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In this paper we present a nonrelativistic microscopic mean-field framework for finite nuclei in
which the nucleus is described as a system of A baryons where each baryon is a dynamically deter-
mined superposition of a nucleon (N) and a A(3,3) resonance. The N-N interaction is a Brueckner
G matrix based on the Reid soft-core interaction while the N-6 transition potentials and A-b, in-
teractions are one-boson-exchange potentials. The ground-state properties of the nuclei ' 0 and

Ca are determined within the spherical Hartree-Fock approximation in a no-core basis consisting
of up to six major oscillator shells. A detailed study of the zero-temperature properties of these
nuclei under compression and dilation is presented in order to gain insight into the nuclear equa-
tion of state. Under certain conditions, a transition to a mixture of nucleons and deltas is found in

Ca but not in ' O. The transition is reminiscent of a first-order phase transition.

I. INTRODUCTION

Conventional nonrelativistic, microscopic nuclear-
structure calculations are based on modeling the nucleus
as a collection of nucleons which interact through a
nucleon-nucleon potential. The nucleons are assumed to
be elementary structureless particles. Thus no internal
excitations of a single nucleon are considered in this
case. With the advent of precision experiments at inter-
mediate and high energies using electromagnetic and
heavy ion beams, the contribution of baryon resonances
to the structure of nuclei in their ground state and under
compression is clearly a major theoretical question.

The possible importance of nucleon resonances in nu-
clear systems has been recognized for a long time. '

Their efFect has been investigated in the two-nucleon sys-
tem, both in the bound and in the scattering state.
The effect of nucleon resonances has been investigated
also in infinite nuclear systems (nuclear matter" and
neutron matter' ). In all these investigations, it is the
b, (3,3) resonance that has been studied. This was seen to
be the most important resonance for the understanding
of the intermediate range of the nucleon-nucleon force
because of the strong N-6 transition strength and low
mass of the delta relative to the nucleon. Thus the exci-
tation of nucleons to deltas is the leading process to be
considered when extending our models of the nucleus to
incorporate the dynamics associated with the structure
of the nucleons. Once the importance of this process is
understood, we may consider processes whereby excita-
tions to other baryon resonances are also allowed.

In this paper, we extend our model of nuclei to in-
clude the b, (3,3) isobar with spin s = —,', and isospin r= —',
corresponding to the four charge states 6++, 4+, 6,

each with a mass of 1236 MeV, and we neglect
effects due to its finite width. We treat these isobars ex-

plicitly and on an equal footing with the nucleons with
the goal of examining their nonperturbative effects in nu-
clear structure calculations. We are presenting a nonre-
lativistic microscope mean-field approach to finite nuclei,
which includes nucleon and delta degrees of freedom.
We select the nuclei ' 0 and Ca and calculate their
ground-state properties at zero temperature within the
spherical Hartree-Fock (SHF) approximation, neglecting
the Coulomb force. Then with the constrained Hartree-
Fock approximation (CSHF), we examine how the delta
excitation is populated as a function of radial constraint
at zero temperature. Future work will examine the role
of finite temperature. A central goal of the present effort
is to begin to explore the role of the delta resonance on
the properties of finite nuclei under compression.
Indeed, we present evidence indicating that a possible
first-order phase transition can occur in nuclear matter
since we find Ca to undergo a discontinuous change in
isobar occupation under compression. The present work
extends a brief presentation given earlier. '

We organize this paper as follows. In Sec. II we de-
velop an effective no-core Hamiltonian for our system.
The two-body matrix elements are evaluated in a har-
rnonic oscillator single-particle basis with j-j coupling to
good total angular momentum J and good isospin T. In
this section we also discuss the choice of model spaces
for these no-core calculations. In Sec. III we introduce
our Hartree-Fock (HF) method for the system of nu-
cleons and b, (3,3) particles. In Sec. IV, we discuss phe-
nomenological adjustments of the matrix elements of the
effective Hamiltonian. Finally, in Sec. V we display our
constrained spherical Hartree-Fock (CSHF) results for
' Q and Ca. Also, in Sec. V we discuss the conclusions
that we draw from these results.
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II. THE EFFECTIVE NO-CORE HAMILTONIAN, H, N

