fig. 7 is that this t' '(q) can no longer
be ignored when compared to t .

Calculations have also been done at E~,b ——425 MeV.
The above general trends of t' '(q) at Ej,b = 800 MeV are
also preserved at this lower energy.

IV. CONCLUDING REMARKS

Although this work has been performed with the
Gaussian radial function for the quark-quark spin-orbit
interaction, results will most likely be similar when a

Breit-Fermi radial function is chosen. Wang and Wong
have shown that these two types of interactions give simi-
lar shapes and close magnitudes for the NN spin-orbit t-
matrix elements in their RGM calculations.

The negligible contributions of the two-gluon exchange
diagrams of the NN spin-orbit interaction at X=A,O and
2A.0 confirm that the gluon-quark exchange diagrams con-
sidered in the RGM are indeed the lowest order ones,
provided that the interaction range and the nuclear radius
are not taken too small.

There could be several reasons for the non-negligible
magnitudes of t' '(q) at X=4K,D. First, one may question
the validity of the Glauber approximation at this short in-
teraction range. According to Eq. (2.25), the strength of
the quark-quark spin-orbit interaction takes the value of
Vo ———980.46 MeV at A, =4k,O, 10 times as large as that
at A. =ko. This may cause trouble for the Glauber ap-
proximation, which demands that

~

V/(k /2m~ )
~

be
much less than 1. On the other hand, for such a strong
interaction it is also likely that the two-gluon exchange
contributions cannot be ignored. Should this be the case,
other multiple scattering terms in Eq. (2.1) may have to
be included. In any case, results obtained from the RGM
calculations might need to be modified should one treat
the nucleon with this kind of small size. Possible meson-
quark couplings and other relativistic e6'ects might also
have to be taken into account.
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