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Microscopic calculations of 'He with realistic interactions
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Microscopic calculations of low energy alpha neutron scattering are reported for the resonant
J"=—' and — states. A good qualitative fit to the experimental L S splitting is obtained, although

discrepancies of the order of 1 —2 MeV remain. Results with two dift'erent nucleon-nucleon interac-
tion models are presented, and the effects of three-nucleon interactions are discussed.

I. INTRODVCTION

Microscopic calculations of nuclei with realistic interac-
tions are very valuable in determining the extent to which
nuclei may be successfully described as a system of nu-
cleons. Many calculations of three- and four-body nuclei
have been performed with realistic two- and three-nucleon
interactions, ' and the most recent calculations indicate
that many of the properties of He and "He can be
correctly predicted with these models. Calculations of p-
shell nuclei are important as a further test of these in-
teractions. In particular, the negative parity components
of the interaction are more important for these nuclei. In
addition, the p-shell nuclei offer an opportunity to study
L .S splittings in terms of these models.

In order to treat the heavier p-shell nuclei successfully,
it is necessary to obtain a good variational description of
the He system. For example, the He and Li are very
loosely bound, and previous calculations of these nuclei
with three-body (alpha plus two nucleon) methods have
been largely successful. An accurate description of He
will presumably allow one to extend the calculations to
heavier systems.

The He system has been studied previously by several
authors ' who employ relativistic optical models in order
to explain the magnitude of the splitting between the
J= —,

' and J = —,
' states of alpha nucleon scattering. An

important goal of this calculation is to determine to what
degree the low energy splitting of these states can be ex-
plained using realistic two- and three-nucleon interactions
in a nonrelativistic model.

The low energy J = —,
' and —,

' states of He are calculated

by converting the scattering problem into an equivalent
bound state problem, as described in Ref. 7. Several
enhancements to the method have been developed. These
improvements reduce the computing time necessary to
perform the variational calculations, and reduce the sta-
tistical error of the calculated phase shifts. In addition,
they allow us to determine other quantities more accurate-
ly, such as the contribution of the different potential terms
to the He energy.

II. INTERACTION AND WAVE FUNCTION

The nuclear Hamiltonian used for these calculations
has the form

V=S QF;,
I & J

(3)

S indicates a symmetrization of the pair correlations, and
N is a Slater determinant of one-body states coupled to
the correct total angular momentum

@=A
~ Q [X (t')X,(i)$(r;, )] (4)

3 is an antisymmetrization operator and r; is the dis-
tance from particle i to the system's center of mass in
He, and the distance to the center of mass of the four s-

state particles in He. The center of mass of the alpha
particle in He is different for different terms in the an-
tisymmetrized N.

In previous calculations of s-shell nuclei, W was taken
to be an antisymmetrized sum of spin states without any
spatial dependence. The asymptotic form of the wave
function as one particle is removed from the nucleus was
built into the correlation operator. For p-shell nuclei,
however, the differences between the asymptotic proper-
ties of the wave function as an s or p nucleon is removed

g2
X — ~+ X~v+ X

l
2m

I &J i &j&k

where the two-nucleon interaction Vj is given by

k k
V;, = g v (rj)ot .

k

The Reid soft core interaction is written in terms of eight
operators, including tensor and L.S interactions. We also
report results for the more realistic Urbana V14 (Ref. 9)
model, which contains 14 operators, including L and
L S terms. The Urbana V14 interaction provides a
better fit to the nucleon-nucleon phase shifts and deuteron
properties.

The three-nucleon interaction used in this work is the
Urbana model V. It may be written as a sum of two-pion
exchange term V which is attractive in light nuclei, and
an intermediate range repulsive term V . The more re-
cent Urbana TNI model VII (Ref. 3) differs only in the
magnitude of these components of the interaction. We in-
clude the expectation values of these terms separately, so
that the model VII results may be obtained.

The wave function used for the He and He systems is
given by the expression
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are incorporated into the single particle term in the wave
function.

The orbitals P(r) are solutions of the Schrodinger equa-
tion in a %'oods-Saxon well. The s-wave solutions are
bound states of the well, and the p-shell orbital is a

I

scattering state. The depth, radius, and skin thickness of
the well are taken to be variational parameters, and may
be different for the s and p orbitals in He.

