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Ground-state properties of even-even nuclei in the s-d shell are calculated using relativistic
mean-field models of baryon-meson dynamics that include scalar meson self couplings. Axial sym-
metry is assumed. The systematics of intrinsic quadrupole moments are studied for a variety of
parameter sets that are fitted to the same nuclear matter saturation properties. The size of the
moment is strongly correlated with the nucleon effective mass M * and the spin-orbit strength, but
is only weakly affected by the compressibility or the surface energy. If parameter sets with accu-
rate spin-orbit strengths are used, the trends for s-d nuclei reproduce experimental systematics and
are quantitatively similar to those obtained in nonrelativistic Skyrme-Hartree-Fock calculations.
The implications for quantum hadrodynamics in the mean-field (Hartree) and one-loop approxima-

tions are discussed.

I. INTRODUCTION

Relativistic approaches to nuclear physics have been
widely studied in recent years. These approaches in-
clude phenomenological models, in which nucleon
motion is described by a Dirac equation with large
Lorentz scalar and four-vector potentials,' and the devel-
opment of a field-theoretic framework for nuclear sys-
tems based directly on hadronic degrees of freedom
(called “quantum hadrodynamics” or QHD).? Relativis-
tic mean-field models have been applied to problems of
nuclear structure, nuclear currents, neutron stars, and
nuclear matter at finite temperature.>

Relativistic mean-field models can be derived as the
self-consistent Hartree approximation to QHD theories
based on Lagrangian densities with Dirac nucleons and
Lorentz scalar and four-vector meson fields. In this ap-
proach, both the nucleon wave functions and the meson
fields are determined self-consistently. The mean-field
theory (MFT), or Hartree approximation, becomes exact
at high density. At normal nuclear density, the MFT
provides a nonperturbative starting point for calculating
solutions to the full quantum field theory.

The Hartree approximation gives a reasonable descrip-
tion of the ground states of closed-shell nuclei when the
input parameters are adjusted to reproduce empirical nu-
clear saturation properties. These models lead naturally
to a nuclear shell structure and yield quantitatively accu-
rate predictions for rms radii, charge densities, and neu-
tron densities.»* In addition, solutions for closed-shell
ground states in the Hartree approximation provide den-
sities for calculations of polarized proton-nucleus
scattering in a relativistic framework. The predictions
of spin observables, using a relativistic impulse approxi-
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mation in conjunction with Hartree densities to describe
the nuclear ground state, have been remarkably success-
ful.!

Given the successes of the mean-field approximation,
it is natural to extend the models to open-shell nuclei.
In this paper, we apply relativistic mean-field models to
even-even nuclei in the s-d shell. The extension from
spherical to axially symmetric systems is simplest, and a
restriction to azimuthal and reflection symmetric defor-
mations should be reasonable for light, even-even nuclei.
In the Hartree approximation, these symmetries (along
with the assumption of good charge and parity for the
ground state) limit the nonvanishing meson fields to the
same fields that enter in spherical nuclei.’ In particular,
there are no pion fields, charged meson fields, or three-
vector fields.

We start with a model Lagrangian that includes cubic
and quartic scalar meson self couplings. These addition-
al terms are consistent with renormalizability. These
nonlinear couplings are often set to zero in mean-field
models to minimize explicit many-body forces.? Howev-
er, nonzero values can be used to reduce the large sur-
face energy and compressibility that are characteristic of
linear parametrizations.®

If the parameters in the mean-field equations are un-
constrained, optimized fits of the model to properties of
spherical nuclei yield negative quartic self-couplings.”?
Such parametrizations are inconsistent with a QHD
derivation of the mean-field equations. In particular, the
MFT assumes that the theory has a ground state; if the
quartic self coupling in the Lagrangian is negative, the
energy spectrum is unbounded from below.’ Thus these
mean-field models cannot be directly interpreted as ap-
proximations to a QHD theory with nonlinear scalar in-
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teractions.

We therefore propose a different interpretation: the
nonlinear terms allow the density dependence of the
MFT to be phenomenologically adjusted. We derive the
mean-field equations from an MFT energy functional to
which we add cubic and quartic scalar meson self cou-
plings; these new terms simulate density dependence that
could arise from corrections to the Hartree approxima-
tion. By fitting these parameters phenomenologically,
we can determine the density dependence needed to
reproduce experimental systematics and then use the re-
sults to test more sophisticated QHD calculations.

In Ref. 5, the relativistic Hartree equations for a mod-
el with no nonlinear meson interactions were solved for
several axially symmetric nuclei using the parameter set
of Horowitz and Serot.* The calculated quadrupole mo-
ments were somewhat smaller than those obtained in
analogous nonrelativistic calculations and those derived
from experimental data. The authors suggested that the
differences reflected the large compressibility of the
mean-field calculations. In Ref. 10, the mean-field equa-
tions were solved for 2°Ne for several parameter sets, in-
cluding one with nonlinearities. For the nonlinear set
(which had a negative quartic self coupling) taken from
Ref. 8, the calculated deformation was close to that ob-
tained in a nonrelativistic Skyrme-Hartree-Fock calcula-
tion of *°Ne.

In this paper, we investigate light deformed nuclei by
calculating ground-state properties of even-even nuclei
throughout the s-d shell. We study the systematics of
intrinsic quadrupole moments for a variety of parameter
sets that are fitted to the same nuclear matter saturation
properties. By varying the scalar meson self couplings,
we can obtain sets with different compressibilities, sur-
face energies, spin-orbit strengths, and so on. By com-
paring calculations with different parameter sets, we can
try to isolate and identify the factors that strongly
influence the deformation.

