# Coexistence and B(E2)'s in even Ge nuclei

H. T. Fortune and M. Carchidi\*

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 3 August 1987)

Values of B(E2) strengths connecting low-lying  $0^+$  and  $2^+$  states in  $^{70,72,74,76}$ Ge are examined in the context of an earlier coexistence model previously applied to two-neutron transfer.

# I. INTRODUCTION

Evidence is overwhelming<sup>1-3</sup> that some sort of structural change takes place between the light ( $A \le 70$ ) and heavy ( $A \ge 74$ ) Ge nuclei. The effect is observed as an irregularity in the A dependence of several different observables: (i) absolute ground state (g.s.) (t,p) cross sections (Refs. 4-6), (ii) ratios<sup>2</sup> of excited 0<sup>+</sup> to g.s. cross sections, (iii) excitation energy of the first excited 0<sup>+</sup> state, (iv) proton occupancies (Refs. 7 and 8), (v) B(E2)'s connecting low-lying 2<sup>+</sup> and 0<sup>+</sup> states (Refs. 9–12), (vi) their ratios, (vii) alpha-transfer ratios (Refs. 13–15), and (viii) inelastic scattering (Refs. 16 and 17).

Several different explanations have been given for this transition, including shape coexistence, neutron particle-hole (ph) excitation, and proton ph excitation. It does appear<sup>2,3</sup> that the structure of the ground states of the heavier Ge nuclei is contained in excited 0<sup>+</sup> states in the light Ge's and vice versa. As of this date, there are three surviving candidates for a simple explanation: (i) vibrational-rotational mixing, (ii) proton 2p-2h mixing,<sup>18</sup> and (iii) coexistence in a generalized basis.<sup>3</sup> These are not necessarily conflicting ideas, but they are certainly not equivalent.

In (i), the light Ge's are vibrational, the heavy ones rotational. A natural extension is that the states of the other type exist at quite low excitation energy (shape coexistence). In perhaps the best of the inelasticscattering studies,<sup>16</sup> "within the framework of coupledchannels calculations, inelastic data can be reproduced only by assuming <sup>70,72</sup>Ge are vibrational and that <sup>74,76</sup>Ge are rotational." The concept<sup>18</sup> involving proton 2p-2h excitations was suggested primarily to explain the jump<sup>7</sup> in ground state  $0f_{5/2}$  proton occupancies between <sup>72</sup>Ge and <sup>74</sup>Ge. It also quite naturally *qualitatively* explains the jump<sup>4-6</sup> in absolute g.s. (t,p) cross sections, and the peaking in (t,p) and (p,t)  $0_2^+/g.s.$  cross-section ratios for  $72 \leftrightarrow 74$ . And, of course, it is not surprising that rotational states in an otherwise vibrational spectrum should contain excitations from the proton core.

However, much of the success of the proton coexistence idea<sup>18</sup> depends only on the "smoothness' assumption<sup>3</sup>—i.e., that the unmixed basis states behave smoothly with A—rather than on the details of their structure. Also, the proton coexistence picture is not *quantitatively* correct in the details, but only gets the general trends. In fact, several observables are inconsistent with the basic assumptions of that model.

These considerations have led to a description<sup>3</sup> in terms of two-state mixing between generalized basis states. With as few assumptions as possible (and all of a smoothness variety) it has been possible<sup>3,8,15</sup> to parametrize existing one-, two-, and four-particle transfer data<sup>2,7,13,14,19-22</sup> in terms of the one independent parameter that describes the generalized basis. We now address, in that model, the *E*2 strengths between low-lying 2<sup>+</sup> and 0<sup>+</sup> states.

