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The starting point for most studies of large amplitude collective motion in nuclear physics, the
time-dependent Hartree-Fock equations, can be mapped to a problem in classical Hamiltonian
mechanics, which is the form of the problem studied in this work. For a system with N degrees of
freedom, collective motion is identified with motion completely confined to a surface in K (N di-

mensions. Conditions for the existence of such decoupled surfaces are worked out and a pro-
cedure for constructing them is formulated. For most practical problems, where such surfaces do
not strictly exist, a concept of approximate decoupling is developed and a test of its accuracy is de-

scribed. Our results generalize the method of maximum global decoupling found in the earlier
literature.

I. INTRODUCTION H = ,'tr B ~(g—)harp+ V(g), (1.2)

The aim of the theory of large amplitude collective
motion is to decouple from a many-particle Hamiltonian
a collective Hamiltonian expressed in terms of a few
coordinates q', i =1. . .K and their conjugate momenta
p;. Confining our attention to the adiabatic limit and
without worrying about operator ordering, this Hamil-
tonian has the form [q =(q'. . .q ), etc.]

H(q, p ) = ,'p;B '~(q )p +—V(q),
and is therefore characterized by a potential energy
"surface" V(q) and a (reciprocal) mass matrix B '~(q)
which also plays a role as metric tensor. These are the
"collective parameters" of this theory. Because of the
restriction to quadratic terms in the momenta, (1,1) is
supposed to describe low energy bound or continuum
motion. During the past 15 years many contributions
have been made to this subject. We cite some pa-
pers' which have had an impact, directly or indirect-
ly on the present paper. Additional works by the same
authors may be traced from the given references.

Frpm spme pf this wprk ' ' ' ' " it has emerged
that the collective parameters may be computed by con-
sidering a problem in classical Hamiltonian mechanics.
For example, in the problem of nuclear physics, the usu-
al starting point is time-dependent Hartree-Fock theory
(THDF) which is recognized as a classical limit of the
Fermion many-body problem. By a suitable change of
variables, these equations may be shown to be of the
classical Hamiltonian form, where the role of Hamiltoni-
an is played by the Hartree-Fock energy functional. In
general, this Hamiltonian is not quadratic in the momen-
ta, but we have shown how to carry out an expansion
in powers of the momenta and thus arrive at a starting
point, which is a classical Hamiltonian of the form

where g=(g'. . .g ), m. =(vr, . . .m~) are given canonical
variables. In the nuclear problem, X may even go to
infinity, but in any event we have a common starting
point for problems, nuclear and non-nuclear. If the ap-
proach to the classical limit was done in a systematic
way starting from a suitable quantum theory —generator
coordinates, " equations of motion, ' ' a Born-
Oppenheimer method, or a generalized coherent state
method ' —then quantum corrections may be included.
The problem of "requantization" is dealt with in these
works, and will not form a part of our presentation.

Given the Hamiltonian H of (1.2), the problem is then
to decompose it into a sum of two parts

(1.3)

where H is the collective part (1.1) and H depends on the
collective coordinates as weakly as possible. The main
question is: What is the best possible way of making this
decomposition? In this paper, we shall develop a
method, which we have termed the generalized valley
approximation (GVA) which generalizes one of the
methods developed previously in the literature, the
method of maximum global decoupling. ' ' ' ' Here
it turns out that the application to more than one collec-
tive coordinate requires ideas not found in the previous
literature.

A second approach, the local harmonic approximation
(LHA) which is the vintage method in this field, is in
principle also applicable to any number of collective
coordinates. This is a potentially important method
which has been treated as distinct from the predeces-
sors of GVA. Since the technical content of this paper
is already rather dense, we have reserved the analysis of
the connection between GVA and LHA for a separate
paper.
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A third method, that of Goeke and Reinhard, ' '' '
requires special mention because it is the only method
that has been developed in practice to a point where it
has been applied —very profitably —to a range of col-
lision problems which involve one collective coordinate.
Ironically, this is the only one of the methods which, by
its special character, cannot be extended to more than
one degree of freedom. However, if we are to achieve a
fundamental understanding of the problem of low energy
collective motion in the deformed region, we shall need
to have a method applicable to more than one collective
coordinate which is both theoretically sound and practi-
cal. In the present work we shall deal largely with the
first requirement. It will be the burden of future work,
starting with an accompanying paper, to show how to
use the new method.

We turn to a consideration of the meaning of the
decomposition (1.3), which is fundamental to our en-
deavors. To study this question, we carry out a point
canonical transformation from the starting coordinates
P to a new set q". Of the latter, a subset q ',

i =1, . . . , K &N are deemed collective when they are
appropriate descriptions of a family of classically decou-
pled motions, defined as follows: Let X be a K-
dimensional surface parametrized by the new coordi-
nates q'. Let the system point be initially on X and let
the initial velocity be along TX, the tangent plane to X.
A motion is decoupled provided the system point
remains on X in consequence of the action of the full
Hamiltonian (1.2). On X the latter takes the values
H(q', . . . , q, p, , . . . , p~). We may say that for
a =K + 1, . . . , N, X is defined by the specification p, =0
and (by definition) q, =0. The goal is to find X and H.
This is the specific problem addressed in the body of our
paper, where a solution is proposed.

As we shall come to understand, an exactly decoupled
classical motion does not necessarily imply a well decou-
pled quantum motion. The decoupled classical motion
generally takes place in a K-dimensional valley of the po-
tential energy function V. There remains the question of
how steeply the potential energy function climbs in
directions orthogonal to the collective manifold X. Here
the traditional criterion appears to be appropriate: A
good measure should be the frequency of small oscilla-
tions of the noncollective degrees of freedom. This is
not a completely trivial matter, however, since these fre-
quencies are dependent on the coordinates of X. This
problem is not discussed in the current work, but an ex-
ample is given in the following paper.