We consider a nuclear system of A baryons [nucleons:
mass =m; spin s = —,

' isospin r = —,
' each, and 6( 3, 3 )

baryons: mass =M; spin s = —', ; isospin r = —,
' ] at zero

temperature and without the Coulomb interaction. We
develop a dynamical treatment that accommodates tran-
sitions between nucleon and delta degrees of freedom.
We introduce 7

p
7

p projection operators defined in
the r = —,

' (nucleon) at r= —,
' (delta) spaces as

i p

FIT&. 1. Diagrammatic representation of V,ff

H =H, (one body)+H~(two body),

1/2 5 l 27 = ———7op 4
3/2 l 27 =—7op 3 4 (2)

where

p.2
H~(one body)=

i =1

m —M +M —m
m op

such that

1/2+ 3/2
&p op

(3) and

Hz(two body) = T,„~(m)+ &

Our first approximation to the nuclear mass operator is

p2 p2
' +m 7'"+ ' +m 7'" +V"'

2m 2M Op

VBB' VNN+ VNN~NE+ VNA~Nb, + VNA~AN

+ VNb~bh+ VNN~AE+ VAh~AA

where V is the nucleon-nucleon interaction operator,
Bl B2~B lB2and V ' ' ' ' are the transition potentials. '" The po-

tentjal V wjll be descrjbed jn more detajl below. For
the transition potentials we adopt the one-boson ex-
change interactions of Garj, Njephaus, and Sommer. '

The intrinsic mass operator H is

(6)

where

2~c. .
T, = ', P,

2m
P;

i =1

I

where P, is the single particle momentum, V is the
two-baryon interaction operator given by

(P, —P )

[T„„(m)];,=

Hz(two body)= T„,(m)+ V,s. (12)

is the relative kinetic energy operator.
The term H&(one body) of the Hamiltonian serves as a

correction and gives a nonzero contribution when it acts
on many-body states with 6 components. States with 6
components are said to comprise the b, sector. H, (one
body) arises solely due to the mass diff'erence between a
nucleon and an isobar.

Hz(two body) is a two-body operator, composed of the
relative kinetic energy operator T„&(m) and the two-
baryon interaction operator V

We employ this Hamiltonian in nuclear Hartree-Fock
calculations with nucleons and 6 orbitals. To this end,
we replace the nucleon-nucleon interaction V by an
effective nucleon-nucleon interaction V,z . The effective
nucleon-nucleon interaction we use is the sum of the
Brueckner G matrix and the lowest-order folded diagram
(second order in G) acting between pairs of nucleons in
the no-core model space and calculated from the Rejd
soft-core potential. ' The transition potential is treated
in lowest order. For a more complete discussion of the
evaluation of V,&, see Ref. 16.

Thus the two-body part of the effective Hamiltonian is
then

are the center-of-mass kinetic energy and momentum,
respectively. m is the total mass of the nuclear system.

In general, m is state dependent. We use the follow-
ing approximations. First, we approximate m = Am and
therefore neglect binding energy effects in the kinetic en-

ergy operator. Then the intrinsic interaction Hamiltoni-
an of the system is

Figure 1 is a diagrammatic representation of V,~ which
consists of the effective nucleon-nucleon interaction plus
transition potentials.