# II. THE EXPERIMENTAL B (E2) DATA IN THE Ge ISOTOPES

Existing information<sup>10-12,23-25</sup> on E2 strengths connecting low-lying 2<sup>+</sup> states to the g.s. and first-excited 0<sup>+</sup> states in <sup>68-76</sup>Ge is listed in Table I. Various com-

TABLE I. Experimental E2 strengths in even Ge nuclei.<sup>a</sup> ( $|M(E2)| = [(2J_i + 1)B(E2;J_i^{\pi} \rightarrow J_i^{\pi})]^{1/2}.$ )

| Nucleus                       | $J_i^{\pi} {\rightarrow} J_f^{\pi}$                                                                            | $\frac{B(E2)}{(10^{-2} e^{-2} e^2 b^2)}$                                                                           | ( <i>E</i> 2)<br>( <i>e</i> b)                                                                                                                  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>68</sup> Ge              | $2_1^+ \rightarrow g.s.$                                                                                       | 2.80 ±0.42 <sup>b</sup>                                                                                            | 0.374±0.028                                                                                                                                     |
| <sup>70</sup> Ge              | $2_1^+ \rightarrow g.s.$<br>$0_2^+ \rightarrow 2_1^+$<br>$2_2^+ \rightarrow g.s.$<br>$2_2^+ \rightarrow 0_2^+$ | $\begin{array}{rrrr} 3.57 & \pm 0.06 \\ 6.0 & \pm 1.5 \\ 0.026 & \pm 0.020 \\ 2.51 & \pm 1.1 \ W.u.^c \end{array}$ | $\begin{array}{c} 0.422 {\pm} 0.004 \\ 0.245 {\pm} 0.031 \\ 0.036 {\pm} 0.014 \\ 0.146 {\pm} 0.032 \\ 0.134 {\pm} 0.058^d \end{array}$          |
| <sup>72</sup> Ge <sup>e</sup> | $2^+_1 \rightarrow g.s.$<br>$2^+_1 \rightarrow 0^+_2$<br>$2^+_2 \rightarrow g.s.$<br>$2^+_2 \rightarrow 0^+_2$ | $\begin{array}{rrrr} 4.14 & \pm 0.10 \\ 2.59 & \pm 0.58 \\ 0.018 & \pm 0.004 \\ 0.0072 {\pm} 0.0008 \end{array}$   | $\begin{array}{c} 0.455\substack{+0.009\\-0.006}\\ 0.36  \pm 0.04\\ 0.030\substack{+0.003\\-0.005}\\ 0.019\substack{+0.004\\-0.005}\end{array}$ |
| <sup>74</sup> Ge              | $2^+_1 \rightarrow g.s.$<br>$0^+_2 \rightarrow 2^+_1$<br>$2^+_2 \rightarrow g.s.$<br>$2^+_2 \rightarrow 0^+_2$ | $\begin{array}{rrr} 6.09 & \pm 0.06 \\ & < 4.0 \\ 0.13 & \pm 0.05 \end{array}$                                     | $\begin{array}{c} 0.552 {\pm} 0.003 \\ {<} 0.20 \\ 0.081 {\pm} 0.016 \end{array}$                                                               |
| <sup>76</sup> Ge              | $2_1^+ \rightarrow g.s.$<br>$0_2^+ \rightarrow 2_1^+$<br>$2_2^+ \rightarrow g.s.$<br>$2_2^+ \rightarrow 0_2^+$ | $\begin{array}{rrr} 5.56 & \pm 0.06 \\ & < 1.7 \\ 0.17 & \pm 0.03 \end{array}$                                     | $0.527 {\pm} 0.003 \\ {<} 0.13 \\ 0.092 {\pm} 0.008$                                                                                            |
| <sup>a</sup> Reference        | <sup>d</sup> Reference 23.                                                                                     |                                                                                                                    |                                                                                                                                                 |

<sup>b</sup>Reference 24. <sup>c</sup>Reference 11. <sup>e</sup>Reference 12.

