PHYSICAL REVIEW C

DECEMBER 1987

Absolute gamma intensities in the A = 98 transitional nuclei and shape coexistence in ⁹⁸Y

H. Mach

Clark University, Worcester, Massachusetts 01610

R. L. Gill

Brookhaven National Laboratory, Upton, New York 11973 (Received 6 May 1987)

Absolute gamma intensities have been measured for the strong transitions in the decay chain ${}^{98}\text{Rb} \rightarrow {}^{98}\text{Sr} \rightarrow {}^{98}\text{Y} \rightarrow {}^{98}\text{Zr}$ and ${}^{98}\text{Nb} \rightarrow {}^{98}\text{Mo}$ and found approximately four times higher than those currently adopted. As a consequence, several contradictions in this critical chain of nuclei are resolved. Shape coexistance is established in ${}^{98}\text{Y}$ with a $J^{\pi}=1^{-}$ "spherical" ground state and with a previously reported deformed band with band head at 495.7 keV.

The purpose of this Communication is to present a simple solution to a number of contradictions in experimental results which exist in the A = 98 chain of transitional nuclei with particular emphasis on ⁹⁸Y. The $A \sim 100$ region is of fundamental importance to the understanding of the deformation processes throughout heavy nuclei since it provides an opportunity to study a rapid onset of deformation in close vicinity to stable nuclei and with structures amenable to shell model calculations. Studies of these nuclei have focused¹ on the role of the neutron-proton interaction in the deformation process, and therefore information on odd-odd nuclei is particularly vital. The oddodd 98 Y (N=59, Z=39) is positioned in the center of the transitional region, neighboring the nearly spherical² 96 Y and fully deformed³ 100 Y isotopes. Furthermore, the coexistence of spherical and collective structures is well established⁴ in neighboring even-even nuclei, and thus shape coexistence is also expected at low excitation energy in ⁹⁸Y. Although a fully deformed band with a band head at 495.4 keV has been already reported, 5-7 so far there is no evidence of spherical structures arising from coupling of a valence neutron particle and a proton hole to the almost spherical ⁹⁸Zr core. Indeed, the interpretation of most levels in ⁹⁸Y is particularly difficult due to conflicting experimental results pertaining to the crucial spin-parity assignment to the ground state (g.s.).

 β decay from the 0⁺ g.s. of ⁹⁸Sr strongly feeds⁵ both the 600.3 keV level (30%, log*ft* =4.5) and the ⁹⁸Y g.s. (65%, log*ft* =4.5), and thus requires positive parity assignments.⁵ However, such assignments are in conflict with the *E*1 and *M*1 character^{6,8} of the 481.1-119.4 keV γ -ray cascade connecting these levels. We note, however, in regard to the β decay that the absolute γ and *E*0 intensities and g.s. β feedings in the *A*=98 chain have been deduced by normalizing to the 787.4 keV γ or 734.6 keV *E*0 lines in ⁹⁸Mo as local standards, ⁵ despite the fact that the absolute intensities of those ⁹⁸Mo transitions themselves remain a subject of controversy.^{5,9} The absolute intensity of the *E*0 734.6 keV line, $I_{abs} = 5.5(11)$, measured from the ratio of the *E*0 conversion electrons to the continuous β spectrum, differs^{5,9} from $I_{abs} \approx 30$ deduced⁹ from the *E*0 intensity of 0.02 per ²³⁵U fission. (The absolute intensity is expressed as the number of γ or E0 transitions per 100 β decays of the parent.) In order to understand the origin of those discrepancies, we have measured the absolute intensities in the A=98 chain by normalizing to an independent standard.