The conditions which determine a decoupled classical
motion are formulated in terms of Hamilton's equations
of motion in Sec. II. Two equivalent sets are obtained,
which are used interchangeably in whole or in part in
the remainder of the development. The conditions are
also seen to be derivable from variational arguments. In
physical terms, since the manifold X may have intrinsic
curvature, the essential conditions for decoupling are the
absence of forces either "real" or of geometrical origin
(centrifugal forces) normal to X. When there are con-
stants of the motion in addition to the energy, these con-
clusions must be modified. In that event, decoupled

II. DECOUPLED CLASSICAL MOTIONS

A. Preliminaries

We study a classical system described by N canonical
pairs (P, vr )=((,vr), a= 1. . .N and a Hamiltonian
quadratic in the ~,

II(g, ~)= ,'~ B ~(g)harp+ —V(g), (2.1)

which is characterized by the potential energy surface
V(() and the mass matrix B ~(g). We subject the sys-
tem described by (2.1) to a point canonical transforma-
tion (in order to retain the quadratic structure in the
momentum variables)

(2.2a)

a
pp =g pal~

with inverse

(2.2b)

(2.3a)

(2.3b)

Here the notation of comma followed by index will be
used for differentiation. Thus

g „=(Bg IBq"), f" =(df" IBP) . (2.4)

Since the ((,z) and the (q,p ) are the only sets of canoni-

motion may occur partially or (in extreme cases) totally
in consequence of a balance of the two types of forces in
directions orthogonal to X.

For application to problems other than those in which
all the collective coordinates are cyclic (ignorable), we
deduce in Sec. III, a set of first order partial diff'erential

equations characterizing the surface X. These equations
imply that X, if it exists, is a generalized valley (a con-
cept discussed in the Appendix). However, in general, a
prescribed Hamiltonian may not admit an exactly decou-
pled motion of the type specified. This manifests itself in
that the deduced partial differential equations are not in-
tegrable. Even in this case, which is relevant for most
physics problems, we propose a modified procedure: We
replace the original equations by a modified set which
usually has a solution consisting of the points of a sur-
face X and a plane associated with each point. The in-
tegrability condition, which is also the condition for a
fully decoupled motion, is that these planes be the
tangent planes to the surface. By introducing a measure
of deviation from tangency, we arrive at a concept of ap-
proximate decoupling, useful for physics applications.
The collective Hamiltonian can be constructed from the
exact solution of the modified set of equations. Further
discussion for the case of additional constants of the
motion is carried out.

In the Appendix, some geometrical properties are de-
scribed. First we discuss briefly the concept of general-
ized valley. We then prove that integrability of the
equations requires that X be a geodesic surface
("minimum" area for K )2, minimum length for K =1)
in the geometry of the original N dimensional space.



36 DETERMINATION OF THE COLLECTIVE HAMILTONIAN IN A. . . 2663

= —,
' p„B"'p, + V( q ),

where the metric tensor

B Pv fP~VBaP
P

(2.5)

(2.6)

transforms like a contravariant tensor of second rank.
We shall also be interested in the covariant form of (2.6),
namely

Bpv=gpgP, ap, ~

a P (2.7)

where B & is both the covariant form of B ~ and the
matrix inverse to it.

The point character of the transformation (2.2) and
(2.3) is expressed by the chain rule relations

fiP fIJ g~— (2.8a)

(2.8b)

From (2.8b) and (2.6) we have

gcx B Pv BQPf v
I3 ' (2.9)

For reasons to be discussed following Eq. (2.13) below,
let us consider the equations of motion expressed in the
two equivalent ways,

j'=(aH/a~. ) = Ip, H ],
= —(aH/aP) =

I m, H I,
(2.10a)

(2.10b)

where the curly brackets are read as a Poisson bracket
with respect to the set (q,p). Thus, in writing (2.10) we
recognize the P, rr both as canonical variables and as
dynamical functions of the q",p„. If after carrying out
difFerentiations, we substitute into (2.10) the transforma-
tion equations (2.2a) and (2.3b), the second equality in
each of (2.10a) and (2.10b) become, respectively,

g „B"p, =B ~f'@, (2.11)

cal coordinate which will appear in the theoretical devel-
opment, they can be distinguished by reserving the in-
dices a,P, . . . , for the ((,m. ) and p, v, . . . , for the
(q,p ) even though both sets of indices run over the same
values I, . . . , N. In addition, quantities in the (q,p)
coordinate system will be distinguished by a bar.

Under the restriction to time-independent transforma-
tions, (2.2), the Hamiltonian becomes

H(q, p ) =H [g(q ),z(q, p )]

whereas if we substitute (2.11) into the last term of (2.12)
the momentum dependent terms can be put into the
form

v BPy) B Pvf k (2.13)

which is just a derivative of (2.6).
The reason for carrying out the exercise just complet-

ed is that as soon as we place special additional con-
straints on the point transformation, as we shall below,
and enforce these constraints on (2.11) and (2.12), we
shall find that these equations, rather than remaining
identities, become conditions for the determination of
the special point transformations satisfying these addi-
tional constraints.

B. Description of decoupled classical motion

(aH/a~. ) ~,= I P,H(q', p; ) I,
—(aH/a~ ) ~,= I~.,H(q', p, ) I,

(2.14a)

(2.14b)

where the Poisson brackets involve di6'erentiation only
with respect to the set (q', p; ). Following the same
reasoning used on conjunction with (2.10), but
remembering that (2.2) and (2.3) are restricted to the sur-
face X, we obtain from (2.14) the conditions

We can now reveal the origin of our interest in study-
ing the point transformation (2.2), (2.3). We divide the
new coordinates into two sets, (q', p, ), i = I, . . . , IC and
(q', p, ), a =K+I, . . . , N, and ask: Does the system
admit a point transformation and an integer K with the
following property: Given q'=p, =0 at t =0, are there
motions in which these coordinates and momenta remain
zero for all times'? Now the conditions q'=0 reduce
(2.2a) to the equations for a E-dimensional surface X, in
an iV-dimensional space. Thus we may rephrase the con-
ditions: Given that g is initially on X and g =g „q" is
initially on TX, the tangent plane to X at the given
point, we wish to characterize such classical motions for
which the system point remains forever on X. This is
the definition of K-dimensional decoupled classical
motion.