(1)



FIG. 1. Absolute B(E2)'s connecting low-lying 0<sup>+</sup> and 2<sup>+</sup> states in <sup>70-76</sup>Ge.

binations of these data are plotted versus mass number A in Figs. 1-3. First, in Fig. 1, it can be seen that the A dependence of the  $2_1^+ \rightarrow \text{g.s. } B(E2)$ 's is very similar to the A dependence observed previously<sup>7</sup> for the g.s.  $0f_{5/2}$  proton occupancies. Further, the E2 value between  $2_1^+$  and  $0_2^+$  sharply peaks at <sup>72</sup>Ge. [Actually, this B(E2) value is not known in <sup>74,76</sup>Ge, but stringent limits exist.] Figure 2 shows the plot of the ratio of these two B(E2)'s versus A as well as the ratio for the two  $2^+$  states decaying to the ground state. In a vibrational nucleus, we expect  $B(E2;0_2^+ \rightarrow 2_1^+) = 2B(E2; 2_1^+ \rightarrow \text{g.s.})$ , giving 0.4 for the ratio plotted here. We note that the values for <sup>70,72</sup>Ge are roughly consistent with the vibrational expectation, but those for <sup>74,76</sup>Ge are not even close. In all



FIG. 2. E2 ratios vs A for  $2_1^+$  to both  $0^+$  states (top) and both  $2^+$  states to ground state (bottom).



FIG. 3. E2 ratio vs A for the first two  $2^+$  states to summed strength to both  $0^+$  states.

four nuclei,  $2_2^+$  is barely connected to the ground state—though this B(E2) is about a factor of 10 larger in <sup>74,76</sup>Ge than in <sup>70,72</sup>Ge.

## III. MODEL ANALYSIS OF THE ELECTROMAGNETIC DATA

#### A. Without mixing in the $2^+$ states

Figure 3 contains the ratio of summed (g.s. and  $0^+_2$ ) B (E2)'s for the first two  $2^+$  states. In a two-state model for the  $0^+$  states, these quantities are independent of the  $0^+$  mixing. Specifically, if (as in Ref. 3) one lets

$$\Psi^{A}(g.s.) = \alpha_{A} \phi^{A}_{g0} + \beta_{A} \phi^{A}_{e0}$$

and

$$\Psi^{A}(0^{+}_{2}) = \beta_{A} \phi^{A}_{g0} - \alpha_{A} \phi^{A}_{g0}$$

represent the physical ground state and  $0_2^+$  state in <sup>A</sup>Ge (with  $\phi_{g0}^A$  and  $\phi_{e0}^A$  denoting the  $0^+$  basis states), then the square of the E2 amplitude  $M^2(E2; J_i^{\pi} \rightarrow J_f^{\pi})$ , satisfying

$$M^{2}(E2;J_{i}^{\pi} \rightarrow J_{f}^{\pi}) = (2J_{i}+1)B(E2;J_{i}^{\pi} \rightarrow J_{f}^{\pi})$$

becomes

$$M_{A}^{2}(E2;2_{1}^{+}\rightarrow g.s.) = \langle \Psi^{a}(2_{1}^{+}) | E2 | \alpha_{A}\phi_{g0}^{A} + \beta_{A}\phi_{e0}^{A} \rangle^{2}$$
$$= (\alpha_{A}U_{gA} + \beta_{A}V_{eA})^{2}$$
(2a)

$$M_{A}^{2}(E2;2_{1}^{+}\rightarrow 0_{2}^{+}) = \langle \Psi^{A}(2_{1}^{+}) | E2 | \beta_{A}\phi_{g0}^{A} - \alpha_{A}\phi_{e0}^{A} \rangle^{2}$$
  
=  $(\beta_{A}U_{A} - \alpha_{A}V_{A})^{2}$  (2b)

$$M_A^2(E2; 2_2^+ \rightarrow g.s.) = \langle \Psi^A(2_2^+) | E2 | \alpha_A \phi_{g0}^A + \beta_A \phi_{e0}^A \rangle^2$$
$$= (\alpha_A V_{gA} + \beta_A U_{eA})^2 \qquad (2c)$$

$$M_{A}^{2}(E2;2_{2}^{+} \rightarrow 0_{2}^{+}) = \langle \Psi^{A}(2_{2}^{+}) | E2 | \beta_{A} \phi_{g0}^{A} - \alpha_{A} \phi_{e0}^{A} \rangle^{2}$$
$$= (\beta_{A} V_{gA} - \alpha_{A} U_{eA})^{2} , \qquad (2d)$$