We derived the following expression for the matrix
elements of the two-body potential having good total an-
gular momentum J and good total isospin T in a two-
particle harmonic oscillator (HO) basis.
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(13)

with

1 )I+s+ T][ 1 ( 1
)I'+s'+ T]D=

+2(1+5.„)2(1+5„)
(14)

Here, l, X, and L stand for the relative, center-of-
mass, and total orbital angular momentum, respectively;
g and J stand for the relative and total angular momen-
tum, respectively. n and N signify the relative and
center-of-mass principal quantum number. s,- and s sig-
nify single-particle and total spins. The brackets I

and ML represent the 6-J, 9-J, and Moshinsky
coe%cients extended to particles of unequal masses, ' re-

I

spectively. Finally, (2i+ 1) is abbreviated by i.
The evaluation of this expression has been accom-

plished in two major steps: First, we evaluate the rela-
tive center of mass (RCM) matrix elements,
&n'I's'(tItz)gT

I
V

I
nls(t, t2)gT&. The upper limits on

the quantum numbers n, n', l, l',s,s', and T are all taken
to be 3. For g, the limit is 6, and changes of the orbital
angular momentum Al =0,+2, and spin As =0, +2 when
we evaluate the tensor part of the potential. Under
these limits on the quantum numbers, a total of 7SQS
nonvanishing RCM matrix elements are obtained. These
RCM matrix elements serve as input for the second
phase of our calculations, described below.

Second, we construct the two-body part of the
effective Hamiltonian matrix in the harmonic oscillator
single-particle basis. It is convenient to view the Hamil-
tonian matrix in its schematic form as

pure N-N sector N-4 sector

N5
transition &

&H2(two body)) =
5-N sector pure 6-6 sector

hN
& Vtransition &

where H is decomposed into a pure N-N sector, an N-6
sector, a 6-N sector, and a pure 6-6 sector. The matrix
elements are evaluated in two model spaces with Ace=14
MeV, and these spaces are referred to as the 3-space and
the S-space. In order to facilitate the calculations for
this initial study, we select only those oscillator orbits
that are allowed to mix to form the occupied orbits of
' 0 and Ca in the SHF approximation. We are not
concerned at this stage with solving for the self-
consistent, unoccupied orbits.

We refer to our no-core oscillator model spaces by the
maximum of the value 2n +l of the orbitals included in
the basis. Thus, the first four oscillator shells comprise
the "3-space." With the eliminations just discussed the
nucleon orbitals for ' O and " Ca are

Os ]/27 op j/270p3/27 1s ]/27 d3/27 Od5/27 p [/27 1p3/2

For the deltas, we keep those orbits which can mix with
the retained nucleon orbits under our symmetry assump-
tions. These are

Op&/27 Op3/27 Od3/27 Od5/2 .

There are thus a total of 12 single-particle orbitals in the
3-space. In the 5-space we use 13 nucleon orbitals (the
eight-orbitals in 3-space plus 2s, /2 1d3/2 1d5/2, 2p»2,
2p3/p) but only the same four delta orbitals as in 3-space
so there are a total of 17 single-particle orbitals. We
view these spaces as minimal choices to begin to search
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for qualitative effects such as the macroscopic occupa-
tion of the delta orbits. We are willing to make phenom-
enological adjustments to the effective Hamiltonian to
reproduce appropriate ground-state properties in the
SHF approximation; this is discussed further in Sec. IV.
In future efforts, we will substantially expand the basis
spaces.

III. HARTREE-FOCK EQUATIONS FOR A SYSTEM
OF NUCLEONS AND 6(3,3) PARTICLES

I

A ) =g Cs"
I

8 ) . (21)

Cs=CN if I 8 ) =
I
N),

(22)

C~ = CD if
I

8 ) =
I
D ),

The single sum now extends over both nucleon and delta
states, and all states are referred to simply as baryon
states. The coefficients CB are now defined as

In a typical treatment of a system of A nucleons, the
Hamiltonian H is assumed to be the sum of kinetic ener-
gies and two-body interactions,

and

g I
ca I'=1.

H =g t(i )+ g V(ij ), (15)

H=g [t(i) +U(i)] +g V(ij ) QU(—i) (16)

which can be rewritten by adding and subtracting a
single-particle potential as

The HF energy of the system in terms of HF single-
particle states is

+» =X&~
I
Hi

I
~&+ 2 & & ~s I 82

I
~p & ~

—Ho +H] ) (17) or

whel e Ho is the single-particle Hamiltonian and II, is
the residual interaction.