Reference 11 describes calculations of deformed (axial-
ly symmetric) nuclei in a relativistic mean-field model us-
ing a gradient iteration method on a lattice. Results are
obtained for '?C, Ne, and **Mg for a variety of param-
eter sets. Based on these results, the authors conclude
that relativistic models with parameter set fitted to the
properties of spherical nuclei do not adequately describe
deformed nuclei. They emphasize that their conclusion
is in contrast to the situation with nonrelativistic mod-
els. We strongly disagree with their conclusion.

In fact, we find that relativistic models can quantita-
tively describe both spherical and deformed nuclei. The
level of agreement between theory and experiment is
similar to that obtained in nonrelativistic Skyrme-
Hartree-Fock calculations. This conclusion was also
reached in Ref. 10 based on results for 2°Ne. (Although
we use a different solution method, we obtain the same
results for °Ne as in Ref. 10, within the expected accu-
racy of the calculations.) We have extended the compar-
ison to the entire s-d shell and find a remarkable
correspondence between relativistic and Skyrme model
predictions.

Our best descriptions of experimental systematics are
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obtained using models with negative quartic self cou-
plings. These models incorporate modifications of the
linear MFT which should be calculable if QHD is to
provide a viable framework for describing nuclei. Im-
provements to the mean-field approximation include
many-body corrections analogous to those in nonrela-
tivistic frameworks (e.g., exchange or correlations), but
there are also new corrections that are implied by a
field-theoretic description of nuclei.

If we believe that the nucleon is a Dirac particle and
the scalar meson is a quantum degree of freedom, we are
compelled to include the effects of the dynamical quan-
tum vacuum. In particular, the zero-point energies of
these particles make significant density-dependent contri-
butions to the energy density.? We begin to test the va-
lidity of this new physics by including one-loop baryon
and meson corrections to the Hartree approximation in
calculations of deformed nuclei. We find that one-loop
corrections alone do not reproduce experimental sys-
tematics.

In Sec. II, we discuss the MFT with nonlinear scalar
interactions and an alternative derivation of the mean-
field equations from an energy functional. We also sum-
marize the calculation procedure. The calculated sys-
tematics of quadrupole moments and other observables
in the s-d shell are presented in Sec. III and discussed
further in Sec. IV. In Sec. V, we summarize our con-
clusions and discuss applications and extensions of the
results.

II. MODEL AND CALCULATIONAL PROCEDURE

In this section, we discuss two different approaches to
relativistic mean-field equations that include nonlinear
scalar interactions. Initially we work entirely within the
QHD framework, starting from a renormalizable La-
grangian and proceeding via the Hartree approximation
to the mean-field equations. Some restrictions on the pa-
rameters of the theory are required. To allow for a wid-
er class of parametrizations, we consider a more phe-
nomenological motivation of the equations, which in-
volves an energy functional. In this second approach,
flexibility is gained in describing experimental properties
of finite nuclei at the mean-field level but the direct con-
nection with QHD is lost.

We begin with the Walecka (0-w) model including sca-
lar meson self-couplings. The Lagrangian density is?

L=y, i —g,V*)—(M—g.$)]¥
+ 13,40 p—ml¢*)— L(3,V,—3,V,)?
+1m2V VE—V($)+8.L , (1
where
Vig)= g4 Lyt

and 6.L is the counterterm Lagrangian. To ensure that
the theory has a ground state, A > 0.°

As in Ref. 5, we consider the mean-field (Hartree) ap-
proximation to this theory, in which the meson field
operators are replaced by their expectation values, which
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are classical fields. The mean-field theory provides a
nonperturbative starting point for describing the nuclear
many-body system. Corrections to the self-consistent
Hartree approximation (e.g., Hartree-Fock) are well
defined in quantum hadrodynamics and can be investi-
gated using quantum field theory and standard many-
body techniques.

To realistically describe finite nuclei, the o-w model is
extended to include rho mesons, pions, and photons.’
The nuclear ground state is assumed to have good parity
and well-defined charge. We further restrict our discus-
sion to even-even nuclei, which we assume to have axial
symmetry. As shown in Ref. 5, if the ground state has
azimuthal and reflection symmetry, then all charged
fields, three-vector fields, and pion fields vanish in the
Hartree approximation. Thus, we are left with the sca-
lar field, the time components of the vector and rho
fields, and the Coulomb field. These are the same fields
that are nonzero in spherical nuclei.*®

The Hartree equations are derived in Ref. 4. (See Ref.
12 for a discussion of the scalar field equation with non-
linearities.) The equations for the neutral meson fields
are

oce

(V2—mMd(r,0)=—g, 3 (_J(,(K)Ua(x)+%<z52+%d)3

=—g.[p,(r,0)+Ap,(r,0)], (2)

and

oce

(V2—m2)WVo(r,0)=—g, 3 ULX)U,(x)

=—g,pp(r,0), 3)

where the sums run over occupied positive-energy states,
and we have defined the contributions from the scalar
self-couplings in Eq. (2) to be —g Ap,. There are equa-
tions analogous to (3) for the other vector mesons (see
Ref. 5). The single-particle spinors U, satisfy a Dirac

equation: |
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{—ia-V+B[M—g d(r,00]+g,Vo(r,0)|U,(x)
=€, U, (x), (4

where we have suppressed the contributions from the
rho and photon fields.