To obtain conditions for the determination of X, we
note that the requirements that q'(t)=p, (t)=0 imply
that H(q', q'=O, p;,p, =0)=H(q', p, ) is the Hamiltonian
for motion on X. This observation may now be applied
to Hamilton's equations (2.10) restricted to the surface
X, namely,

[which is instantly recognized as an identity in view of
(2.9)] and

+ ~ p~ fPgv BOY'
Bapf j g aB ij

,p

+ &pp f'jj BP3'

=f,".( I;~+ ,'p;p, B",~ ) p;p, f', -.~', ~B "' . —

(2.15)

(2.16)

=f",.(&,„+,'p,p~B ', „') p-p~f-, W', ,B "'—
(2.12)

This equation must also be an indentity, since point
transformations are automatically canonical when the
transformed Hamiltonian is defined by (2.5) and thus no
new conditions should emerge. The momentum in-
dependent terms evidently cancel, using the chain rule,

If we substitute (2.15) into the last term of (2.16), the
latter equation may be rewritten as

(&+ ,'p;p, B")~=f"„(Vg—+—,'p;p, B 'g) . (2.17)

Further information is to be obtained by comparing
(2.15) and (2.17) with (2.11) and (2.12) when the latter
are specialized to a surface X. Because in the evaluation
of (2.11) [or (2.9)] and (2.12) no o priori restrictions have
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been placed on H —X is here any K-dimensional
surface —we expect and find additional terms not
present in (2.15) and (2.17). If X is a decoupled surface
these additional contributions must be required to van-
ish. For example, comparison of (2.9) with v=j with
(2.15) then implies that

gcxBQJ 0 (2.18)

or with the help of (2.8a),

B"=B"=0 . (2.19)

(2.20)

Comparison with (2.17) [and the application of (2.8a)]
yields the conditions

V, + —,'p, p B'~ =0. (2.21)

To understand what has been accomplished, we make
a distinction between two cases. In the first case, which
is the only one we have studied previously we assume
that none of the coordinates q' is cyclic, nor can they be
made so by a suitable choice of coordinates on X, i.e.,
there are no conserved quantities p, . Under these cir-
cumstances, because p; are variable independently for
fixed coordinates, both (2.17) and (2.21) provide two sets
of equations; the coefficients of unity and the coefficients
of p, p may be equated separately. In this case we can
present our results as two lists of conditions, which are
equivalent:

B "=B"=O~B ~f' =B '~g
,P

V, =0~V =f' V,

B ",=O~B 'J =B '~j,f"

(2.22)

(2.23)

(2.24)

We can use the corresponding member of either set, as
convenient.

The physical meaning of these conditions is seen most
clearly from the list on the left-hand side. Provided the
metric tensor has been chosen block diagonal as required
by (2.22), (2.23) signifies the absence of "real" forces, or-
thogonal to X, whereas (2.24) specifies the absence of
centrifugal forces perpendicular to X. Thus "physical"
and geometrical forces tending to force the system off
the decoupled surface must be absent, independently of
one another, for decoupled motion to occur when none
of the collective momenta is a constant of the motion.
(This will contrast below with the situation when there
are additional constants of the motion. )

In the next section we shall explore mathematically
how these conditions determine the surface X. Before
doing so, we must recognize how they are altered when
there are symmetries of the original Hamiltonian. As we
shall see, one encounters here a situation in which the
system point is confined to X by a partial (or in an ex-
treme case total) balance between applied and centrifugal

Correspondingly, with the help of (2.15) and (2.19),
(2.12) may be rewritten

( V+ ,'p;p, B—'),.= f ",.( V, k+ 2p;p, B—", k )

forces orthogonal to the collective surface, rather than
the absence of both components. In order to elucidate
this case, let us suppose that, if necessary, a preliminary
(point) transformation has been carried out so that all
the conserved quantities appear explicitly among the vr,
and therefore the corresponding g are cyclic (ignorable).
This is particularly convenient whenever we look for
solutions which include one or more of these cyclic vari-
ables in the description of points on the surface. For
such values of a, the corresponding Eq. (2.17) becomes a
trivial identity: Since P is already a collective coordi-
nate and cyclic, Pq', both sides of this equation are
identically zero under these circumstances because V, V,
B ~, and B" are independent of P=q'.

The implication is that in such a case we are missing
some equations necessary to determine X. To see that
that is so, let us consider an extreme situation where all
the q' are cyclic. Then there is no information at a11 in
(2.17). How shall we determine the surface 2? The
solution lies in Eq. (2.21). The assumption that we have
identified the cyclic q' implies normally that we also can
construct explicitly a set of q'. The equations (2.21) are
(N-K) equations, which for constant p, , determine
(X —K) vales q'. (By redefinition they may be taken to
be q'=O. ) Since p, has already been set to zero, we see
that in this extreme case, (2.21) by itself determines the
surface X, q'=p, =0.

To illustrate with a familiar case, consider the Hamil-
tonian

H = —,'(p„'+p~')+ V[(x'+y')' '] . (2.25)

C. Alternative equivalent formulations

We first exhibit a simple alternative derivation of the
left-hand list of Eqs. (2.22) —(2.24). Suppose we expand
H(q, p ) about its value on some K dimensional surface
X. We obtain from (2.5)

aH . aHH=H
~
z+ q'+ p, +quadratic terms

=H ~+( V, + —,'p, p B '~, )q'+B "p,p, + (2.26)

The requirement that the coefficients of q' and p, vanish
are precisely Eqs. (2.21) and (2.22) and thus shed another
light on the conditions for existence of decoupled classi-
cal motion. This approach also calls to one's attention
the importance of the quadratic terms which alone will

This Hamiltonian admits two classes of decoupled
motion, circular motion with constant speed and radial
motion. We are intested here in the circular motion,
where with p = l =angular momentum and q

' =p
=(x +y )', Eq. (2.21) is just the well-known condition
for the radius and this motion.

The general case, where some coordinates of X are cy-
clic and others not, uses a mixture of (2.21) and (2.23),
(2.24) which is best elucidated in conjunction with the
geometrical theory to be developed in Sec. III. We thus
postpone further discussion.
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5I=5 f (ir g H)C—h=0.
0

(2.27)

We look for the best solution when p =g (q ') is
confined to a surface X. The equations

= [@,H],
= Iir, H )

(2.28a)

(2.28b)

define H as the generator of time translations on X.
Carrying out the variation of (2.27) in the standard way
and substituting (2.28), we find

5I = f [5ir [IP,H) —(BH/B~ )]

+5P[—[vr, H I
—(dH/dg ))I, (2.29)

which yields (2.14) and its consequences.

III. CONSTRUCTION
OF THE COLLECTIVE HYPERSURFACE

determine whether and to what extent a decoupled
motion is actually stable.

A second observation is that Eqs. (2. 14) may be
viewed as variational approximations to the full
Hamilton's equation. This point was originally made at
the quantum level. The classical limit of that remark
will now be derived independently from Hamilton s prin-
ciple in the form

Then we shall prove that ' 'X, =0. To see this we cal-
culate from (3.5)

(o-)~ (o- —1)~ (o —1)~ B pv ~ 1(~—1)~ (o.—1)~ B pv
, a ,pa , V I ~p ,v, a

(o- —1)~ (o —1)~ B ij
,ai ~J

+ ] (o —1)~ (a —1 )~ B ij 0
2 , l ,j,a (3.7)

i.e. , p' 'X lies in the tangent plane for any o. . [The set
of tangent vectors is even larger, see (3.22) below, but

the set VI 'X suffices for present purposes. ]
This theorem establishes the foundation for an explicit

determination of the collective surface X. We have al-
ready remarked that the K tangent vectors f', i
=1, . . . , K provide a basis for the tangent plane TX.
The (K+1) vectors V' 'X, =1, . . . , K+1 which lies in
TX must therefore be linearly dependent, i.e., we can
write

ln the first rewriting of (3.7), we have utilized (3.6) and

(2.22) and in reaching the value zero, we have again used

(3.6) and X( "X,=0~' ''X „=0) and (2.24). No-

tice next that for cr =2, we do not need (3.6) as a
separate assumption, since (2.23) provides the necessary
condition. Thus using induction, Eqs. (2.22) —(2.24) are
sufficient to establish the results

(3.8)

A. Characterization of the tangent planes
to the decoupled (collective) surface

K+1
V g flI i) X +0

o =2
(3.9)

It follows from the definition of the surface X that the
quantities g constitute for fixed j the components of a
tangent vector to this surface. There are K such vectors,
j =1. . .K. When Eqs. (2.22) are satisfied (consider the
right hand set), it is equivalent that the quantities f &

also constitute a set of K basis vectors for the tangent
plane. Then Eq. (2.23) states that 7'V(gradient of V) lies
in the tangent plane.

We shall now show that provided Eqs. (2.22) —(2.24)
are satisfied VV is the first of an indefinite number of
tangent vectors that can be formed from V and from
B ~, the "ingredients" of the given Hamiltonian. We
define a sequence of point functions

As we shall illustrate shortly, the elimination of the
"Lagrange multipliers" A~

~
(see the Appendix) provides

a set of determinantal conditions which are explicit
equations for the surface g =g (q ') and not differential
characterizations of them, as in Eq. (3.8). Equation (3.9)
is the equation which we solve in practice (see below and
the accompanying paper), but there remain a number of
theoretical questions to be answered.

Before studying these questions, we first illustrate the
application of (3.9) to the case N =3,K =2, utilizing the
notation V, U, W, . . . defined in (3.1)—(3.3). The elimina-
tion of Q~, ~

and 0~2~ from (3.9) yields the determinantal
condition

("X=V,
(2)X—= U=-'V B ~B

2 ,p

(3)X=W=—-'U B ~U
2 ,p

(3.1)

(3.2)

(3.3)

Vl V2 V3

Ul U2 U3 ——0,
81 82 83

(3.10)

'X= —'' "X B ~ X
2

(3.4) which is the familiar condition that V V, VU, and VR'lie
in a plane. To solve this equation for the surface

For application below, it is convenient to express these
quantities in terms of the new coordinates, P=g (q', q ), a=1,2, 3, (3.1 1)

(o )~ (o )~ & (o —1 )~ B pv(o —1)~
2 P , V

(3.5) it is convenient to utilize the parametrization g'=q',
i =1,2, and

Theorem. Let Eqs. (2.22) —(2.24) be satisfied and as-
sume provisionally that on X, for arbitrary 0.,

(3.12)

(.-')X =0.
, a

(3.6) In an accompanying paper, we shall present a detailed
study of just such an example.
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B. Measure of decoupling: Collective Hamiltonian

"X'=B t'"X
,p (3.13)

(3.14)

we have as the contravariant form of (3.8),

As stated above, we propose in practice to solve (3.9),
or the equivalent equations obtained by eliminating the

), in order to find candidates for the collective surface
X, as expressed by the equations P=g (q'). Tangent
vectors g may then be computed directly. But now we
must recall that (3.9) plays the role of consistency condi-
tions for the solution of (3.8). A nontrivial solution of
(3.9) will guarantee a nontrivial solution of (3.8) for the
quantities f', and herein lies the crux of the matter.

To see the point involved most clearly, let us rewrite
(3.8) by means of (2.22). With the definitions

we must face physical reality: In realistic applications,
truly decoupled motions will be few and far between.
Does this imply that we have constructed a useless
edifice? For the remainder of this section we discuss a
basis for adopting a more optimistic view.

Let us first change possible inconsistency back to con-
sistency by replacing (3.19) by the equations

(3.20)

We view the y, for fixed i and y~ =5~ as defining for any
solution of (3.9) a set of basis vectors y; which deter-
mine a plane PX associated with each point of X. In
general PX&TX. It seems reasonable, however, to in-
troduce a local measure of error which may indicate the
extent to which the solution of (3.20) yields an approxi-
mately decoupled classical motion. We suggest the fol-
lowing scale invariant measure: Let

(o )x,a (cr )x,i a
11 (3.15)

6, =g, —y,

Then

(3.21)

To solve these equations for g, , we must eliminate the
unknowns ' 'X'. This can be done, for example, with
the aid of a general covariance property of the theory:
Given any choice of the variables q' which characterize
the surface X, the form of the theory, i.e., of Eqs. (3.15),
must be invariant under a point canonical transforma-
tion on the surface X. This is easy to show explicitly
and is implied correctly by the notation in (3.15) which
indicates that we have a scalar product with respect to
the indices i. This means that K of the A equations
defining the surface may be chosen arbitrarily, for exam-
ple, the functions (i =1, . . . , K)

(3.16)

For the clarity of the present discussion, the simplest
choice for (3.16) is [a generalization of (3.11) and (3.12)]

=q

5, B pB '~6~
D(q):—

g,-B pB '~g~
(3.22)

unambiguously. For the metric tensor, experience sug-
gests that we calculate it from the elements of TX, using
the formula

is a reasonable invariant measure of decoupling (though
not a unique one). Further discussion and evaluation of
validity criteria are given in the accompanying paper,
but it is appropriate to explain here the function of
(3.22).

Toward this end it is well to remind ourselves that
what we are after, ultimately, is the collective Hamil-
tonian, i.e. , the Hamiltonian which governs the motion
on X. According to the method proposed, we have

(3.23)

(3.17) PB, =g, B &g (3.24)

Equations (3.16) and (3.17) now imply for (3.15) that

(~)x, 1 (~)x, 1 (3.18)

and

"x'="x 'g'
, I (3.19)

Equation (3.9) remains the condition for the consisten-
cy of (3.19). Inserting the solution of (3.9) into (3.19), a
set of quantities, nominally identified as g'; can be com-
puted (the g J, have been chosen). Since we already have
an integral surface P=g (q) from the solution of (3.9),
the tangent vectors can also be computed independently
from this source. We see that the procedure we have de-
scribed provides two ways of computing TX at each
point of the surface X which satisfies (3.9). (That which
is computed directly is naturally TX.) These two com-
putations may or may not agree.

Thus for full consistency of the theory, we have the
requirement that Eqs. (3.19) determine a surface and at
the same time the tangent plane to it at every point. But

which can be derived from (2.8a) and (2.22). Since we
could have used the quantities y; in (3.24), it is clear
that the criterion (3.22) measured the extent to which
(3.24) is essentially unique, and thus provides further
support for the introduction of Eq. (3.22) as a criterion
of validity.

C. An inverse theorem

We have described a method of calculating the collec-
tive surface X by solving (3.8) [or in practice (3.20)]. For
practical purposes, we have thus replaced (2.22) —(2.24)
by (2.22) and the set (3.8). This leads us naturally to ask:
When (3.8) has fully consistent solutions does this prove
that (2.23) and (2.24) are satisfied, i.e., does this establish
a decoupled motion? We shall prove that this is true ex-
cept in the event that the original Hamiltonian has addi-
tional constants of the motion besides the energy. In the
latter case this "inverse theorem" fails, a welcome result
in the light of the fact that (2.23) and (2.24) are no
longer fully correct! We have already implied that in
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+-"'X B&"X =O.
2 ,p , a ~v (3.25)

Equation (3.25) applies to all but the first of Eqs. (3.8),
which, as remarked above, coincides with (2.23). It is
thus left to prove that the set (3.25) implies (2.24). Now
the first term of (3.25) equals ' 'X b, B ' 'X; =0, since

'X, =0 and B "=0. Therefore Eqs. (3.25) reduce to
the equations

, a , I ~J
(3.26)

Before attempting to reach any conclusions, we must
draw attention to the fact that the list 7' 'X of tangent
vectors is not sufficiently complete for present purposes.
We define the point functions (o jr)

(-)r=(-)r=B ~"X "X
, p , v (3.27)

which includes the previous set ' 'X. It is then easily
shown, as in (3.7), that V' ' Y is a tangent vector.
Furthermore following the arguments leading to (3.25)
and (3.26), we can obtain a generalized form of the
latter:

B IJ(~)X (~)X 0
, a )I ~J

(3.28)

To understand the content of (3.28), we consider first
the simplest cases. For one-dimensional decoupled
motion, it suffices to consider o. =~=1, namely

B ",(V, ) =0. (3.29)

If V, &0, we obtain the desired result, B,"=0. Howev-
er, if V

&

——0, then q' is a cyclic variable. In this case
VV is orthogonal to the collective path and therefore
cannot determine it. The required modification of the
previous theory will be described in Sec. III D.

For two dimensional decoupled motion, we consider
the equations for o., ~=1,2. We get three sets of condi-
tions:

B'J V, V. =O, i,j=1,2 (3.30a)

that event the consequences of (2.21) are modified be-
cause some of the p; are fixed rather than arbitrary. De-
pending on the detailed Hamiltonian, for some values of
the noncollective indices a, we still have (2.23) and
(2.24), whereas for others (2.21) must be considered as a
whole. For these latter values we have a balance of ap-
plied and centrifugal forces, as illustrated in the example
based on Eq. (2.25).