In conventional Hartree-Fock (HF) theory for nu-
cleons only, the two-body interaction is replaced by the
effective two-body interaction, and a variational treat-
ment in the space of single Slater determinants yields
equations for the mean-field Hamiltonian Ho.

We extend the pure nucleon HF approximation to a
system of nucleons that can undergo transitions to iso-
bars and derive expressions for the HF equations and the
HF energy.

Let
I
a), IP), I y) represent the HF single-particle

states determined as self-consistent solutions of the
nucleon-delta HF problem; let X,p stand for any of these
labels. The HF single-particle state

I

A, ) is expanded in
a harmonic oscillator basis

EHF ——g g (C~)*(ca')&8
BB'

+ —,
' y y (C )*(C ){Cg )*(Cg )

AP BB'B
l B2

x &BBi IH~ IB'Bz &~ (24)

The variational principle reads

a
EHF —g g(C~ )*(Cii ) —1 e) ——0,

B
(25)

(26)

where C is one member of the CB and e& are the single-
particle energies. We define

I~&=pc", Ix&+pc'ID& .
D

The first sum in Eq. (18) extends over nucleon states
while the second sum extends over delta states. N,D, k
are generalized single-particle-state labels, e.g. ,

or

&8 Ih
I
~&=~,&8

I
~&,

gc~ &8
I

h
I

8') =eic~,

(27)

(28)

N =rt NlN N jN j Nm =Nmj m

D =n.DlDsD jDm &Dm, =Dm m

g=nglgJgmj m =kmj m~

and, using Eqs. (24) and (25), we find

)
&8 Ih IB')=&8 IH, IB')

+y y (cg )*(cg )&88, IH, I8'8, )„,
P B281

The CN and CD are the expansion coelncients of
I

A, )
in the nucleon and delta states, respectively, and satisfy
the equation

g I
CN

I

'+ & I
CD

I

'=1 .
N

If we relabel the delta states and the coefficients, we
can write Eq. (18) as

(29)

where h is the HF single-particle Hamiltonian. Using
the relation

I
ij) =&-, —. g g C ' ' MC ' '

M (i j)JMTMT ),
JM TMT

(3O)
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where

R-,. ;.=Q(1+5-,. ;. ) = Q 1 +5„„5,, 5, , 5, , 5.. . (31)

(5 ), and total angular momentum symmetry
B A,

(5, ), the C~ are defined as
JBJX '

and imposing spherical symmetry (5&
&

), time-reversai
B

symmetry (5 ), isospin projection symmetry
B A,

Then Eq. (29) can be written as

(32)

&8 [h [8')=&8 [H, [8')

p g g m m
1 2

1 2

5 5 6 6
JB Jp JB J 1B l lB I

P 2 P l P 2 P

2 B2

B B B'TB T
(33)

In the HF we restrict the particles to have good isospin projections +—,'. That is, m, =+—,
' for protons and 6+ parti-

cles which are allowed to mix, while m, = ——, for neutrons and 6 particles which are allowed to mix. The following

components of the HF Hamiltonian must then be considered:

(a) &8(n)
~

h
~

8'(n) ),
(c) &B(n)

~

h
~

8'(b )),
(e) &8(p)

~

h
~

8'(p)),
(g) &8(p)

~

h
~

8'(5 ) ),

(b) & 8(~')
~

h
~

8'(~') &,
(d) &B(b, )

~

h
~

8'(n)),
(f) &B(b+)

~

h ~8'(6+)),
(h) &8(A+ )

~

h
~

8'(p) ) .

Matrix elements in (c) and (d) are related by hermiticity, as are matrix elements in (g) and (h). We employed Eq. (33)
to find expressions for the eight cases above. These are given in Appendix A. We also derived a detailed expression
for the HF energy of the system. The following expression represents the most convenient form for the HF energy
upon which the numerical evaluations are based:

En„=—,
' g (2j~+1)5, , 5~ I [Ps~, &8(n)

~

h
~

8'(n)&+P~~. &8(n)
~

h
~

8'(& ) &+Pss.&8(& )
~

h
~

8'(n) &

BB'

+p,'- &8(~') Ih IB'(~')&+pr; &8(p) Ih IB'(p)&+p~'; &8(p) Ih IB'(~+)&

+ps g & 8 ( &+ )
~

h
~

8 '( p ) ) +p~ ~s~
& 8 ( b. +

)
~

h
(
8'( b, +

) ) I

+ —,
' g (2js+1)5, , 5&, Ipse, &8(A ) (H, (8'(6 )) +p s,s&8(b, +) (H, (8'(b, +)) ),

BB'
(34)

where the HF energy is expressed in terms of HF
single-particle Hamiltonian matrix elements, single-
particle densities, and single-particle transition densities,
defined in Appendix A.

IV. SCALING RULES AND PHENOMENOLOGICAL
AD JUSTMENTS

In Sec. II the two-body matrix elements of the
effective Hamiltonian were evaluated using a harmonic
oscillator basis with Boo=14 MeV. In order to simplify
the application of the effective Hamiltonian to as wide a
range of nuclei as possible, we follow the scaling rule of
Ref. 16. That is, if we signify a matrix element of an

&H'„)= „"&H„& . (35)

Therefore, we introduce the factor Ace'/Ace to scale the
matrix element of H, ff when we use them in the 3- or 5-

space for ' 0 and Ca. The origins and physical
significance of this linear dependence on Ace for both the
kinetic and effective potentials are discussed in Ref. 16

We also introduce overall factors A, &, A, 2 for the kinetic
energy and the effective nucleon-nucleon interaction ma-
trix elements, respectively. Our motives behind this can

operator, e.g. , H,~ by &H,fr) implying it was calculated
in an oscillator basis with Rm, the matrix elements of
H ff in a basis with Ace' are approximately given by
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TABLE I. Factors Wc'', A, „A,~, used in this work for ' 0 and
Ca in the 3- and 5-spaces.

Nucleus

160

40Ca

Model space W~' (MeV)

9.47
8.65

10.08
7.87

0.95
0.977
0.99
0.985

1.18
1.35
1.11
1.29

V. RESULTS

We developed a computer code for radially con-
strained spherical Hartree-Fock (CSHF) calculations
based on Eqs. (A2) —(A9) and (34). We calculate the fol-
lowing quantities: The Hartree-Fock energy (EHF), the
rms radius, the number of delta particles in the occupied
orbitals, the single-particle energies, and the occupation
probability of the single-particle orbitals. We found the
3-space to be inadequate to significantly explore the
consequences of a radial constraint ~ Thus we report
here the (CSHF) results for ' 0 and Ca in the 5-space
only. The single-particle orbitals we use in the 5-space

be understood as follows. We anticipate that our spheri-
cal Hartree-Fock (SHF) results for a system of nucleons
would be similar to those of the Brueckner-Hartree-Fock
(BHF) approximation. ' Small differences may be as-
cribed to different choices of the Pauli operator. Indeed,
the standard deficiencies were found' in. the solution of
' 0 and Ca in the SHF approximation, i.e., too little
binding but approximately correct rms radii. Our philo-
sophy is to adjust the matrix elements of H, ~ in the
nucleon-nucleon sector in order to achieve agreement
with measured ground-state properties in the SHF ap-
proximation before proceeding to see the effect of includ-
ing the delta degrees of freedom in the Hamiltonian.

Therefore, we adjust A, A.z, and Ace' simultaneously to
achieve the desired rms radius and binding energy for a
given nucleus within SHF for each of the model spaces.
The values of A, kz, and A~' we have used in this work
are similar to those of Ref. 16 and are listed in Table I.
The small differences in these parameter values from
those of Ref. 16 are due to a higher quality fit to the
ground state (g.s. ) properties of ' 0 and Ca in the SHF
approximation with the Coulomb interaction included.

We note that the value of A,
&

is less than unity. This is

because the kinetic energy operator (T„~ ) is a positive
definite operator, and if it is normalized by itself into a
finite model space, this will reduce its magnitude. We
use values of kz greater than unity in order to compen-
sate for the lack of sufficient binding observed even with
BHF. The value of A,

&
increases as the model space in-

creases. This trend arises because, as the model space
increases, the renormalization procedure used to obtain

V~ff produces an effective interaction with weaker at-
traction. As the model space becomes very large, the
effective interaction approaches the bare interaction
whose oscillator matrix elements are large but positive.
Thus, our whole procedure of remaining within the HF
approximation must break down eventually with increas-
ing model spaces.

—80—

! ! !
l

! !

(a)

100—

-120—

140—

2.2 2.4 2.6
! ! ! I ! !

2.8
Radius (fm)

I

3 3.2

!
!

! ! ! !

—127.5

—130.0

—132.5

-135.0

—137.5

! l ! ! !

2.6
rms Radius (fm)

! l ! ! ! !

2.8

FIG. 2. Constrained spherical Hartree-Fock (CSHF) energy
of H,z de6ned in the text for ' 0 in the 5-space vs rms radius.
Coulomb eft'ects are neglected. The transition potentials are
those of Ref. 14. (a) Upper graph shows all the points we cal-
culated. (b) Lower graph shows the portion of (a) in the im-
mediate vicinity of the minimum.

are those which are used to evaluate the two-body ma-
trix elements in Sec. II.

We display our results for ' 0 and Ca in Fig. 2 and
Fig. 3, respectively. The equilibrium EHF equals—138.5 MeV ( —414.5 MeV), and the rms radius equals
2.61 fm (3.38 fm) for ' 0 ( Ca). The measured binding
energy and the rms radius are —128 MeV ( —342 MeV)
and 2.74 fm (3.48 fm) for ' 0 ( Ca). The difference be-
tween our calculated results and the measured quantities
can be attributed to our neglect of the Coulomb interac-
tion, which gives a repulsive energy of 14 MeV (74 MeV)
for ' 0 ( Ca). The number of 6 particles in the occu-
pied orbitals for all values of rms radii obtained in ' 0
and Ca within this limited model space is equal to
zero. These results are consistent with results obtained
for He with a different set of transition potentials. '

The He calculations did not explore the effect of a radi-
al constraint, but did explore the effects of finite temper-
ature. No mixing of deltas was observed in the He cal-
culations.

We note that the transition potentials we use in this
work are evaluated in Ref. 14 with a one-boson
exchange-potential model ~ The model has numerous pa-
rameters: masses, coupling constants, and regularization
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I I I I I I I I I I I

3.25 3.3 3.35

—395—

-400—

—405—

FIG. 4. Constrained spherical Hartree-Fock (CSHF) energy
of H, ~ for Ca in 5-space vs rms radius for the strength of
transition potentials increased by a factor of 5 (solid curve) and

by a factor of 10 (dashed curve). The solid and dashed curves
coincide for the nucleon sector which occurs only for rms radii
greater than 3.15 fm and is only depicted up to 3.3 fm. The 5
sector occurs only for the rms less than 3.1 fm. Coulomb
eff'ects are neglected.

—410—

-415—

3.2
I

3.4 3.5
rms Radius (fm)

I I I I I I I

FIG. 3. Constrained spherical Hartree-Fock (CSHF) energy
of 0,& for Ca in 5-space vs rms radius. The transition poten-
tials are those of Ref. 14. Coulomb effects are neglected. (a)
Upper graph shows all points we calculated. (b) Lower graph
shows the portion in the immediate vicinity of the equilibrium
radius.

parameters. In principle, these parameters are con-
strained by the coupled channel fits to nucleon-nucleon
scattering data. As in all such models, there are uncer-
tainties. We remark that one uncertainty could be possi-
bility of multiple parameter sets yielding equivalent fits
to the nucleon-nucleon data. With this in mind, we
sense some freedom, and we will now explore that free-
dom by simply adjusting the overall strength of the tran-
sition potentials. By doing this we hope to isolate the
character of the transition from nucleon matter to delta
rnatter in finite nuclei.