In applications of this nonlinear mean-field model, «
and A in Eq. (2) are frequently allowed to be uncon-
strained. In particular, the equations are often solved
for nonlinear parameter sets with A <0. However, when
A <0, the preceding discussion is not applicable; the
equations cannot be derived in the mean-field approxima-
tion starting from a Lagrangian with this coupling. The
problem is that the energy spectrum is unbounded from
below in such a theory.” In deriving the mean field ap-
proximation the theory is assumed to have a lowest ener-
gy state,? so it is inconsistent to allow A <O.

On the other hand, the best descriptions of spherical
nuclei in mean-field models are achieved with nonlinear
parameter sets which have negative A. Thus, we have
equations that are useful phenomenologically but which
we cannot derive from a Lagrangian in the usual
manner. We resolve this dilemma by interpreting the
mean-field equations with nonlinear scalar terms in a
different way. The motivation is that the MFT with a
linear parametrization provides a reasonable description
of finite nuclei, but the density dependence must be
slightly altered to obtain more precise agreement with
experiment. We propose interpreting nonlinear scalar
interactions as a means of phenomenologically adjusting
the density dependence of the MFT.

We start with the Lagrangian in Eq. (1) with k=A=0
and construct the mean-field Hamiltonian, as described
in Ref. 2. (The extension of this discussion to include
additional mesons is straightforward.) By taking the ex-
pectation value of the Hamiltonian in a state specified by
static meson fields and a set of occupied single-nucleon
orbitals (labeled by quantum numbers a), we obtain an
energy functional that satisfies a variational principle.’
The mean-field ground state is obtained by minimizing
the functional.

The energy functional for axially symmetric ground
states is

E[Ua6,Vol= [ dx | H{IVS P +m2d(x) 1} — L{IVVo(x) P +m2[Vo(x) ]

occe

+3 UL {—ia-V+BIM —g,b(r,0)]48,Vo(r,0)} U (x) |, (5)
[
subject to the constraint and
3 T _ occ
[ d*x UL (x)U,x)=1, (6) 8 (Y m2)Vy(r,0)= —g, S UL(x)U,(x) .

for all occupied states.

The meson fields are determined by requiring the
functional to be stationary with respect to their varia-
tions; this yields (after partial integrations) the usual
MFT meson field equations. In particular,

ggf—x):oa(vz—mf)d)(r,e)z —g, % U, (x)U,(x)
(7)

8V,(x)
(8)

The single-particle orbitals are determined similarly.
The constraint Eq. (6) is imposed with a Lagrange multi-
plier €, which we identify with the energy eigenvalue of
the Dirac equation for U ,:
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—?— [E—eafd3x'UL(x')Ua(x')
8U ,(x)

The energy is minimized by solving the equations self-
consistently and choosing the N and Z lowest eigenval-
ues to determine the occupied states.

In applying this model to nuclear matter and finite nu-
clei, we find that the density dependence implied by the
energy functional does not totally agree with experiment:
the compressibility and surface energy are too large and
the spin-orbit splitting are overestimated by about 30%.
There are many ways to phenomenologically alter the
density dependence:

(1) We could simulate vertex corrections by giving the
coupling constants a phenomenological density depen-
dence: g—gl(p).

(2) Medium polarization effects could be introduced by
letting the masses acquire a density dependence:
m—m(p).

(3) We could add ‘‘contact terms”
a [ UUVUU, b [ TUUV'UUL, etc.

(4) We could add a polynomial in ¢.

of the form

We choose the fourth alternative and restrict ourselves
to additional terms cubic and quartic in ¢:

, A
E—E'=E+ [ d’x | 36’6 | . (10)

This modification is favored for several reasons. First, it
provides adequate freedom to adjust the density depen-
dence near the saturation point. In principle, we could
add ¢° and higher polynomial terms, but these are not
necessary to describe finite nuclei and would only intro-
duce additional parameters. Second, in contrast to the
other possibilities, Eq. (10) maintains the local coupling
of mesons to baryons, producing only minimal changes
in the field equations. Third, E’ can still be directly de-
rived from a renormalizable Lagrangian [Eq. (1)] for cer-
tain parameterizations (A > 0).
After the substitution £ —E’, the equations in the
J

_ L
g, 64r?

{Aps*)s =

PPSNITPCINRC 1
: 2m

for the meson one-loop correction where ¢ and
M*=M —g ¢ are functions of x.

Equations (2)-(4) are nonlinear, coupled, partial
differential equations that must “~be solved self-
consistently. Several different solution methods have

510,11

been applied to this problem by different groups.
Here we follow Ref. 5 and expand the angular depen-

‘2(K—+—}\,¢) ‘(m3+x¢+gx¢2)1og

1+
m2
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=0—{—ia-V+B[M —g,d(r,0)]+g,Vo(r,0)} U (x)=€,U,(x) . )

[

generalized mean-field model are obtained with the same
prescription described above. The results are Eqgs.
(2)-(4). Since we are only parametrizing the density
dependence in a limited domain of the functional, there
is no problem with E’ being unbounded below for large
¢ if A <0. However, we must restrict the set of states
over which we extremize. In practice, this means that
we identify our mean-field ground state with the local
minimum of E’ in the regime of normal nuclear matter.
We must verify at the end of the calculation that ¢ is
not so large that E’ is dominated by the A¢*/4! contri-
bution.