The pair correlation operators are obtained by solving
the differential equations

[4~ fs, r +2~&'~fs, r ]+[~s,r + &s, r tfs, r & =0
m

in the singlet channels, and the coupled equations

2

[4~ fs, r+2~4 ~fs, rl+[~s, r+Us, rlfs, rd+«(, rf(, r4' 0 i-
m

6—
2 pf(, r + [~s, r +Us, r 2U(, r —3—Ub, r +6U, r + 9~bb, r ]f(,r4+ U(, rfs, r4 =0

7

(7)

in the triplet channels.
The functions fs r and f, r are then cast into operator

form so that

F(r,j)=f'(r;i) 1+u3 g u~j"0;,
"

k

where

k =[2pE„pluri ]' (10)

f' and u are obtained from Eqs. (5)—(7), and u3 is the
three-body correlation given in Ref. 10.

The boundary conditions imposed on the correlation
functions require that the central correlation f' go to one
at a distance d, and the spin-isospin correlations u, u ',
and u be zero for r )d. The tensor correlations have a
long range. The functions ()) in the two-body equations
are s and p wave radial functions in a harmonic oscillator
potential. The strength of the oscillator and the distance
d are variational parameters. Calculating the correlation
in this way allows for a difference between the positive
and negative parity pair correlations, in contrast to previ-
ous calculations of s shell nuclei. However, these correla-
tions do not include L S terms, and these terms may be
important for He. We hope to introduce them in future
calculations.

III. CALCULATIONS

The low energy phase shifts in a one channel scattering
problem may be determined by converting it into an
equivalent bound state problem. This method is particu-
larly suited to the calculation of low energy resonances,
such as the J = —,

' and —,
' states of He. If the two scatter-

ing products are confined to a region such that the dis-
tance between them is less than a distance R„, and the
Schrodinger equation is solved in this region with the
boundary condition that the wave function be zero at the
boundary, the phase shift 5I is given by

j((kR„)
tan(5() =

n( kR„

In these equations, p is the reduced mass and jl and nI
are spherical Bessel functions. E„„is the separation ener-
gy, defined as the difference between the total energy of
the system confined within the box and the sum of the en-
ergies of the separated products. This method requires
R„ to be large enough so that the potential acting between
the systems is zero when they are separated by a distance
greater than or equal to R„. For this reason it is most
useful for low energy scattering. Boundary conditions
other than %(R„)=0 may be employed, and Eq. (9) al-
tered appropriately.

We use the Metropolis Monte Carlo method to calcu-
late the energies of light nuclei. ' This method allows one
to obtain a set of configurations distributed in coordinate
space with a probability density proportional to the square
of the variationa1 wave function. For light nuclei, all
spin-isospin states of the wave function are calculated at
each step of the random walk. The expectation value of
the Hamiltonian is determined by summing over all spin-
isospin states at each point and then taking the average
over all configurations.

In order to calculate the phase shift with this method,
the separation energy E„~ must be accurately determined.
E p is the difference between the He and alpha particle
energies. Each of these energies is subject to the statistical
error associated with Monte Carlo integration. For this
system the error is dominated by the energy of the four s
shell nucleons, since they occupy a much smaller volume
than the p shell nucleon.

The energy difference E„z may be calculated directly in
order to reduce the statistical error. We calcu1ate the
difference by writing

I dr~ dry@4(1, 2, 3,4)H4+q(1, 2, 3,4)G(rq )

E( He)= f dr~ dr qq5(1(, 2, 3,4)q(1(,42, 3,4)G(r )5
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E( He)=

0'~g'II4 %4'P4Gs

+4~@4 8'

+4+46s, a
(12)

The sums in Eq. (12) run over the set of points [R; ) gen-
erated in the random walk.

In order to minimize the variance, we choose

Gs =[/ (rs )P(rs )]e(Rs —Ro), (13)

where P is the single particle wave function in the p-wave
state. This choice leads to a low variance because each
term in the denominator of Eq. (12) is near 1. In the lim-
it of two noninteracting reaction products, this method
will give E„p——0 with zero variance. The 8 function is
included in Gs so that those configurations in which all
the particles are close together do not contribute to the ex-
pectation value in He. This is necessary to prevent large
fluctuations when particle 5 is near one of the other parti-
cles.