so that

an

$$M_A^2(E2;2_1^+ \to g.s.) + M_A^2(E2;2_1^+ \to 0_2^+) = U_{gA}^2 + V_{eA}^2$$
  
d (3)

$$M_A^2(E2;2_2^+ \rightarrow g.s.) + M_A^2(E2;2_2^+ \rightarrow 0_2^+) = V_{gA}^2 + U_{eA}^2$$
,

where

$$\begin{split} U_{gA} &= \langle \Psi^{A}(2^{+}_{1}) \mid E2 \mid \phi^{A}_{g0} \rangle, \quad V_{eA} &= \langle \Psi^{A}(2^{+}_{1}) \mid E2 \mid \phi^{A}_{e0} \rangle \\ V_{gA} &= \langle \Psi^{A}(2^{+}_{2}) \mid E2 \mid \phi^{A}_{g0} \rangle, \quad U_{eA} &= \langle \Psi^{A}(2^{+}_{2}) \mid E2 \mid \phi^{A}_{e0} \rangle \end{split}$$

As can be seen from Fig. 3, the peaking of the summed data at <sup>72</sup>Ge is dramatic. In this nucleus, the second 2<sup>+</sup> state has extremely weak E2's to both 0<sup>+</sup> states. Is this an accidental cancellation, or something more profound? We return to this point later. As mentioned, the ground state and  $0_2^+$  wave function is represented by Eq. (1). As in Ref. 3, the generalized basis states are determined by a single continuous variable R which represents the  $(e \rightarrow e)/(g \rightarrow g)$  2n-transfer overlap ratios between the 0<sup>+</sup> basis states. The experimental (t,p) and (p,t)  $0_2^+/g$ .s. cross-section ratios can be used to obtain  $\alpha_A$  and  $\beta_A$  as functions of that variable, R. The quantities  $x_A = \alpha_A / \beta_A$  are plotted versus R (as error bands) in Figs. 4 and 5.

If we assume for the moment, that each of the *physical*  $2^+$  states is connected via an E2 transition to only one of the  $0^+$  basis states (i.e., either  $U_{gA}$  or  $V_{eA}$  above is zero), then in <sup>A</sup>Ge, the E2 ratios are given solely in terms of the  $x_A$ 's, i.e.,

$$\frac{B(E2;2_1^+ \to 0_2^+)}{B(E2;2_1^+ \to g.s.)} = x_A^2 \text{ for } U_{gA} = 0 , \qquad (4a)$$

or

$$\frac{B(E2;2_1^+ \to 0_2^+)}{B(E2;2_1^+ \to g.s.)} = 1/x_A^2 \quad \text{for } V_{eA} = 0.$$
 (4b)

The E2 ratio data are plotted as horizontal error bands in Figs. 4 and 5. In  $^{74,76}$ Ge, only limits exist, but



FIG. 4. As curved bands, the values from Ref. 3 of  $x_A = \alpha_A / \beta_A$  (A = 70, 72, 74) vs R required to fit two-neutron transfer data. Horizontal bands are deduced from E2 ratios assuming each *physical* 2<sup>+</sup> state is connected (via an E2 transition) to only one 0<sup>+</sup> basis state.



FIG. 5. As in Fig. 4, but for  $^{76}$ Ge without uncertainties, with two different assumptions about which excited  $0^+$  state to use.

they are consistent with the above simple assumption for values of R greater than about 1.14—provided that in <sup>74,76</sup>Ge, it is  $\phi_e^A$  that is connected to  $2_1^+$  by an E2 amplitude (i.e.,  $U_{gA} = 0$ ). In <sup>70</sup>Ge, the E2 amplitude ratio is  $1.72\pm0.22$ , suggesting R values in the range  $1.13 \le R \le 1.24$ , and that in <sup>70</sup>Ge it is  $\phi_g^{70}$  that is connected to  $2_1^+$  by an E2 amplitude (i.e.,  $V_{eA} = 0$ ). In <sup>72</sup>Ge, the newer E2 measurements slightly favor  $\phi_g^{72}$  as "belonging" to  $2_1^+$ , though the data are barely consistent with the other pairing. We note that the earlier<sup>11</sup> E2 ratio is about unity in <sup>72</sup>Ge—consistent with either and requiring roughly equal g, e mixing. For <sup>70,72</sup>Ge we can eliminate the parameter R and