Let us recall that the first of Eqs. (3.8) coincides with
(2.23). Thus, we wish to prove that the remaining
members of (3.8) imply that B '1 =0. Furthermore we

expect this proof to break down in part or in whole
when there are additional constants of the motion. We
turn then to the details of the demonstration.

We consider the computation of 'X from (3.5).
This computation parallels that given in (3.7). If we do
not insist on (2.23) and (2.24), but wish to derive (3.8)
(right-hand form), we must require the additional terms
that arise in this calculation, which appear as the
coefficients off', to vanish, namely

'+"X ="X B&"X
, a ,pa , v

B'J. V, U, =O,
B'J U;V. =O.

(3.30b)

(3.30c)

The derivation of (2.23) and (2.24) depended on being
able to equate to zero separately in (2.21) the coefficients
of unity and of p;p . When the p, are not constants of
the motion, they may, be suitably choice of initial condi-
tions take on a range of values at a given space point,
thus justifying the conclusions drawn. When a subset of
the p; takes constant values for the entire surface, this
reasoning must be modified as follows: Let there be
K& (K conserved quantities on X, with p, =c, ,
i =1, . . . , K&. As a generalization from simple exam-
ples, it is assumed that a preliminary point transforma-
tion has been carried out introducing the q

' =—t9',

i =1, . . . , K& as cyclic variables and K, "associated"
noncollective variables p', a =K + 1, . . . , K +K &, and
that the B 'J are known function of p', again only for
i,j = 1, . ~ . , K &. Then we can choose a subset of the
Eqs. (2.21) in the form

(8V/Bp')+ —,'c;c (oB '~/Bp') =0 . (3.32)

These determine the p' as functions of the q',
i =K&+1, . . . , K for fixed c, . The machinery leading to
(2.22) —(2.24) and then subsequently to (3.8) can be ap-
plied to finding a "reduced" surface X& of dimension
(IC —K, ) out of N —2K, variables. More explicitly we
can write

Kl K+Kl
H=-,' g B "pp, +-,' g B'p.pb+H~

&,J =1 a, b =K+ 1

N —2K
I

vr iriiB ~(()+ V(p', P) .
~,~=K, +~

2

(3.33)

(3.34)

The point is that for the theory starting with Eq. (2.14),
we substitute Hz for H, the p' being held fixed at values
ultimately determined by (3.32).

For each value of a, these are three linear homogeneous
equations for the three variables B 'J, which will have
the trivial solution provided the determinant

V) V2
b, i= — — &0, (3.31)

U, U,
the actual determinant of the coefficients in (3.30) being
the third power of 62. If Az ——0, the previous theory is

incomplete and we have one of two cases. Either VV is
parallel to V'U and we have one constant of the motion
or V

&
and V2 both vanish and we have two constants of

the motion.
The examples we have given generalize. For a K-

dimensional decoupled motion, provided there are no ad-
ditional conserved quantities on X, the theory described
by (3.8) and (2.22) is complete and equivalent to the con-
ditions (2.22) —(2.24). Otherwise we must re examin-e the
deriuation of (2.23) and (2.24). We describe very
sufficiently how this is to be done.

D. Modificatio of the theory for conserved quantities
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The method developed in this section will be referred
to henceforth as the generalized valley approximation
(GVA). The reason for this name is discussed in the ap-
pendix, where it is tied to the geometrical significance of
(3.9).

pling of radial motions are trivially satisfied.
We next turn to our main illustration, which should il-

luminate all the main points at issue. We have again the
form (4.1) with the replacement

IV. APPLICATION TO A MONOPOLE-DIPOLE MODEL

V= V(R, D), (4.1 1)

In a following paper we present some numerical stud-
ies in which we solve the GVA equations and study the
solutions. Here we will consider a simple analytic exam-
ple. For the reader who has no interest in the algebraic
details, we summarize what is demonstrated below. We
study an example based on the Hamiltonian (4.1) as
modified by (4.11), which admits exactly decoupled clas-
sical motions in a plane described by Eq. (4.24). The
equations of the generalized valley, either (2.22) —(2.24)
or (3.19) are thereby satisfied exactly. In other words,
these equations are integrable in this case and the decou-
pled surface X can be constructed.

By way of introduction, we study the Hamiltonian

D —ep7p )

7 P7p —1 )

(4.12)

(4.13)

(BD/Bg )=(r —De )/R, (4.14)

is a dimensionless dipole coordinate. Here w& are the
components of an arbitrary unit vector. In general the
dependence on D destroys the N-dimensional rotational
invariance of (4.1).

Now it is natural to introduce R and D as collective
coordinates and to complete the point transformation by
an "appropriate'* choice of (N —2) noncollective coordi-
nates. First, with R =q1, D =q 2, and from

N
H = g —,'(~ +coo( )+ V(R), (4. 1) we find

where

a=1

2 g (g )2 (4.2)

B "=1,

B =(1 D)/R—

(4.15)

(4.16)

(4.17)
It is natural to introduce R as a collective variable. The
associated mass is

BR c}R=
Bg. Bg.

=' (4.3)

The tangent vector to the collective path can be calculat-
ed from Eq. (2.22),

We wish to choose (N —2) additional coordinates, q, ,
with the property that they give

B =8 '=8' =8' =0.la 2a a I a2 (4.18)

Calling these coordinates f, (4.18) will be satisfied pro-
vided

B "(BP /BR ) = ( BR /Bg' ) = ( g. /R ) =e. ,

or if we consider e constant,

g =e R,
N

e =1.2
a

a=1

(4.4)

(4.5)

(4.6)

e (Bf, /B( )=0,
~.(Bf./Bg. ) =0 .

It is an elementary exercise to discover that

f, =(e, Dr, )/+I —D—
(4.19)

(4.20)

(4.21)

Of course, (4.5) is simply the point transformation to hy-
perspherical coordinates, where e are direction cosines
and we may take (N —1) of them as a set of noncollec-
tive coordinates. We have

f r =0,
f e =+I D— (4.22)

There are in fact N of these equations, a=1, . . . , N,
which satisfy two constraints

and

(Be /Bg'p)=(5 p eel)/R, — (4.7)
and as follows from (4.21) the full point transformation
has the form (the equation of a plane)

B '=B ''=0 (a&1),
B ' =B '=(5,b

—e, e& )/R

Thus the kinetic energy separates

(4.8)

(4.9)

=e (D)R =(f +I D+r D)R— (4.24)

Equations (4.19) and (4.20) are verified and the elements
of the mass matrix in the noncollective space are com-
puted from the formulas

N

a a, b =2
(4.10)

What we wish to emphasize concerning these well-
known formulas is that the conditions for exact decou-

(Bf /Bg&) = (o & ee&)/R +I D- —

+ [(De r)(rp De)]/R (1—D) ~2— —

(4.25)
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For what is to follow let us also notice that the
tangent vectors are calculated from (4.24) as

(ag /aR )=e

(ag /aD)= (~ De—) .
R

1 —D

(4.26)

(4.27)

Then

av a4' (1 —D2) av a4'

=aR RV+ R2 Ba aa (4.28)

2U=V V = BV
2 2

(1 D)=2—U(R, D) .
3D

(4.29)

By differentiating, we find a repetition of (4.28) with
V~U. And we repeat once more for 8'and 8' . Since
V, U, and W are at each point, linear combinations
of (ag /aR) and (ag /aD) they do indeed satisfy

V —Q, (R,D)U —Q~(R, D)W =0, (4.30)

when g is given by (4.24). The verification (4.28) —(4.30)
is, in fact, superfluous since for (4.11), (4.18), and
(4.14)—(4.17) we see that Eqs. (2.22) —(2.24) are satisfied!

The calculations carried out above are illustrative of
the properties of a broad class of models with decoupled
classical motions where we choose to add

V= V(q„. . . , q~ ) (K (X) (4.31)

to the harmonic oscillator in X dimensions or something
equivalently simple, and

Let us now verify directly that the equations of the
generalized valley are exactly satisfied for this example.
We have by the chain rule

av aR av aa
aR ag.

+
aD ag.

av 1 av
aR R aD

lective degrees of freedom from the Hamiltonian of a
many-particle system, the method of the generalized val-
ley. This method has previously been developed only for
a single collective coordinate. We have described a
theorem necessary to extend the previous considerations
to an arbitrary number of collective coordinates, the
whole being related to a concept of generalized valley, as
described in the Appendix. These results have been il-
lustrated by application to an elementary example.

On the theoretical side, it remains for us to clarify the
connection of GVA with the local harmonic approxima-
tion. A manuscript dealing with this question is in
preparation. For the practical side, we refer, initially, to
the following paper.
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APPENDIX: GEOMETRICAL CONSIDERATIONS

V —QiU =0 . (A 1)

These equations can be associated with the constrained
variational principle

5V —05U =0 . (A2)

This is one of the definitions for an extremal path on the
potential surface. It is more familiar' in the equivalent
form

1. Generalized valley

A special case of Eq. (3.9), the equation we actually
propose to solve for the collective hypersurface, has a
well-known geometrical significance, at least for the
one-dimensional case. For this case, we have

q, =q, (g, , . . . , g~) (i =1, . . . , Z') . (4.32) 5U —A5V =0, (A3)

Furthermore, we can generalize to

V= V(qi, . . . , qz)+ V(qrc i, . . . , qv),
provided

Bq, Bq;

ag. ag.
=

(4.33)

(4.34)

and V satisfies the required stability conditions.
An important point to recognize is that in all the ex-

amples of this section, we simply wrote down (by inspec-
tion) rather than computed, the equation of the collec-
tive surface, which is simply a plane, as required by the
considerations developed in the Appendix.

V. SUMMARY AND CONCLUSIONS

Within the context of classical mechanics we have
developed a method for approximately decoupling col-

which invites us to search for stationary values of the
magnitude of VV along equipotentials of V. This varia-
tional principle determines stationary paths including
valleys which are the geometrical objects which interest
us physically.

We prefer the form (A2) for the following reasons.
For Q =0, this equation reduces to the equation for criti-
cal points of V. Thus the critical paths must pass
through critical points. When we generalize to higher
dimensions, for. instance, for two dimensions to the equa-
tion

5V —Q)5U —0258 =0 (A4)

[which yields the appropriate form of (3.9)] it is natural
to think of this as the definition of a stationary surface
of V, including a generalized valley. For Q2 ——0, this
reduces to the problem of stationary paths, so that we
conclude that stationary surfaces must intersect station-
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ary paths. It is clear this argument extends to arbitrary
dimensions.

(III.C), this suffices for us to conclude that

f",~{g',;, + I ~.g', ;g,, r—,', g~i I =o . (A14)

2. Decoupled surface as geodesic

U=-,'V V.=-,'V V, ,

where

(A5)

V'=B 'JV
~J

We investigate in a direct manner the consistency of
Eqs. (3.8). We illustrate the reasoning with the point
function U, which can be written in two ways,

Actually the derivation can be generalized to any value
of K, though we shall continue to discuss the case E =2.

To understand the content of Eq. (A14), let us tem-
porarily change subjects. Let A.

' and A. be parameters
(coordinates) defining a surface with covariant metric
tensor B,",i,j =1,2. The integral of surface area is

S,= J D,'i'dA, 'dA, ', (A15)

where

The first writing is general and the second involves the
decoupling conditions. From the latter and the second
form of (AS), we can compute

D2 ——

B2

B,2
B22

=detB; (A16)

U = V'iV f'
where

(A7) From (A15) and (A16), it is a standard calculation to
derive the equation of the minimum surface (with fixed
boundary), the condition 5S2 ——0 yielding the equation

V &J V ~J+yJ;1,1 kl (A8) g j + 13rg~g~i y;Jg k 0 (A17)

and

(A9)

is the Christoffel symbol of the second kind on the sur-
face X, already defined in Sec. IV.

Next, we calculate U using the first form of (A5).
Starting from the formula

q'=q'(k'A. ), i =1,2 .

In these coordinates (A14) becomes

(A18)

We finally prove that (A14) implies (A17). First we
rewrite (A14) in a set of coordinates adapted to the sur-
face X, namely the coordinates q" such that q'=0,
a =3, . . . , N and

V~0 V ~&gP (A10) (A19)

a special case of (3.15). A straightforward calculation in
the tensor calculus yields the result

In this case f "I are the elements of a 2 X 2 invertible ma-
trix at each point, and so we can conclude that

V', ~ = V
',,'g'„f',. r~, V'"g—~f', ;

I I m n m 1

g, lj + mng, ig, j Vij g, m (A20)

, lgP f1 + PP V, kgcT (Al 1)

and

U = V.~Vp ——V'~V „f" (A12)

Comparing (Al 1) and (A12) with (A7) and (A8), the re-
quirement that they be equal for decoupled motion yield
the conditions

f'~V 'V, (g~„+r~.g, g, , r,', g~i) =0—. (A13)

Using the extended class of point functions defined in
Eq. (3.27), we can derive other equations similar to (A13)
and differing only in that V'V k is replaced by V'U k

and U'U k. For the case K =2, just as argued in Sec.

Next we observe that (A20) is correct, as has just been
established, not only for I = 1,2 but also for
a =3, . . . , N, because in this case each term in the equa-
tion is zero. This is so for the first and last terms by the
choice of q" and for the middle term because I', =0 as a
consequence of the decoupling conditions. Altogether,
we can therefore write in an arbitrary coordinate system

a a P y I a
g, J+ Pyg, g, J

—
3

.Jg, I = (A21)

Contracting (A21) with 8 '~ yields (A17). Thus a decou-
pled surface must be a geodesic surface as we set out to
prove. If the space is Euclidean, exactly decoupled sur-
faces are planes, as we found directly in the example of
Sec. V.

G. Holtzwarth and T. Yukawa, Nucl. Phys. A219, 125 (1974).
D. J. Rowe and R. Basserman, Can. J. Phys. 54, 1941 (1976).
F. Villars, Nucl. Phys. A285, 269 (1977).

4K. Goeke and P. G. Reinhard, Ann. Phys. (N.Y.) 12, 328
(1978).

~M. Baranger and M. Veneroni, Ann. Phys. (N.Y.) 114, 123
(1978).

D. M. Brink, M. T. Giannoni, 'and M. Veneroni, Nucl. Phys.
A258, 237 (1976).

T. Marumori, Prog. Theor. Phys. 57, 112 (1977).



36 DETERMINATION OF THE COLLECTIVE HAMILTONIAN IN A. . . 2671

V. B. Zelevinsky, Nucl. Phys. A344, 109 (1980).
~A. Klein, T. Marumori, and T. Une, Phys. Rev. C 29, 246

(1984).
P.-G. Reinhard, J. Marun, and K. Goeke, Phys. Rev. Lett.
44, 1740 (1980).
K. Geoke, P.-G. Reinhard, and D. J. Rowe, Nucl. Phys.
A359, 408 (1981)~

A. K. Mukherjee and M. K. Pal, Phys. Lett. 100B, 457
(1981);Nucl. Phys. A373, 289 (1982).
D. J. Rowe and A. Ryman, J. Math. Phys. 23, 732 (1982).

' L. P. Brito and C. A. Sousa, J. Phys. A 14, 2239 (1981).
~5K. Goeke, F. Grummer, and P.-G. Reinhard, Ann. Phys.

(N.Y.) 150, 504 (1983).
' D. Provoost, F. Grummer, K. Goeke, and P.-G. Reinhard,

Nucl. Phys. A431, 139 (1984).
T. Marumori, T. Maskawa, F. Sakata, and A. Kuriyama,
Frog. Theor. Phys. 64, 1294 (1980).

' M. Iwasaki, Prog. Theor. Phys. 65, 2042 (1981).
' A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 71, 973

(1984)~

2OM. Yamamura and A. Kuriyama, Prog. Theor. Phys. 75, 272

(1986); 75, 583 (1986).
2'S. Iida, Frog. Theor. Phys. 73, 374 (1985).
22F. Sakata, T.Marumori, Y. Hashimoto, K. Muramatsu, and

M. Ogura, Prog. Theor. Phys. 6, 387,400 (1986).
23E. J. V. de Passos and F. F. de Souza Guz, J. Phys. A 19,

1333 (1986).
J. Da Providencia and J. N. Urbano, in Time Dependent
Hartree-Fock and Beyond, Vol. 171 of Lecture iVotes in Phys-
ics, edited by K. Goeke and P.-G. Reinhard (Springer, New
York, 1982), p. 343.

25E. J. V. De Passos, in Time Dependent Hartree-Fock and
Beyond, Ref. 24, p. 350.

2~A. Klein, Nucl. Phys. A410, 74 (1983).
A. Klein, Nucl. Phys. A431, 90 (1984).

8G. Do Dang and A. Klein, Nucl. Phys. A441, 271 (1985).
~G. Do Dang and A. Klein, Phys. Rev. Lett. 55, 2265 (1985).
F. Villars, Nucl. Phys. A420, 61 (1984).

'A. S. Umar and A. Klein, Nucl. Phys. A45S, 246 (1986).
G. Do Dang and A. Klein, University of Pennsylvania Re-
port No. UPR-004NT, 1984.