We have therefore increased the strength of the transi-
tion potentials in H, ~ by multiplying the matrix elements
of the transition potentials by factors of 5 to 25 in steps
of 5, in a search for the transition to appreciable delta
orbital occupation. We repeated the CSHF calculations
with these various strengths. We found that the number
of the deltas in the occupied orbitals remains zero for
' O. The CSHF solutions are the same as the results ob-
tained in the pure nucleon sector.

For Ca we found 6 mixing first with compression
when we increased the strength of the transition poten-
tials by a factor of 5.0. The results with this strength
are the same for a wide range of radii around the equi-
librium radius as they are with strength unity. In the

range r=(3.16—3.97) fm, the results behave very smooth-
ly and approximate the shape of a parabola. A portion
of this parabola is shown in Fig. 4. However, for a small
interval of the nuclear radius (see Fig. 4) around 3.09 fm,
we find mixing of nucleons and deltas. In that region of
r, a substantial change of the CSHF solutions occurs.

If we examine the region where 6 mixing occurs, we
find several prominent features of the results.

(1) As the constraint parameter A. 3 (which is the
coefficient of r in the CSHF Hamiltonian) is changed
slowly to increasing negative values (nucleus
compressed), there is an abrupt change in the character
of the CSHF solution.

(2) The nature of this change is characterized by a
sudden discontinuous change in the number of delta par-
ticles N~ in the occupied orbitals. Nz changes suddenly
from 0 0 to 4. 1 at the critical value of X3———62
MeV fm (density increased by —30%).

(3) Accompanying this change, both the rms radius of
the solution and the CSHF energy change discontinuous-
ly. In addition, in the range where mixing occurs, the
binding energy is very sensitive to a small variation in
the rms radius.

(4) The solutions of the CSHF equations take a
dramatically increasing number of iterations to converge
as we approach the critical value of A, 3.

All the above features are reminiscent of a first-order
phase transition. However, we cannot completely rule
out this possibility that the transition is second order in
character. To explore this issue further we show as a
dashed curve in Fig. 4 the solutions with 6 mixing when
the strength of the transition potentials has been in-
creased by a factor of 10. Note that in these same calcu-
lations the curve for the nucleons only phase is again ob-
tained. That the 6 phase is obtained only under
compression and is now lower in energy than the nu-
cleon phase reflects the order of magnitude increase in
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the strength of the transition potentials and the use of
constrained Hartree Fock. In order to have a 6-mixing
phase as the lowest Hartree Fock solution in Ca
without constraint we found the transition potential had
to be increased by about a factor of 25 over the values
given in Ref. 14.

To our knowledge this is the first observation of this
transition in any calculations reported in the literature
for finite nuclei. To further elucidate this transition it is
necessary to go to larger nuclei and larger model spaces.
Based on the trends from ' 0 to Ca we may speculate
that the 6 phase would then be found with weaker
strengths of the transition potentials when the nuclei are
compressed. It is also possible that with larger model
spaces where greater compression is achievable for these
nuclei, this same transitions in Ca will be observed
with weaker transition potential strength.
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APPENDIX

In this Appendix we use Eq. (33) of the text to find ex-
pressions for the HF single-particle Hamiltonian matrix
element. Here we show the major steps of deriving an
expression for the first case, i.e.,

&B(n)
~

h
~

B'(n)) .

In Eq. (33), if we perform the sums over m, m
B1 B2
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Now we define the following one-body density matrices:

~B
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Equation (33) can be rewritten as
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