The energy of 'He may be determined from the same
set of configurations in the usual manner:

E( He)=

%,Hs+s
8'

+s+s
8

(14)

The statistical error in the difference E ( He) —E ( He)
is significantly less than that obtained from two indepen-
dent Monte Carlo calculations. The computer time re-
quired for a given variance will be reduced by a factor
from 5 to 15, depending upon the state being calculated

where O4 is the alpha particle wave function and H4 is
the Hamiltonian acting on nucleons 1 —4. If 6 is a func-
tion of the vector from rs to the center of mass of the al-
pha particle, the integrations over rs cancel and we are
left with the usual expression for the energy of the alpha
particle.

Rewriting the energy in this way is useful because it al-
lows us to use the same set of configurations to calculate
the energy of both He and the alpha particle. If we have
a set of points R; distributed with probability density

W(r~ . . rs)=Vs(r~ r s)% s(ri . rs),
both the numerator and denominator of Eq. (11) may be
multiplied by 8' and the energy of the alpha particle is
given by

and the value of R„. It is also very useful to minimize the
variational energy of He by reweighting a set of
configurations rather than performing independent calcu-
lations. Energy differences may easily be determined
within 0.1 to 0.2 MeV in this manner.

IV. RESULTS

The first step in determining the phase shifts of He is
to calculate the binding energy of He. This calculation
provides a significant test of our parametrization of the al-
pha particle wave function. For the Urbana V14+ TNI
V interaction, we obtain an energy of —29.6+0.3 MeV,
which is consistent with previous calculations using a
different parametrization. The alpha particle is slightly
over bound with this interaction, but this should not
strongly affect the alpha neutron scattering energy.

The results of our calculations of the J = —,
' and —,

' He
scattering states are summarized in Table I and Figs. 1

and 2. Figure 1 presents the calculated and experimen-
tal" phase shifts for both the J = —,

' and —,
' states, for the

Urbana V 14 plus TNI V interaction model. The
equivalent information is presented in Fig. 2 as a plot of
the separation energy E„p vs R„. In the second figure,
the dashed line represents the energy for a free nucleon
confined within R„, the solid lines give the experimental
results, and the points with error bars are the results of
our calculations. Both the Urbana and Reid two-nucleon
interaction results are presented in this figure.

For the Urbana V14+ model V TNI, the J = —,
' ener-

gies are approximately 1 MeV too high at small R„, while
the J = —,

' energies are approximately 2 MeV too large.
Thus, we obtain a splitting between the two states which
is somewhat smaller than the experiment would indicate.
Nevertheless, we obtain roughly 80 percent of the
difference between the free particle solution and the exper-
imental J = —,

' result at R„=5.5 fm, and approximately
three-fourths of the experimental splitting between the
two states.

The total energy and the contributions of various poten-
tial terms are presented in Table I. The He results are
given for R„=7.5 fm. The first row gives the expectation
values for the alpha particle, and the second and third
rows give the additional contribution in the J= —,

' and —,
'

He states, respectively. These differences are obtained
with the same subtraction technique used for the total en-
ergy.

The orbitals used for the two He states age different in
these calculations, so we have also calculated a "perturba-

TABLE I. The total energy and contributions of the Urbana V14 plus TNI model V interaction for
He and 'He. The complete energy and potential energy are given for the alpha particle, while in He

the alpha particle contributions are subtracted. R, is 7.5 fm. The last row gives the perturbative
difference between the two 'He states (see the text).

State

4He
'He (J= —)

He (J= —')
Difference

—29.6+0.3
4.2+0.2
6.5+0.2
3.1+0.3

(v„)
—136.0+2.0
—14.0+ 1.2
—6.0+1.0

5.4+ 1.5

( V;,k{2m.l)
—10.4+0.4
—0.9+0.2
—0.2+0.1

0.7+0.3

( VJI, (R))

3.9+0.2
0.5+0.1

0.2+0.1

—0.1+0.1
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