The measurement was performed at the TRISTAN mass separator on line to the High Flux Beam Reactor at Brookhaven National Laboratory. The activity was produced by thermal neutron induced fission of an enriched ²³⁵U target inside an ion source with a high efficiency for Rb.¹⁰ The source was operated at relatively low temperature to suppress direct production of ⁹⁸Sr and ⁹⁸Y. The mass-separated ⁹⁸Rb activity was continuously deposited onto an aluminum stopper for a period of 41 h. The β activity was monitored by a thin plastic detector, while the γ activity was measured with Ge and thin-window Ge detectors with efficients of 22% and 26%, respectively, and with full width at half maximum (FWHM) energy resolution of 1.9 keV at 1.3 MeV. γ -ray singles spectra were accumulated over short periods of time at the beginning and at the end of the irradiation process and $\gamma - \gamma$ coincidences were measured with both Ge detectors. The strongest γ lines provided internal energy calibrations, while the efficiency calibrations were performed off-line using standard sources.

Figure 1 shows a γ -singles spectrum obtained with the 22% Ge detector at the end of the irradiation process. We have identified lines from individual decays in the A = 98 mass chain⁵ and from A = 97 nuclei¹¹ populated in the β -delayed neutron decay of ⁹⁸Rb. The identification of the ⁹⁸Sr \rightarrow ⁹⁸Y lines required a detailed analysis of the coincidence data. Relative γ intensities compare closely to the values adopted for each decay scheme.^{5,11}

We obtained the absolute γ intensities for the strongest transitions in the A=98 chain by a direct comparison to the A=97 lines. Those key transitions are labeled in Fig. 1. We used the β -delayed neutron branching¹² of 13.4(9) per 100 decays of ⁹⁸Rb, and the absolute intensity¹¹ of 94.75(30) for the 743.3 keV transition in ⁹⁷Nb. The degree of saturation for the ⁹⁷Zr decay ($T_{1/2}=16.90(5)$ h) was estimated to be 81.6(9)% at the time of the measurement. We found no trace of direct A=97 or 99 mass contaminations (i.e., the key lines from the ⁹⁷Rb \rightarrow ⁹⁷Sr were absent), nor for any direct production of ⁹⁸Y (no lines

2722

from the high-spin isomers). The low temperature of the ion source severely reduced direct production of 98 Sr. Nevertheless, in a very conservative estimate, up to 5% of additional γ intensity may exist in the decay chain following the decay of 98 Sr. Although we have not included this value in the following analysis, its inclusion would not alter the conclusions drawn. Furthermore, the beam intensity was kept constant to $\approx 4\%$, which allowed a direct comparison of long- and short-lived decay products. The absolute intensities within the A = 97 chain are in excellent agreement with the adopted values.¹¹ The new absolute intensities for the key transitions in the A = 98 chain are presented schematically in Fig. 2.

The key result is that the β branchings into excited levels are found to be approximately four times higher than the adopted values,⁵ resulting in a substantial reduction in the g.s. β feedings. The differences between our results and the adopted values can be traced to one number, namely, the absolute intensity for the "standard" 787.6 keV ⁹⁸Mo line. The relative intensities for the lines in the A=98 chain remain approximately the same, since before they have been normalized⁵ to the ⁹⁸Mo line and are normalized in our work to the ⁹⁷Nb transition. The impact of the new results on the individual decays is discussed next.

 $Rb \rightarrow Sr$. The absolute intensities for the 144.2 and 289.4 keV transitions represent the number of gamma transitions per 100 decays of ⁹⁸Rb excluding the delayed neutron branch. About 50% of the beta intensity remains unaccounted⁵ for by the level scheme of ⁹⁸Sr, and thus, it is reasonable to assume that a large fraction of it feeds the g.s. with $\log ft \approx 5$, suggesting $J^{\pi} = 1^{+}$ for the low spin isomer of ⁹⁸Rb.

 $Sr \rightarrow Y$. The key issue in ⁹⁸Y is the spin-parity of the ground state. However, since the decay scheme of ⁹⁸Sr to ⁹⁸Y is largely unknown,⁵ we present in Fig. 3 a partial scheme deduced from our coincidence data and complemented by published results.^{5,6,8} We have identified all

the major lines in the singles spectra and thus there should be no transitions of significant strength missing from the scheme. The multipolarities of the 51.5, 119.4, 120.9, 170.7, and 204.0 keV transitions are taken from Ref. 6, while those for the 428.4, 444.6, 480.9, and 563.8 keV lines are from Ref. 8. Using the coincidence intensities, we have deduced the total electron conversion coefficients for the 36.5 and 52.5 keV transitions to be 1.0(3) and 1.3(3), respectively, leading to the E1 and M1 assignments for those lines. However, the coefficient for the 36.5 keV line is lower than the theoretical value¹³ of 2.0, which creates uncertainty as to the amount of β feeding to the 564.0 keV level. The transition multipolarities are consistent with the requirements of the decay scheme and provide evidence that the parities of the g.s. and the 600.3 keV levels must be opposite. This is fully consistent with the new β branchings discussed next.

The absolute intensity for the 119.4 keV transition, $I_{abs} = 73(6)$, implies little or no β feeding to the g.s., since the γ and the e^{-} intensity for the 119.4 keV *M*1 line and the other known γ transitions feeding the g.s., exhaust the 100% intensity limit, $I_{tot} = 106(9)$ %. This is further evidence that all intense transitions have been included in the decay scheme. Moreover, the balance between feeding and de-exciting intensities implies no significant β feeding to the 119.4 and 170.8 keV levels, and perhaps also to the 564.0 keV state.

Three levels in 98 Y (see Fig. 3), at 547.7, 600.3, and 986.1 keV, are strongly populated in the β decay of eveneven 98 Sr (log ft = 4.3-5.1), which implies $J^{\pi} = 1^+$. On the basis of γ -ray transition multipolarities, the three lowest-lying states, including the g.s. must have negative parity. Furthermore, the g.s. has spin J=1, since it decays by fast first-forbidden transitions, with log $ft \approx 6$, to a number of 0^+ and 2^+ levels in 98 Zr. Moreover, the transition to the 0^+ "spherical" g.s. of 98 Zr is particularly fast. The log ft of 5.8 for this first-forbidden transition is

FIG. 1. γ -singles spectrum obtained after 41 h of continuous beam accumulation. The key transitions are labeled by the energy, in keV and isotopic association.

FIG. 2. Absolute intensities for the key γ and E0 transitions as well as β -branching ratios and log*ft* values deduced in this work are illustrated for the ground state β decays in the A = 98mass chain. Relative intensities are taken from Ref. 5.

lower than the accepted¹⁴ lower limit of 5.9. Such fast first-forbidden transitions occur in the vicinity of doubly magic nuclei where there is a strong overlap between pure spherical configurations.¹⁵ Indeed there is substantial evidence^{2,16} to consider both ^{96,98}Zr as almost doubly magic nuclei; in particular, one of the fastest $0^- \rightarrow 0^+$ transitions with a log*ft* = 5.6, is observed² in the ⁹⁶Y^g \rightarrow ⁹⁶Zr^g decay.

The fast β -decay transition indicates that the ⁹⁸Y g.s. arises from a simple coupling of one neutron particle and one proton hole to the spherical even-even ⁹⁸Zr core, and thus, can be also interpreted as spherical. The 39th proton in the $\pi 2p_{1/2}$ orbit¹ can only couple with an odd neutron in either the $3s_{1/2}$ or $2d_{3/2}$ orbit to form a $J^{\pi} = 1^{-1}$ state. However, the $3s_{1/2}$ neutron must be excluded as the main component of the β decay since it leads to an empty $3s_{1/2}$ subshell contrary to the expectation¹⁶ that the almost magic character of the ⁹⁸Zr g.s. structure is due to the $3s_{1/2}$ subshell closure. From the $\pi 2p_{1/2}$ and $v2d_{3/2}$ coupling one would expect 1⁻ and 2⁻ to be the lowestlying levels in ⁹⁸Y. Indeed, the two lowest-lying levels in ⁹⁸Y, the $J^{\pi} = 1^{-}$ g.s. just discussed, and the 119.4 keV levels, are the most plausible candidates. These negative parity levels are interconnected by an almost pure⁶ M1 transition and are almost equally strongly populated by γ transitions from other levels as evident in Fig. 3. These empirical facts are analogous to those for the two lowest-lying levels in ⁹⁶Y, the 0⁻ ground state, and the 1⁻ 122.3-keV levels, which have been interpreted ¹⁷ as formed by coupling of the $p_{1/2}$ proton to a $s_{1/2}$ neutron.

A deformed band with the band head at 495.7 keV has been recently investigated in some detail.^{6,7} Two $(p[422\frac{5}{2}]n[404\frac{9}{2}])2^+$ configurations, and $(p[303\frac{5}{2}]n[404\frac{9}{2}])2^{-}$, have been proposed^{6,7} for the band head. The latter one has been favored 7 on the basis of the Nilsson-model calculations, which also suggest the interpretation of the 830-ns isomer at 1180 keV as a double (i.e., proton and neutron) intruder state with the configuration $(p[550 \frac{1}{2}]n[404 \frac{9}{2}])8^{-}$. The present work confirms those predictions in that it firmly assigns negative parity not only to the 495.7 keV level, which feeds the $J^{\pi}=1^{-}$ g.s. by a sequence of M1 and E2 transitions (see Fig. 3), but also to the 830-ns isomer which feeds this band via the 110.8 keV E2 transition.⁶ Thus, the $1^{-98}Y^{g}$, which by virtue of its fast β decay to spherical g.s. of ⁹⁸Zr can also be assigned a simple spherical shell model configuration, is seen to coexist with a welldeformed structure.

 $Y \rightarrow Zr$. 47% of the β feeding from the 1⁻ g.s. of ⁹⁸Y populates two high-lying levels in ⁹⁸Zr at 4164.4 and 4450.7 keV with log*ft* value of 4.3 and 4.6, respectively. Therefore, spin-parity 1⁻ is proposed for both those levels provided that the comparable strength⁵ of the γ -ray transitions to states of spin 0⁺ and 2⁺ can be taken to rule out M2 multipolarities. Indeed, two $\gamma - \gamma(\Theta)$ angular correlations involving a transition from the 4164.4 level in cascade with a spin 2 \rightarrow 0 transition show¹⁸ a_2 coefficients of -0.11(15) and -0.28(2) consistent with $a_2 = -0.25$ for a pure, $\delta(l+1/l) = 0$, spin sequence $1 \rightarrow 2 \rightarrow 0$.¹⁹ The nature of those negative parity levels remains an interesting topic for future studies.

The absolute intensity for the E0.854.0 keV line in ${}^{98}Zr$ can now be revised from the previously adopted⁵ value of 4.9(18) to the new value of 15(3), which essentially removes the inconsistency of the earlier result with the value of 26(5) deduced⁹ from the E0 conversion electrons measured in the ${}^{235}U(n, f)$ reaction. The new value derived here was obtained from the ratio⁵ of intensities for the E0.854.0 keV and 1222.8 keV γ lines in ${}^{98}Zr$ and the new absolute intensity of the latter line.

The new γ and E0 intensities alter the important relative β feeding to the 0⁺ g.s. and the 0⁺ first excited state in ⁹⁸Zr as well as the associated log*ft* values. The new values are log*ft* = 5.8 (⁹⁸Zr^g) and log*ft* = 6.2 (⁹⁸Zr^{*}). The g.s. is a spherical configuration dominated by proton ($p_{1/2}$)² component relative to Z = 38, while the excited 0⁺ state is a more collective state with a large $\pi(g_{9/2})^2$ amplitude. Since the β -decay matrix element connecting the odd $d_{3/2}$ neutron in ⁹⁸Y with a $p_{1/2}$ proton is large while 2724

H. MACH AND R. L. GILL

FIG. 3. Partial level scheme for the ${}^{98}Sr \rightarrow {}^{98}Y \beta$ decay.

transition to a $g_{9/2}$ proton is highly hindered, the β feeding of the 0_2^+ state is due to an admixture of the g.s. configuration. Consequently, from the ratio of the comparative half-lives, ft, approximately equal to the square of the amount of mixing, one deduces a 30% admixture of the spherical configuration in the collective 0_2^+ state.

 $Nb \rightarrow Mo$. The absolute intensities of the "standard" 787.4 and 1024.3 keV γ lines in ⁹⁸Mo were found to be 13(1) and 6.1(6) in contrast to earlier adopted ⁵ values of 3.2(5) and 1.6(3). Furthermore, the ratio of E0 intensities⁵ for the 854.0 keV (⁹⁸Zr) and 734.6 keV (⁹⁸Mo) lines, 0.56(6), leads to the new absolute intensity of 26(6) for the latter line in agreement with $I_{abs} \approx 30$ deduced in Ref. 9. The revised β feedings to the 0₁⁺ and 0₂⁺ levels in ⁹⁸Mo give new log*ft* values of 4.7 and 4.8, respectively. By analogous arguments as before, this suggests an almost equal mixing of those 0⁺ levels provided the 1⁺ g.s. of ⁹⁸Nb is a pure "deformed" configuration. The configuration mixing calculations of Sambataro and Molnár,²⁰ who predicted a 40/60% mixture of the involved 0⁺ configurations, are consistent with those results.

In conclusion, new absolute γ intensities for the A = 98

- ¹P. Federman and S. Pittel, Phys. Rev. C 20, 820 (1979).
- ²H. Mach et al. (unpublished).
- ³F. K. Wohn *et al.*, Phys. Rev. C **36**, 1118 (1987).
- ⁴See, for example, F. K. Wohn *et al.*, Phys. Rev. C **33**, 677 (1986).
- ⁵H.-W. Muller, Nucl. Data Sheets **39**, 467 (1983).

mass chain have been found higher than the currently adopted values by a factor of approximately four. The difference can be traced to the absolute intensity for 787.6 keV ⁹⁸Mo line. The new results alter the relative and absolute β -feeding branches to g.s. and excited states for A = 98 nuclei, and thereby the experimentally deduced mixing of spherical and deformed states. These results provide solutions to a number of outstanding discrepancies in these key transitional nuclei and suggest that the g.s. of ⁹⁸Y is the spherical $(\pi 2p_{1/2}v2d_{3/2})1^{-1}$ configuration and that it coexists with the previously reported 5-7 deformed band at 495.7 keV. Finally, we have established a fast first-forbidden β transition between the ground states of 98 Y and 98 Zr, which alongside with 96 Y \rightarrow 96 Zr decay, forms a new region, other than ²⁰⁸Pb and ¹⁶O, of such fast transitions.

We acknowledge with appreciation discussions with R. F. Casten and G. Molnár. This work has been performed under Contracts No. DE-AC02-76CH00016 and No. DE-AC02-79ER10493 with the United States Department of Energy.

⁶G. Lhersonneau et al., in Recent Advances in the Study of Nuclei off the Line of Stability, edited by R. A. Meyer and D. S. Brenner, American Chemical Society, Symposium Series 324 (American Chemical Society, Washington, DC, 1986), p. 202.

⁷R. A. Meyer et al., Lawrence Livermore National Laboratory

Nuclear Chemical Division Annual Report No. UCID-10062-85/1, 1985.

- ⁸K. Kawade et al., Z. Phys. A 304, 293 (1982).
- ⁹B. Fogelberg, Phys. Lett. **37B**, 372 (1971).
- ¹⁰A. Piotrowski et al., Nucl. Instrum. Methods 224, 1 (1984).
- ¹¹B. Haesner and P. Luksch, Nucl. Data Sheets 46, 607 (1985).
- ¹²F. M. Mann et al., Nucl. Sci. Eng. 87, 418 (1984).
- ¹³F. Rösel *et al.*, At. Data Nucl. Data Tables **21**, 92 (1978).
- ¹⁴S. Raman and N. B. Grove, Phys. Rev. C 7, 1995 (1973).
- ¹⁵J. Damgaard, R. Broglia, and C. Riedel, Nucl. Phys. A135, 310 (1969).
- ¹⁶R. A. Meyer et al., Phys. Lett. 177B, 271 (1986).
- ¹⁷G. Jung et al., Nucl. Phys. A352, 1 (1981).
- ¹⁸K. Becker et al., Z. Phys. A **319**, 193 (1984).
- ¹⁹H. W. Taylor et al., Nucl. Data Tables 9, 1 (1971).
- ²⁰M. Sambataro and G. Molnár, Nucl. Phys. A376, 201 (1982).