By introducing this phenomenological density depen-
dence we have broken the direct connection between the
mean-field models and the original Lagrangian. To
directly test QHD, improvements to the Hartree approx-
imation must be calculated to see whether the phenome-
nological density dependence implied by successful
mean-field models is predicted.

As a first step, we consider the extension of the Har-
tree approximation to include baryon and meson one-
loop contributions.? These corrections are determined in
nuclear matter using the renormalization conditions de-
scribed in Ref. 2. The results are applied to the present
calculations through a local density approximation that
is described in Ref. 12. (We do not include derivative
terms recently considered by Perry,'* which may provide
important corrections in finite nuceli.) The only changes
to the Hartree equations are additional contributions to
Ap; in the scalar field equation (2). These are

*

M

vac 1
{Aps }F=—‘1:2 M*3log +iIM3—iMPM*

+3MM*2 M3 ] , an

for the baryon one-loop correction and

(k¢ +1A?)

s
KA x*

2 4
m; 3m,

] , (12)

dence of the mean fields and the source densities in a
basis of Legendre polynomials. For example,

f

.
L max

&(r,0)= 3 ¢, (r)P(cosB) . (13)
L=0

Only even values of L are required from symmetry con-
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siderations, and we truncate the expansion at L =L ..
The nucleon orbitals are expanded in terms of spherical
spin angle functions:'*

iG,(r)
q)x’m
r
Ua(x) U,,m,(x)—z —F_(r) M » (14)
. = (Dfx’m
r

where 77, is an isospinor and k' is the usual relativistic
angular quantum number.'* The allowed values of k' are
limited by the symmetries and L ,,. Note that the total
angular momentum j of an individual orbital is no
longer a good quantum number but m is still good.
States with +m are degenerate.

If the expansions are substituted into (2)-(4), equa-
tions with different L’s decouple and the problem is re-
duced to a system of coupled ordinary differential equa-
tions. These equations are solved by an iterative pro-
cedure similar to that described in Ref. 5. The only new
feature is the addition of Ap; to the scalar field equation.
This new term is expanded in Legrende polynomials nu-
merically and, since Ap; depends on ¢, Eq. (2) is solved
iteratively.

Details concerning the filling of single-particle levels
are discussed in Ref. 5. In general, both prolate and ob-
late self-consistent solutions for a given nucleus can be
found; the energies must be compared to determine the
true intrinsic ground state. However, for nuclei with
close subshells, such as '2C or 28Si, there will also be a
self-consistent spherical solution. The spherical solution
will be preferred if it costs too much energy for single-
particle levels to mix to form a prolate or oblate shape.

Self-consistent solutions with different sets of occupied
single-particle levels may also be nearly degenerate. In
these cases, the assumption of a sharp Fermi surface is
questionable. One remedy is to include the effects of
pairing correlations, which would smear the Fermi sur-
face and remove the ambiguity. These effects are not in-
cluded in the present calculations but we do not expect
pairing to significantly change our results for light even-
even nuclei. However, pairing in QHD must be investi-
gated further for calculations of heavier deformed nuclei.

The accuracy of the present calculations is determined
by the size of the radial mesh and the truncation of the
angular basis. Convergence of the angular expansion is
rapid for light nuclei. The results in Figs. 1-10 were
generated using a mesh size of 0.1 fm to integrate the
Dirac equations (with a fourth-order Runge-Kutta
scheme) and with L_,, =4. In selected tests with finer
meshes and larger values of L ,,, quadrupole moments
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change by less than 1% and binding energies/particle
and rms radii change by less than 0.1%.

The parameter sets used in the present investigation
are characterized by the scalar meson self couplings x
and A and by whether or not loop corrections are includ-
ed in the model. The masses of the nucleon and the vec-
tor mesons and the electromagnetic coupling strength
are taken from experiment: M=939 MeV, m, =783
MeV, m, =770 MeV, and e?/47=1/137.036. Once «
and A are specified, the remaining parameters g;, g,, 8p»
and m; are determined by the requirement that the satu-
ration properties of nuclear matter are reproduced.

We use a set of “empirical” saturation properties from
Ref. 4. They are:

(1) equilibrium Fermi wave number of 1.30 fm~! (this
corresponds to an equilibrium density of 0.1484 fm —3);

(2) binding energy/nucleon at saturation of 15.75
MeV;

(3) bulk symmetry energy/nucleon of 35 MeV;

(4) rms charge radius of “°Ca equal to 3.48 fm (to fix
the value of m;).

The fitting procedure is implemented using a computer
code supplied by Fox.!> As an option, one-loop baryon
and/or one-loop meson vacuum corrections are included
in the model as described above. Some representative
parameter sets are given in Table I.

We emphasize that the parameter sets we determine
for given « and A are not optimally fitted to the proper-
ties of closed shell nuclei. One could certainly “fine-
tune” the other parameters to improve the systematic
agreement with particular experimental quantities.
However, our parameters give reasonable descriptions of
spherical nuclei and provide a basis of comparison be-
tween calculations with different parameter sets. (Note
also that parameter set C in Table I is similar to a non-
linear parameter set that was obtained as an optimal fit
to properties of spherical nuclei.?)

III. RESULTS

To compare to nonrelativistic calculations of de-
formed nuclei,'®!” we use the charge quadrupole mo-
ment as a measure of the intrinsic deformation. Corre-
sponding moments determined from experimental data
are taken from Ref. 18. Comparisons to experiment
must be viewed with some caution, however, since we do
not project onto states of good angular momentum. In-
stead, we compare to absolute values for intrinsic quad-
rupole moments that are extracted from B (E2) data us-

TABLE I. Relativistic Hartree parameter sets (no loops).

Set gl gl g} m, (MeV) Kk (MeV) A M*/M K (MeV)
A 109.73 190.59 65.37 520.1 0 0 0.54 546.8
B 94.01 158.48 73.00 510.0 800 10 0.61 420.6
C 95.11 148.93 74.99 500.8 5000 —200 0.63 224.2
D 68.32 118.07 80.75 476.7 1500 50 0.70 342.9
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ing model-dependent assumptions. (The signs are taken
from static measurements). We note that the validity of
the rotational model is questionable when applied to
light nuclei.’® Thus, besides the experimental uncertain-
ties, there are theoretical uncertainties that can only be
resolved with direct calculations of the B (E2) values.

We have calculated ?°Ne using a wide variety of pa-
rameter sets with and without loop corrections. The pa-
rameters involve — 1000 <« < + 5000 MeV and —200 <
A < 4200. (Ranges of k and A in the QHD framework
with loops included are more restricted.'”) The results
for a representative sample of parameter sets are summa-
rized in Figs. 1-6. (The parameters are listed in Tables
IT and III in the Appendix.) In these figures, the linear
parameter set (k=A=0) is marked by a + and the
dashed line indicates the charge quadrupole moment ex-
tracted from experiment data.'®

In Fig. 1, the intrinsic charge quadrupole moment in
20Ne is plotted against the nuclear matter compressibili-
ty.2% For all parameter sets, the lowest energy solution
is prolate and the predicted moment lies between 0.4 and
0.5 b. The figure reveals no apparent correlation be-
tween the compressibility and the size of the intrinsic de-
formation. In fact, we find parameter sets predicting the
same quadrupole moment although their compressibili-
ties differ by a factor of two.

In Fig. 2, the moment is plotted against the surface
energy a, obtained for each parameter set by roughly
fitting to a semiempirical mass formula.?! We find no
overall correlations between these quantities as well. As
one might expect, the compressibility and the surface en-
ergy are strongly correlated. This is illustrated in Fig. 3.
From Fig. 4 we find that the binding energy per nucleon
(including a center-of-mass correction as in Ref. 8) is
also not correlated with the quadrupole moment. This is
consistent since the differences in binding energy be-
tween the various parameter sets are principally due to
the differing surface energies.

If we consider the nucleon effective mass M* in
infinite nuclear matter, we find a strong correlation with
the size of the deformation (see Fig. 5). (Note that all
calculations with loop corrections have M*/M >0.7.)

600 L S A I A AR B A EE A S
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N it ]

N O No loops b
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500 — QO oo ]

< [ ] ]
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~ 450 — a —

= [ [m] ]

o r o ° ]

400 o o Og -

3 :

350 |- —

P Y3 ) S I B R
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FIG. 1. Intrinsic charge quadrupole moment (mb) in **Ne vs
nuclear matter compressibility (MeV) for a variety of parame-
ter sets (described in text).
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FIG. 2. Intrinsic charge quadrupole moment (mb) in °Ne vs
surface energy a, (MeV) for the same parameter sets as Fig. 1.

The magnitude of M* is directly related to the size of
the scalar field through M*=M —g_¢. Since the bind-
ing energy of nuclear matter depends sensitively on the
cancellation of the scalar and vector fields and since we
constrain the calculation to reproduce the empirical en-
ergy, the size of the vector field is indirectly determined
by M*. The spin-orbit strength depends on the sum of
these fields, so a small M* means large spin-orbit split-
tings.

In Fig. 6, we plot quadrupole moments against the
spin-orbit strength as indicated by the energy difference
predicted for the 1p,,, and lp,,, levels in '*0. We find
a roughly linear relationship between the spin-orbit split-
ting and the size of the moment in *°Ne. For parameter
sets that predict the same spin-orbit splitting, the size of
the moment varies slightly with the surface energy and
compressibility. In particular, larger surface energies
lead to smaller deformations.

Figures 1-6 indicate that if the bulk saturation prop-
erties of nuclear matter are fixed, the spin-orbit strength
(which is inferred from predicted j=/%1 splittings) has
the most direct influence on the size of intrinsic defor-
mations. To further test this conclusion, the parameter

lvl‘lllvllvrllrer|I|||v
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L o
24 |- o © of ]
% r oo o ]
F D -
= F O 1
~ 22 n
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o o u]
[ o O ]
20 — o —
L m] 1
L y
el 18
100 200 300 400 500 600
Compressibility (MeV)
FIG. 3. Surface energy a, (MeV) vs nuclear matter

compressibility (MeV) for the same parameter sets as Fig. 1.
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FIG. 4. Intrinsic charge quadrupole moment (mb) in **Ne vs
binding energy/nucleon (MeV) for the same parameter sets as
Fig. 1.

sets detailed in Table I were selected to examine sys-
tematics in the s-d shell. (Set A is very close to the
linear parameter set used in Ref. 5.) The table lists the
parameters as well as the corresponding value of M*
and the compressibility in nuclear matter. If we take the
splitting of the 1p,,, and 1p,,, neutron levels in '°O as
our experimental standard (=6 MeV), these parameter
sets have spin-orbit strengths less than, equal to, and
greater than experiment (neglecting orbital rearrange-
ment effects). Specifically, the predicted '°O splittings
for the four parameter sets of Table I are 8.0, 5.8, 5.3,
and 3.7 MeV, respectively, for sets 4, B, C, and D.