For  $^{70,72}$ Ge we can eliminate the parameter R and simply plot the  $x_{70}$  vs  $x_{72}$  contour that is required by two-nucleon transfer ratios, as done in Fig. 6. Any point within this error band will fit the (t,p) and (p,t) ratios involving  $^{70,72}$ Ge. We also plot in Fig. 6 as a vertical band the value of  $x_{72}$  predicted [via Eq. (4b)] from the E2 amplitude ratio in  $^{72}$ Ge and as a horizontal band, the value of  $x_{70}$  predicted [via Eq. (4b)] from that ratio in  $^{70}$ Ge. We note that there *is* an overlap, i.e., the two-nucleon



FIG. 6. Relationship between  $x_{70}$  and  $x_{72}$  from two-neutron transfer (curved band), compared with values of  $x_{70}$  and  $x_{72}$  deduced from E2 ratios (with  $V_{eA} = 0$ ), as in Fig. 4.

transfer data are consistent with  $^{70,72}$ Ge E2 data within the simple assumption that each of the physical 2<sup>+</sup> states is connected to only one of the basis 0<sup>+</sup> states. Furthermore, this assumption then puts severe limits on the allowed value of  $x_{70}, x_{72}$  (and hence on R and the 0<sup>+</sup> mixing amplitudes for all other Ge isotopes).

The analysis can be expanded to include the  $2_2^+$  state in <sup>70</sup>Ge and <sup>72</sup>Ge, in both of which all four B(E2)'s are known. Hence, for any value of the parameter R, the four experimental quantities can be used to calculate the four E2 matrix elements  $(U_{gA}, U_{eA}, V_{gA}, V_{eA})$  connecting the two physical  $2^+$  states with the two basis  $0^+$ states. (It turns out that the possibility of a sign ambiguity in the E2 amplitude—i.e.,  $M(E2)=[(2J_i$  $+1)B(E2;J_i^{\pi}\rightarrow J_f^{\pi})]^{1/2}$ , poses no problem.) These are plotted versus R in Figs. 7 and 8. We note that  $U_{gA}$ [i.e.,  $M(E2;2_1^+\rightarrow \phi_{g0}^a)$ ] is large and roughly constant, in both <sup>70,72</sup>Ge, over most of the allowed range of R, whereas in both nuclei the matrix element  $V_{eA}$  [i.e.,  $M(E2;2_1^+\rightarrow \phi_{e0}^a)$ ], changes rapidly—going through zero near R = 1.17.

In <sup>72</sup>Ge, both  $M(E2; 2_2^+ \rightarrow \phi_{e0}^{72}, \phi_{g0}^{72})$  matrix elements (i.e.,  $U_{e72}$  and  $V_{g72}$ , respectively) are small, and  $U_{e72}$ (through very small everywhere) passes through zero near R = 1.1. In <sup>70</sup>Ge, both  $M(E2; 2_2^+ \rightarrow \phi_{e0}^{70}, \phi_{g0}^{70})$  matrix elements (i.e.,  $U_{e70}$  and  $V_{g70}$ , respectively) are larger (in magnitude) but of opposite sign. In fact, within the uncertainties, for R in the range 1.1–1.2, three of the four matrix elements in <sup>72</sup>Ge are zero (i.e., all but  $U_{g72}$ ), implying a "spherical" nature for the intruder  $\phi_e^{72}$ . In <sup>70</sup>Ge, the vanishing of  $V_{e70}$  near R = 1.17 agrees

In <sup>10</sup>Ge, the vanishing of  $V_{e70}$  near R = 1.17 agrees with the earlier assumption discussed in connection with Figs. 4-6. However,  $2^+_2$  is then connected to both  $0^+$ basis states, although by small matrix elements in com-



FIG. 7. Physical  $2_1^+ \rightarrow basis 0^+ E2$  matrix elements  $M(E2; 2_1^+ \rightarrow 0_g^+, 0_e^+)$  vs R for <sup>70,72</sup>Ge deduced from E2 strengths in Table I and  $x_A$  vs A curves of Fig. 4.



FIG. 8. As in Fig. 7, but for  $2^+_2$ .

parison to that of  $2_1^+$ . Perhaps the most striking feature of the raw data is that the summed strength from  $2_2^+$  in <sup>72</sup>Ge is only about  $3.7 \times 10^{-3}$  of that for  $2_1^+$ . Even in <sup>70</sup>Ge, the summed strength from  $2_2^+$  is only about 10% as strong as that for  $2_1^+$ .

#### **B.** With mixing in the $2^+$ states

We now go one step further and assume that the physical  $2^+$  states are mixtures of two basis states, each of which is connected to only one  $0^+$  basis state. Specifically, we write for <sup>A</sup>Ge

$$\Psi^A(2_1^+) = \gamma_A \phi^A_{g2} + \delta_A \phi^A_{e2}$$

and

$$\Psi^{A}(2_{2}^{+}) = \delta_{A}\phi^{A}_{g2} - \gamma_{A}\phi^{A}_{e2}$$
,

and then (see Fig. 9) define

$$\begin{split} & u_{gA} = \langle \phi_{g2}^{A} \mid E2 \mid \phi_{g0}^{A} \rangle, \quad u_{eA} = \langle \phi_{e2}^{A} \mid E2 \mid \phi_{e0}^{A} \rangle, \\ & v_{gA} = \langle \phi_{e2}^{A} \mid E2 \mid \phi_{g0}^{A} \rangle, \quad v_{eA} = \langle \phi_{g2}^{A} \mid E2 \mid \phi_{e0}^{A} \rangle. \end{split}$$

Note that in terms of these E2 basis-state overlaps, we



FIG. 9. The schematic representation of basis  $0^+$  and  $2^+$  states, and E2 matrix elements connecting them. For results in Table II, the off-diagonal amplitudes  $v_{gA}$  and  $v_{eA}$  were assumed to be zero.

(5)

36

| $= [B(E2;0_j^+ \rightarrow$ | $2_i^+$ ) $]^{1/2}$ . |                       |                                     |                                     |
|-----------------------------|-----------------------|-----------------------|-------------------------------------|-------------------------------------|
| Sign                        | $\alpha_A^2$          | $\gamma_A^2$          | <i>u<sub>gA</sub></i> ( <i>e</i> b) | <i>u<sub>eA</sub></i> ( <i>e</i> b) |
|                             |                       | $^{70}$ Ge ( $A = 70$ | ))                                  |                                     |
| + + + +                     | $0.706 {\pm} 0.051$   | $0.952 {\pm} 0.005$   | $0.500 \pm 0.017$                   | $0.106 \pm 0.028$                   |
| + + - +                     | $0.724{\pm}0.054$     | $0.991 \pm 0.0005$    | 0.490 ±0.017                        | $0.144 \pm 0.028$                   |
| + - + +                     | $0.276 {\pm} 0.054$   | $0.009 \pm 0.0005$    | $0.144 \pm 0.028$                   | $0.490 \pm 0.017$                   |
| + +                         | $0.294 {\pm} 0.051$   | $0.048{\pm}0.005$     | $0.106 \pm 0.028$                   | $0.500 \pm 0.017$                   |
|                             |                       | $^{72}$ Ge ( $A = 72$ | 2)                                  |                                     |
| + + + +                     | $0.615 {\pm} 0.054$   | $0.996 {\pm} 0.0001$  | $0.581 \pm 0.025$                   | $-0.0037 \pm 0.0047$                |
| + + + -                     | $0.616 {\pm} 0.053$   | $1.000 \pm 0.0000$    | $0.580 \pm 0.025$                   | $-0.0335 \pm 0.0044$                |
| + +                         | $0.385 {\pm} 0.053$   | $0.004 \pm 0.0001$    | $-0.0037 {\pm} 0.0047$              | $0.581 \pm 0.025$                   |
| +                           | $0.384{\pm}0.053$     | $0.000 \pm 0.0000$    | $-0.0335 {\pm} 0.0044$              | 0.580 ±0.025                        |

TABLE II. The calculated values of  $\alpha_A^2$ ,  $\gamma_A^2$ ,  $u_{gA}$ , and  $u_{eA}$  for <sup>70,72</sup>Ge. The sign combinations<sup>a</sup> are for M(2101), M(2102), M(2201), and M(2202) where  $M(2i0j) = [5B(E2;2_i^+ \rightarrow 0_j^+)]^{1/2} = [B(E2;0_i^+ \rightarrow 2_i^+)]^{1/2}$ .

<sup>a</sup>Those sign combinations not present are discarded because they lead to solutions with negative values of  $\gamma_A / \delta_A$  which are inconsistent with the assumed phase restrictions. (They are otherwise equivalent to the solutions shown in the table.)

have

$$U_{gA} = \gamma_A u_{gA} + \delta_A v_{gA} \quad , \tag{6a}$$

$$V_{eA} = \gamma_A v_{eA} + \delta_A u_{eA} , \qquad (6b)$$

$$V_{gA} = \delta_A u_{gA} - \gamma_A v_{gA} , \qquad (6c)$$

$$U_{eA} = \delta_A v_{eA} - \gamma_A u_{eA} \quad . \tag{6d}$$

We shall assume that  $v_{gA} = v_{eA} = 0$  and without any input from two-nucleon transfer, then, we have four unknown quantities in each nucleus, viz.,  $u_{gA}$ ,  $u_{eA}$ , the 0<sup>+</sup> mixing amplitude  $\alpha_A$ , and the 2<sup>+</sup> mixing amplitude  $\gamma_A$ . In  $^{70,72}$ Ge, there are four known B(E2)'s, so it is worthwhile to ask if they lead to specific solutions for the unknown parameters. Results of solving Eqs. (2) and (6) with  $v_{gA} = v_{eA} = 0$  for each A are given in Table II. It turns out that in <sup>72</sup>Ge, there exist two independent solutions (labeled + + + + and + + + - in Table II). The first solution has  $\alpha_{72}^2 \approx 0.615 \pm 0.054$ ,  $\gamma_{72}^2 \approx 0.996 \pm 0.0001, \quad u_{g72} \approx 0.581 \pm 0.025$ e b and  $u_{e72} \approx -0.0037 \pm 0.0047$  e b, while the second solution has  $\alpha_{72}^2 \approx 0.616 \pm 0.053$ ,  $\gamma_{72}^2 \approx 1.000 \pm 0.000$ ,  $u_{g72} \approx 0.580 \pm 0.025 \ e$  b, and  $u_{e72} \approx -0.0335 \pm 0.0044 \ e$  b. We note that the major difference between the two solutions is that the first is consistent with  $u_{e^{72}}=0$  while the second is not and the second solution has  $\gamma_{72}^2=1$  (i.e., allows for no mixing between the  $2^+$  basis states) while the first solution requires some mixing, although very minute. (Note that the two solutions labeled +--+ and +--- in Table II are equivalent to these via  $\alpha_A^2 \leftrightarrow \beta_A^2$ ,  $\gamma_A^2 \leftrightarrow \delta_A^2$ , and  $u_{eA} \leftrightarrow u_{gA}$ , and that preference for one set over another the physical <sup>72</sup>Ge ground state is mostly  $\phi_g^{72}$  or mostly  $\phi_e^{72}$ .) In both solutions (++++) and +++-), the value of  $\alpha_{72}^2$  is about 0.6155 which corresponds to  $x_{72} \approx 1.265$ .

In  $^{70}$ Ge, there are also two *independent* solutions which very nearly overlap within the uncertainties. If

we take averages, we have  $\alpha_{70}^2 \approx 0.715$ ,  $\gamma_{70}^2 \approx 0.972$ ,  $u_{e70} \approx 0.125 \ e$  b and  $u_{g70} \approx 0.495 \ e$  b. This value of  $\alpha_{70}^2$ corresponds to  $x_{70} \approx 1.584$ . If we put these together with the analysis of (p,t) and (t,p) (i.e., Fig. 6), we see that these values of  $x_{70}$  and  $x_{72}$  lie well within the (t,p)-(p,t) band for  $x_{70} - x_{72}$ . We note also that in both calculations, the 2<sup>+</sup> states are relatively pure, with virtually *no* mixing in <sup>72</sup>Ge and a small amount in <sup>70</sup>Ge, if we are to understand the basis states as having no "offdiagonal" *E*2's.

The value of  $x_{72}$  near 1.265 (i.e., *R* near 1.168) arose naturally in two independent considerations. It is at this value of *R* that the deduced potential matrix elements responsible for mixing the 0<sup>+</sup> states are nearly equal for all four stable even Ge nuclei.<sup>3</sup> It is also for this value of  $x_{72}$  that the ratio of  $\alpha$  pickup strengths is equal to the reciprocal of the  $\alpha$  stripping strengths in <sup>72</sup>Ge.<sup>26</sup>

#### **IV. CONCLUSION**

Remembering that R is a parameter labeling the generalized 0<sup>+</sup> basis states, we thus have what appears to be a "natural" choice of basis. It gives (i) mixing potential matrix elements nearly equal in <sup>70-76</sup>Ge (the unperturbed basis-state separations are then roughly linear with A), (ii) no off-diagonal (or "cross-band") E2's among low-lying 2<sup>+</sup> and 0<sup>+</sup> basis states (in fact,  $\phi_e^{72}$  in <sup>72</sup>Ge is then not connected to *either* 2<sup>+</sup> basis states), and (iii) state  $\phi_e^{72}$  in <sup>72</sup>Ge has properties of being an  $\alpha$  particle- $\alpha$  hole excitation of state  $\phi_g^{72}$  in that the  $\alpha$  stripping and pickup ratios are inverses of one another. As of now, we have agreement for 2n transfer,  $\alpha$  transfer,  $0f_{5/2}$  proton occupancies, and B(E2)'s—though in <sup>74,76</sup>Ge the latter (so far) involve only 2<sup>+</sup><sub>1</sub> data. It would be extremely useful to have sufficient E2 data in <sup>74,76</sup>Ge to further test this choice of basis.

We acknowledge financial support from the National Science Foundation.

- \*Present address: Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA 19104.
- <sup>1</sup>D. Ardouin et al., Phys. Rev. C **12**, 1745 (1975).
- <sup>2</sup>M. N. Vergnes et al., Phys. Lett. 72B, 447 (1978).
- <sup>3</sup>M. Carchidi, H. T. Fortune, G. S. F. Stephans, and L. C. Bland, Phys. Rev. C **30**, 1293 (1984).
- <sup>4</sup>S. Mordechai, H. T. Fortune, M. Carchidi, and R. Gilman, Phys. Rev. C 29, 1699 (1984).
- <sup>5</sup>C. Lebrun *et al.*, Phys. Rev. C **19**, 1224 (1979).
- <sup>6</sup>D. Ardouin et al., Phys. Rev. C 18, 1201 (1978).
- <sup>7</sup>G. Rotbard et al., Phys. Rev. C 18, 86 (1978).
- <sup>8</sup>H. T. Fortune, M. Carchidi, and S. Mordechai, Phys. Lett. **145B**, 4 (1984).
- <sup>9</sup>R. Lecomte *et al.*, Phys. Rev. C **22**, 1530 (1980); **25**, 2812 (1982).
- <sup>10</sup>R. Lecomte et al., Phys. Rev. C 22, 2420 (1980).
- <sup>11</sup>P. M. Endt, At. Data Nucl. Data Tables 23, 547 (1979).
- <sup>12</sup>D. Cline, private communication.
- <sup>13</sup>A. M. Van den Berg et al., Nucl. Phys. A379, 239 (1982).
- <sup>14</sup>D. Ardouin, D. L. Hanson, and N. