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The possibility of 7-N bound states in nuclear matter is examined. It turns out that a very special
many-body effect allows states which have no counterpart in the two-body system. In fact, around a
logarithmic singularity, generated by the Pauli blocking, an attractive interaction—however small—
creates bound states whose origin greatly resembles that of the Cooper bound state of two electrons
in a superconductor or the Suhl-Abrikosov resonance in the Kondo effect. Coupling with other reac-

tion channels gives the bound states a finite lifetime.

I. INTRODUCTION

The unexpected coherent production of pions in heavy
ion reactions reported in Ref. 1 raises the question that
something is amiss in our current understanding of the
pion dynamics in nuclei. Along this line, a careful
reanalysis has been undertaken of the Pauli blocking (PB)
which is normally expected to have only a slight effect on
pion dynamics.> This is effectively true on the average;
but for the total momentum of the pion-nucleon pair near
zero (P=~0) some singularities are present.>~> These
singularities have been considered very accidental due to a
simplifying assumption of a sharp form of the nucleon
momentum distribution, and few explanations have been
proposed to justify their suppression: In Refs. 3 and 4 the
authors supposed a removal of the singularities by cou-
pling with other reaction channels; in Ref. 5 a smeared
finite temperature nucleon distribution is used to calculate
the averages over the nucleon distribution (i.e., pion self-
energy), taking the limit for T going to zero at the end.

It is the aim of this work to shed some light on these
anomalies and show that they originate from a genuine
many-body effect which has very striking analogies to
Cooper condensation® and the Kondo effect.” Once the
display of a very general effect has been recognized, the
ineffectiveness of the proposed suppressions will be
shown.

It is well known that an attractive effective interaction,
however small, greatly modifies the properties of the
ground state of a Fermi liquid, and generates supercon-
ductivity in some conductors. The drastic variation in the
conducibility properties of a metal below a critical temper-
ature is a consequence of a peculiar many-body effect; in
fact, as Cooper showed,® an attractive interaction between
two fermions in the presence of other fermions in the
ground states can generate bound states for any value—
however small—of the coupling constant. On the con-
trary, in the free two-particle system, bound states are
present only if the coupling constant exceeds some
minimum value. The source of this difference is the pres-
ence of a logarithmic singularity in the two-particle
Green’s function in the medium at the Fermi energy
which, in the presence of an attractive interaction, gives
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poles below the Fermi energy; the position of these poles
has a typical nonanalytic relation to the coupling con-
stant.

A similar many-body effect is present even in the 7-N
system in nuclear matter. In this case, the logarithmic
singularity is generated by the sharp momentum distribu-
tion of the nucleons; it is natural to expect polar singulari-
ties in the partial waves with an attractive 7-N interac-
tion. There are some differences with respect to the case
of two electrons; here, in fact, the PB is effective only on
the nucleons. This configuration bears greater resem-
blance more to a magnetic impurity atom interacting with
the conduction electrons of a metal:” The PB is effective
only on the electrons. The electron-impurity scattering
amplitude shows a resonance, the Suhl-Abrikosov (SA)
resonance,® around the Fermi surface in the partial wave
attractively coupled to the impurity. As in Cooper con-
densation, the SA resonance originates from a sharp end
point distribution of intermediate states (the density of
conduction electrons). Also, it has a very important role
in the explanation of many properties of some conductors,
in particular in explaining the minimum in resistivity
versus the temperature of dilute magnetic alloys (the Kon-
do effect’).

II. POLAR SINGULARITY

To display in detail the generation of the polar singular-
ity for the pion-nucleon propagator in nuclear matter, we
shall use an extension of the Low equation that allows a
derivation very similar to that given in Ref. 9 for the
Cooper bound states. At any rate, other approaches can
provide the same results.'®

The Low equation for the 7-N effective scattering am-
plitude in nuclear matter has been derived in Refs. 5 and
11. At its lowest level of approximation, this approach
differs from others in that the PB is present even in the
Born terms. This feature is introduced by the request
that the integral equation generate a set of Feynman dia-
grams with the PB in each nucleon line. Some motiva-
tions have been proposed?® to justify the suppression of the
PB from the Born terms. We prefer to use a more com-
plex approach (linearization and coupled channels), which
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is safer from a fundamental viewpoint, in place of
suppression. In fact, terms which could suppress the PB
in the Born terms (with some simplifying assumption
about the effective vertex function) are generated by a
disconnected term of the two-particle—one-hole intermedi-
ate states; it is clearly better to consider all the effects of
this set of intermediate states on the same footing. At any
rate, in Ref. 5 a method of successive linearization around
a main solution has been developed to solve the analytic
problem introduced by the lack of separability of the Born
terms due to PB or other more realistic dependence from
the momenta of the incoming particles. This method gen-

erates the complete solution at any desired degree of ap-
proximation.

For the present task, we can skip many of the compli-
cations of the complete equation; in fact, for P=0, the s
waves in the momenta of the PB factors suffice. If the
medium corrections are suppressed in the crossing terms
(the rationale of this is given below), we can limit our-
selves to considering the partial waves of the Chew and
Low model, although it will be evident that other partial
waves could develop the singularities described here. For
nucleons so heavy to take on momentum but no energy,
the projected amplitudes have the following equations:
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The functions ny(P,q),np(P,q,q’) are the angular average of the PB function, P is the total momentum of the 7-N
pair, and only a parametric P dependence survives. The PB in the B terms is effective at low pion momenta (excluding
the Py, partial wave, which requires special treatment). However, since the low pion momenta are cut away by the PB
in the integral term, important contributions are expected only from the high energy integrations controlled by the cutoff
v(g). This fact immediately suggests the splitting

F®,P,q,q")=H%w,P)+ E%w,P,q,q") , @)

Sv2g,)+CT . (1)

where E% w,P,q,q’) embodies all the complications given by the nonseparability of the B terms, and must be solved as in
Ref. 5. H% w,P) accounts for all the contributions given by the high energy integrations, and is defined by the integral
equation (a#11)
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Here the PB is present only in the singular integration and is the only source of logarithmic diverging terms. The
crossing terms (CT) contain nonsingular integrations (o >0) and depend on the shifted total momentum |P—q—q’|.
Therefore, excluding special values of q and q’, the terms are insensitive to the singularities generated by the sharp in-
tegration edge of the direct term. For special values of q,q’, they develop a Cooper-type singularity of their own at nega-
tive w. For the positive values of w which are of interest to us, the effect of this singularity is fairly negligible and, when-
ever possible, the free values for the crossing terms are used.

In these assumptions, an N /D (Ref. 12) solution of Eq. (3) normalized at the nucleon pole to give the residuum A,
has the form
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which can be recast in the form
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If one neglects the PB corrections in N,(w,P) and uses its free expression, Eq. (4) assumes a more transparent form
which shows a remarkable independence from the dynamics assumed for the free 7-N scattering amplitude:
—1
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A symmetric nuclear matter, whose Fermi momentum is much lower than the cutoff point given by v (q), is supposed;
ho(w) is the free m-N scattering amplitude. Let us now examine the P=0 region; here for o <wr [wr=(k}+m2)!/?]
the imaginary part of 1/h,(w) is suppressed by the imaginary part of the integral; the discontinuity in the singular in-
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tegration gives a logarithmic singularity.!> The N /D solution can have poles not explicitly considered in (3); they are

given by
1
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Equation (5) has solutions for any attractive interaction
[Reh,(w) > 0], however small, and, like superconductivi-
ty, it has the typical expression for the low coupling
[holw)=Ay/0]
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with an essential singularity for A,—0. The residuum at
the pole has the sign of a bound state. Above wp, another
zero of Re(H% w,P)) is present, but here the full free
imaginary part is effective. Very similar results can be
easily obtained from a Lippmann-Schwinger equation
with a separable potential and the same density of inter-
mediate states considered here. It is clear from (5) that a
Cooper-type bound state can be generated only for
wF <w,++ in the P33 partial wave; above the resonance,
Rehss(w) is lower than zero.

- For a small increase in P or temperature 7, the varia-
tion of no(P,q) is rapid enough around wr to maintain the
pole. The survival of the pole of a small finite increase of
the temperature renders ineffective the method proposed
in Ref. 5 to get a nondivergent pion self-energy in the
hole-line approximation; in fact, a fictitious smearing of
No(P,q) with a finite temperature was supposed sufficient
to get rid of the singularities.

The form of Eq. (5) implies the absence of logarithmic
divergence in E*(w,P,q,q'). In fact, the linearized part
has integrals of H*(w,P)[1—ny(P,q)], but H%w,P) is of
the order [In|wr—w|]~! around wr, and this gives at
most singularity of the dilogarithmic type [a closer inspec-
tion of the first linearization using the equations given in
Ref. 5 shows In|wr—w| ' behavior even for
E%w,P,q,q")].

For small P <<(wr—wp) and |w—wp | <<(wr—wp)
the amplitude H *(w,P) becomes
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A similar set of singularities is encountered even in the
Py, partial wave. Here, in fact, we have to consider the
PB in the B terms. From (1) it is evident that the direct
nucleon pole term is suppressed for P < K, and only the
crossed attractive B term survives, contributing to the
high energy integral up to the cutoff. While complete
solution of (1) necessitates a calculation of the crossing
terms, our task of showing the presence of a Cooper-type
pole does not require careful estimation of the high energy
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integrals. All they have to do is give a positive contribu-
tion, which is easily checked from the signs of the cross-
ing matrix; in addition to this, from the results of Mizu-
tani et al.,'* the P, partial wave without the direct pole
term should show the Roper resonance at an energy com-
parable to the AT +(1236) and be of similar width.
Hence, the situation should greatly resemble that of the
A17(1236). In our approach without the crossing terms
we can employ the low coupling result with A,=1 2/l
This picture can be changed by the insertion of more
complex intermediate states, but one must keep in mind
that even the real part of the free P;, partial wave be-
comes positive above a certain energy.

III. COUPLING WITH OTHER
REACTION CHANNELS

The states of Eq. (5) are located at w§ above the ground
state, so the states below this energy will be populated by
their decay, and the polar form of the 7-N scattering am-
plitude breaks down. In general, for a not too strong cou-
pling with other reaction channels one expects the trans-
formation of a bound state in a narrow resonance: We
can prove this is the case for our states. To see the
modifications of the present picture introduced by the
channel couplings, one must resort to an analytical ap-
proach because only in this way can one safely develop
the calculation to the logarithmic accuracy required by
the problem. A numerical approach is prone to losing
logarithmic singularities; the absence of any trace of these
states in the numerical calculation of Ref. 15 is just due to
the impossibility of reaching a sufficient degree of accura-
cy with their method.

Without giving a detailed demonstration, let us say that
it is not difficult to indicate the modifications introduced
in Eq. (1) by the presence of other reaction channels; in
addition to the standard one-nucleon and one-
nucleon-one-pion excitations over the ground state as in-
termediate states, one must consider a more complex set
of excited states. As in Eq. (1), the Born terms will be the
states without integration over a current variable. The re-
scattering terms will be given by the intermediate states
with at least a nucleon and a strong interacting boson
(pion or something else) with the cut on the right-hand
side of the real axis (unitarity cut); for each rescattering
term there is a crossing term with a cut on the left-hand
side of the real axis. Continuous channels given by inter-
mediate states with more than two particles will be possi-
ble in a many-body system even at very low energy. To
treat a problem so complex analytically, one must intro-
duce some simplifying assumptions:

(a) the Born terms and the amplitudes are approximat-
ed with separable forms;
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(b) no anomalous threshold is around the discontinuity
we are studying;

(c) the continuous channels are approximated with a
finite number, however large, of discrete channels.

Assumptions (b) and (c) are not critical and could be
released with a generalization of the formalism; condition
(a) is unavoidable, its effect can be mitigated accounting
for the effects of the nonseparability with a many channel
generalization of the approach given in Ref. 5, i.e., with
successive linearizations around a main solution. But no

important modification can originate from these correc-
tions because all the logarithmic diverging terms are ab-
sorbed in the main solution, as explained above for the
noncoupled case. For this only the structure of the main
solution shall be examined. The set of coupled nonlinear
singular equations can be solved as in Ref. 16. In the fol-
lowing equations the parametric P dependence, which is
present in all terms, will be dropped from the notation.
The channel in which we are exploring the effects of the
coupling is 1,1:
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The functions N, ;(w) are regular on the right-hand side cut. The terms D, ;j(w) for P=0 have a jump in the in-
tegrand given by the PB on the nucleon momentum distribution; manipulating the solution as in Eq. (5), it is possible to

evidence the free scattering amplitude yielding (o < wF):

1+ zj>1N1/'(“’)Aj1(“))
Nu(a))A“(O))
Hnle)= 3 Nij(w) (@) (@A) 7
1 q F—Q 1jlw) Ao gjlw)Ajlw
R 4] 1
V@ | T 7™ oy || A M@ dn@ | T Vu@dne
Aem(@)=[D " Yw)]emdet{D(w)} .
f
gj(w) is the regular part of D, j(w). The logarithmic term y(a)):Im[ L +q°
exactly factorizes the numerator of #,;(w), making the ()
structure of #(w) 1 B lﬂu(wﬂzpj(w)
3 _ - =- T g 12
@)= |alo)+iy@)+Lln | 2E=2 L ® S 1)
T w—m,

where a(w) and y(w) are real functions whose definition
can be extracted from Eq. (7). For P=0 and o < wF, the
width y(w) receives contributions only from the medium
correction (reflection broadening, absorption, etc.), the
imaginary part of the free scattering amplitude being
suppressed by the PB. To prove that the singularity of
Eq. (8) is a resonance, one has to locate the zero of its
denominator. The imaginary part y(w) is given by the
discontinuity across the right-hand side cuts of the reac-
tion channels, and it is negative. In fact, from Eq. (7), it
is
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#£3, is an amplitude formally identical to 7, but with
the integrals of D;; extended down to the threshold m,
(D‘l’j); the phase of the logarithmic term is zero on the
upper side of the right-hand side cut for w <wpr; so the
point at which this phase equals —¥(w) is located in the
second Rieman sheet below the right-hand side cut.
Hence, in a small range of energies around the zeros of
Re(#1i'), #1,1(w) assumes the form of a resonance which
escapes the unitarity limit (1/¢3) for small inelasticity. It
has a Breit-Wigner shape only very close to the position
of the resonance, and the tails are logarithmically decreas-
ing. The delicacy of the proper position of the resonance
in the unphysical sheet is evident from Eq. (7). In fact, a
small phase difference from the numerator of (7) and the
factor in parentheses of the logarithmic term can scatter
the singularity almost everywhere in the complex plane.
This explains the enormous care required for a proper nu-
merical calculation.
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IV. CONCLUSIONS

The results of the present calculation force us to con-
clude that the PB can greatly affect the 7-N scattering
amplitude for low P by inducing a large fluctuation in its
real and imaginary parts. Such effects are consequences
of a genuine many-body effect which generates bound
states around an end point discontinuity in the density of
intermediate states whenever attractive interactions are
present. This many-body effect is very similar to that
which allows the Cooper bound states of two electrons in
a superconductor (with a similar nonanalytic relationship
of the energy shift from the coupling constant) or, better
still, similar to the SA resonance.> The SA resonance ex-
plains the minimum in the resistivity versus the tempera-
ture observed in some alloys (the Kondo effect’). Around
a magnetic impurity introduced in a Fermi liquid the
discontinuity in the density of electron states generates a
bound state very near to the Fermi surface; this state is
turned to a resonance by the coupling with a particle-hole
reaction channel. As in our states, the PB is effective only
on one kind of particle, i.e., the conduction electrons, the
impurity is assumed infinitely heavy. The main difference
with respect to the pions in nuclear matter is that the fer-
mions (the nucleons) are much heavier than the pions.
Hence in the singular integration the energy of the nu-
cleon is disregarded compared to the pion energy, and the
PB factor is effective only for low P.

So, in nuclear matter, a branch of fermion-type excita-
tions which have quantum numbers (2,3) and perhaps
(4,4) appears possible. These are peculiar to a many-
body system and have no correspondence in the two-body
system. The effective interaction which makes these states
possible is the strong short range 7-N interaction. In gen-
eral, their wave functions decrease at large distances as
1/r2, and, being weakly bound, they will have a very
large (r?).® A small range of P values around P=0 are
possible for these fermions. Channel couplings give these
states a finite lifetime, turning them into resonances:
Their positions are defined by a formally invariant expres-

sion [Eq. (5)] upon switching on the coupling. The imagi-
nary parts are exclusively given by the coupling. An exact
factorization in Eq. (7) is fundamental in demonstrating
this property. No numerical approach can reach this ac-
curacy and can even confuse the resonances in a uniform
background (or place them in a wrong position in the
complex plane).

As in superconductivity at a critical temperature, which
is dependent upon density, the smearing of the nucleon
distribution makes these states disappear. A similar
disappearance is produced by an increase in P for T=0.
The presence of poles in the 7-N scattering amplitude will
require an upgrading of the formalism used to calculate
the properties of the pions in nuclear matter; for example,
the pion self-energy, calculated in the hole-line approxi-
mation, is divergent at the energy of the poles.

It is beyond the aim of this work to indicate some pos-
sible experimental testing of these excitations (nuclear
matter is a too conceptual matter for experimentation).
Nevertheless, some properties of neutron stars can bear
their signature. In finite nuclei, few assumptions of this
approach (especially the sharpness of the nucleon momen-
tum distribution) break down, and further work will be
required for an extension (if any). However, it is
worthwhile noting that the unusually long range of these
states could have very unexpected effects on the pion pro-
duction mechanism.

The results of this approach require very few explicit
reference to the 7-N system; for that they can be easily
extended even to other many-fermion systems attractively
coupled to a particle (boson or fermion) distinguishable
from the background.
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