The quadrupole moment systematics in the s-d shell
are shown in Fig. 7. Sets B, C, and D each qualitatively
reproduce the experimental pattern of deformations in-
cluding the alternations between prolate and oblate de-
formation. As we observed with 2°Ne, the size of the de-
formation is larger for weaker spin-orbit strengths and,
for equal spin-orbit strengths, the deformations are
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FIG. 5. Intrinsic charge quadrupole moment (mb) in **Ne vs
effective mass M * /M in nuclear matter for the same parameter
sets as Fig. 1.
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slightly larger for sets which predict smaller surface en-
ergies. If the splitting is too large, nuclei with closed
subshells such as 2!Si and '2C are found to have spheri-
cal intrinsic ground states. (This means that the self-
consistent spherical solution has lower energy than any
prolate or oblate solution.) This is the case for set 4.
The systematics for calculations including loop correc-
tions, which have M* /M 2 0.7, are quantitatively simi-
lar to those obtained with set D.

Figure 8 shows that if the experimental '°0 splitting is
achieved (sets B and C), the systematics are very similar
to those obtained from nonrelativistic Skyrme-Hartree-
Fock calculations. The experimental systematics are
quantitatively reproduced although the predicted magni-
tude of the deformations are generally smaller than ex-
periment (but similar to the Skyrme II predictions). Sets
B and C predict similar moments even though the
compressibilities and surface energies for these sets are
very different (see Table I).
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FIG. 7. Intrinsic charge quadrupole moment (mb) in even-
even s-d nuclei for the relativistic Hartree parameter sets A4
(X), B (0), C (), and D ({) from Table I. Moments derived
from experimental measurements ( X ) are taken from Ref. 18.
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from experimental measurements (X ) are taken from Ref. 18.

If we examine the rms charge radii for sets B and C,
we find quantitative agreement with the Skyrme predic-
tions and experimental data (see Fig. 9). The differences
between these sets are emphasized in Fig. 10, which
shows the systematics of the binding energies per nu-
cleon. (Note that these binding energies do not include a
correction from projecting out a J =0 ground state from
the intrinsic state; such a correction would tend to nar-
row the discrepancy between theory and experiment.)
The large surface energy of set B leads to significant un-
derbinding while set C and the Skyrme interaction make
similar predictions.

IV. DISCUSSION

In Ref. 5, the bulk compressibility and surface energy
of nuclear matter in relativistic mean-field models were
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17.
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FIG. 10. Binding energy/particle in even-even s-d nuclei for
parameter sets B (O) and C (O) from Table I and a nonrela-
tivistic Hartree-Fock calculation with the Skyrme II interac-
tion (Q) from Ref. 16 compared with experimental data (X)
from Ref. 17.

suggested as important factors in determining equilibri-
um deformations in open-shell nuclei. Figures 1-3 show
that the compressibility and the surface energy are
correlated with each other but neither is strongly corre-
lated with the size of the quadrupole moment. If param-
eter sets with equal values of M * are compared, smaller
surface energies lead to slightly larger deformations;
however, this effect is minor compared to the M * depen-
dence. These conclusions are confirmed by the compar-
ison of systematics in the s-d shell (Figs. 7 and 8).

In contrast, the quadrupole deformations are very sen-
sitive to the spin-orbit force. The importance of the
spin-orbit interaction can be simply understood from the
mixing of spherical basis states in the expansion of Eq.
(14) for single-particle levels near the Fermi surface
(tightly bound single-particle levels remain essentially
spherical). For example, consider 2°Ne as initially being
a spherical '°O core to which four ds,, valence nucleons
are added. The single-particle levels will not have
definite angular momentum j if the system is deformed;
self-consistency will mix spherical-basis states with other
angular quantum numbers (e.g., d;,, and s,,,) into the
valence levels so the valence wave functions will develop
these additional components [these correspond to
different «' terms in Eq. (14)]. The degree of mixing will
depend critically on the spin-orbit strength; for example,
a strong spin-orbit force will inhibit the mixing of d;,,
and ds,, components. The result is smaller deforma-
tions for open subshell nuclei and the possibility that a
spherical intrinsic ground state is the lowest energy solu-
tion for closed subshell nuclei.

In particular, the linear parameter set A4 leads to
spherical self-consistent ground states for '*C, 28Si, and
32S and the smallest deformations among the parameter
sets of Table I for the other s-d shell nuclei. Note that
the differences in energy between spherical and deformed
solutions for set A4 are small; for example, there is a
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self-consistent prolate solution for 3*’S only 0.25
MeV/nucleon less bound than the spherical solution.
Furthermore, the reduced spin-orbit force in set B or C
is sufficient to lower the energy of the prolate solution
below that of the spherical solution. Thus the quadru-
pole systematics provide a sensitive experimental test of
mean-field models. We conclude that the failure of the
linear parameter set reflects the limitations of the Har-
tree approximation but does not indicate gross
discrepancies with experiment. We do not interpret this
failure as strong evidence for nonzero x and A in QHD
Lagrangians (see, for example, the discussion below of
Brueckner-Hartree-Fock).

Figure 7 shows that experimental systematics for in-
trinsic quadrupole moments are reproduced by increas-
ing M* /M slightly over the value obtained in the mean-
field theory with k=A=0 (from 0.54 to 0.6-0.65). This
is achieved in our mean-field models by incorporating
scalar self couplings (see Table I); these nonlinear terms
provide a simple way of altering the density dependence
of the mean-field energy functional. Consequently, they
can simulate physics which has been left out of the Har-
tree approximation. To directly test QHD, improve-
ments to the Hartree approximation must be calculated
to see whether they predict the phenomenological densi-
ty dependence implied by mean-field models that suc-
cessfully describe experiment.

As a first step in this program, we have considered
one-loop corrections to the MFT. (One loop corrections
are discussed in detail by Fox.!®) If we focus on quadru-
pole deformations, predictions of models including loop
corrections are reasonable (the systematics are similar to
those of set D in Fig. 7). However, the spin-orbit split-
ting of single-particle levels becomes quite small. If we
require that mean-field parameter sets reproduce the ex-
perimentally observed spin-orbit splittings in light nu-
clei, the nucleon effective mass is typically 0.6-0.65 M.
This range is also consistent with Dirac phenomenology.
However, with loop corrections included, the effective
mass is greater than 0.7 M, and the surface energy is
large.!> Thus, one-loop corrections alone are not the
answer.??

More promising is the inclusion of exchange and
correlation corrections to the Hartree approximation.
Brueckner-Hartree-Fock calculations in nuclear matter
have larger M* and lower compressibility than the linear
MFT.2> Thus, we can speculate that calculations in
finite nuclei using an effective G-matrix from relativistic
BHF calculations in nuclear matter may reproduce ex-
perimental systematics for light nuclei without explicit
nonlinear couplings.

If one wishes to work solely at the mean-field level
with a “best fit”’ parameter set, the set described in Ref.
8 (which is similar to set C from Table I) is probably
close to optimal for describing properties of both spheri-
cal and (light) deformed nuclei. This includes reproduc-
ing experimental binding energies, rms radii, and quad-
rupole deformations. Ground-state calculations with this
parameter set can provide suitable nuclear densities and
orbitals as input to many additional calculations, such as
electron and proton scattering, which can further test
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the mean-field model.

However, the applications of this mean-field model are
necessarily limited. The presence of a negative quartic
meson self coupling (A <0) indicates that the model can-
not follow from a Lagrangian in the mean-field approxi-
mation; a theory defined by such a parameter set does
not have a ground state.® This was the motivation for
introducing the energy functional in Sec. II. The conse-
quence is that extrapolations of the model away from the
density region of normal nuclear matter are, at best,
questionable. Systematic improvement of this approach
based on an underlying Lagrangian and techniques of
quantum field theory is limited. These restrictions were
recognized by the authors of Ref. 8, who caution that
their nonlinear parameter set might only be applicable
for ground state calculations.

A potential problem with the mean-field parametriza-
tions is that the coupling constant for the p meson must
be quite large to generate a symmetry energy of 35 MeV
in nuclear matter. The rho couplings from Table I are
at least twice as large as typical values from one-boson
exchange potential (OBEP) fits to scattering data. This
might be troubling if we calculate quantities which are
sensitive to g,. We note, however, that the quadrupole
moments of light nuclei are not very sensitive. For ex-
ample, if we calculate **Ne using parameter set B and
then recalculate with g, set to zero, the intrinsic quadru-
pole moment changes by about 1%.

Do the results of Figs. 7-10 prove that relativistic
mean-field models can accurately describe deformed nu-
clei? Since we have only compared calculated intrinsic
properties to corresponding quantities extracted from ex-
periment, we should be somewhat cautious in assessing
the level of the agreement. Certainly, calculations that
go beyond the present treatment to directly predict
B(E?2) values will permit a more definitive evaluation.
Furthermore, we have used values of the quadrupole
moments extracted from B(E2) values, as in Ref. 24,
and these are usually smaller than those taken from stat-
ic measurements.”* Thus, the comparison to experiment
ultimately may be worse than indicated in Fig. 8.

On the other hand, the reproduction of the systematic
pattern of deformations in the s-d shell is a nontrivial re-
sult (it has been considered one of the triumphs of the
Skyrme model!’) and the present quantitative agreement
is impressive. Furthermore, the agreement with the non-
relativistic Skyrme interactions is independent of the
precise experimental numbers. In fact, the mean-field
models considered in this paper might be viewed as rela-
tivistic analogs of the nonrelativistic Skyrme model. We
note that the Skyrme interactions have been clearly suc-
cessful in reproducing moments in heavy deformed nu-
clei; this will be an important test of relativistic mean-
field models.

V. SUMMARY

In this paper, we calculate the ground-state properties
of even-even nuclei in the s-d shell using relativistic
mean-field models of baryon-meson dynamics. We
derive the mean-field equations for finite nuclei from an
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TABLE II. Relativistic Hartree parameter sets (no loops).

g2 gl g,z, m; (MeV) k (MeV) A M*/M K (MeV) Q. (mb)
109.73 190.59 65.37 520.1 0 0 0.54 546.8 399
108.13 187.15 66.27 519.1 100 0 0.55 528.3 403
101.53 173.73 69.56 514.4 500 0 0.58 466.1 421
84.70 143.00 76.18 497.8 1500 0 0.66 367.1 454
94.01 158.48 73.00 510.0 800 10 0.61 420.6 436
68.32 118.07 80.75 476.7 1500 50 0.70 342.9 471
67.26 118.99 80.59 477.6 500 100 0.70 377.3 468
45.22 80.19 86.65 428.7 2500 100 0.78 281.9 491
27.96 52.44 90.33 368.6 2500 200 0.84 240.9 496
89.95 158.47 73.00 510.0 — 1000 100 0.61 511.7 429
52.90 98.65 83.92 455.3 —500 200 0.74 378.3 476
114.93 191.15 65.23 518.9 2000 — 100 0.54 414.2 401
95.45 154.93 73.75 505.3 3000 — 100 0.62 3114 450
117.82 188.66 65.88 516.1 4000 —200 0.55 280.7 397
95.11 148.93 74.99 500.8 5000 —200 0.63 224.2 461

energy functional that includes cubic and quartic scalar
meson self couplings with coupling constants « and A,
respectively. For positive A, the functional and the
equations can be directly derived in the self-consistent
mean-field (Hartree) approximation to a QHD Lagrang-
ian field theory. In this work, we allow a wider class of
parametrizations by interpreting nonlinear scalar in-
teractions as a means of phenomenologically adjusting
the density dependence of the energy functional. In par-
ticular, we allow A <O.

We examine the systematics of intrinsic quadrupole
deformations for a wide variety of parameter sets fitted
to the same nuclear matter saturation properties. We
conclude that the size of the moment is strongly corre-
lated with the nucleon effective mass M * and the spin-
orbit strength but is only weakly affected by the
compressibility or the surface energy. This correlation
can be simply understood in terms of the mixing of
single-particle levels with different j, as dictated by the
spin-orbit strength.

We find that successful descriptions of spherical nuclei
in relativistic mean-field models (which include accurate
spin-orbit splittings) can be extended to describe the ob-
served systematics of light deformed nuclei without
changing the parameters. Furthermore, the mean-field
systematics are in quantitative agreement with results
from nonrelativistic Skyrme-Hartree-Fock calculations.

However, to achieve this agreement in a mean-field

model, scalar meson self couplings (or some other means
of altering the density dependence) must be included.
The MFT with a linear parameter set («k=A=0) fails to
predict any deformation for closed subshell nuclei (e.g.,
288i), primarily because of overly large spin-orbit split-
tings (M* is too small). By allowing nonzero « and A,
we can reproduce empirical nuclear matter saturation
with increased values of M*. We find that the observed
systematics of quadrupole deformations is reproduced by
models in which M*20.6 M. The best descriptions of
experimental binding energies, rms radii, and quadrupole
deformations are achieved in models with A <O.

It remains to be seen whether the phenomenological
density dependence implied by mean-field models with
negative A arises within the QHD framework from im-
provements to the mean-field approximation. In this pa-
per, we investigate one-loop corrections for a variety of
allowed « and A, including k=A=0. One-loop correc-
tions increase M* to X 0.7 M, resulting in adequate
quadrupole systematics but very small spin-orbit split-
tings. In addition, the surface energy is quite large.'®
Thus, one-loop corrections alone are not the answer.
(The potential application of relativistic Brueckner-
Hartree-Fock calculations of nuclear matter?® to finite
nuclei is more promising.)

There are numerous applications of the present inves-
tigation and many directions in which it can be extend-
ed. These include:

TABLE III. Relativistic Hartree parameter sets (loops included).

gl gl g} m, (MeV) Kk (MeV) A M*/M K (MeV) Q. (mb)
54.04 102.58 83.30 457.3 0 0 0.73 452.5 470
55.11 106.55 82.67 460.3 —500 1 0.72 488.3 466
53.21 101.97 83.40 4552 — 100 10 0.73 455.2 471
55.90 109.38 82.21 463.6 — 1000 10 0.72 520.1 462
51.74 97.00 84.17 451.1 500 10 0.74 413.0 475
40.34 78.19 86.93 422.0 500 100 0.78 357.6 485
44.19 79.86 86.70 426.5 2500 10 0.78 309.8 489
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(1) Using the deformed nuclear densities and orbitals
to generate electron-scattering form factors and spin ob-
servables for proton scattering.

(2) Projecting states of good angular momentum from
deformed intrinsic ground states. Direct calculations of
transition rates among the extracted states are needed to
clarify the relationship between intrinsic quantities and
physical observables.

(3) Applying the calculational techniques to heavier
nuclei like the rare earths.

(4) Allowing for ground states without axial symme-
try. These will contain three-vector fields for the vector
mesons (and a pion field), but the same calculational
techniques can be applied. This extension also permits
the direct calculation of odd- 4 nuclei.

(5) Incorporating pairing correlations in the relativis-
tic approach. These are important in nonrelativistic
descriptions of certain deformed nuclei such as *Ni as
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well as heavier nuclei.?

Work on these topics is in progress.
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APPENDIX: MEAN-FIELD PARAMETER SETS

The parameter sets used in Figs. 1 — 6 are listed in
Tables II and III. The entries correspond to those of
Table I, except that the charge quadrupole moment of
20Ne in mb is given in the final column.
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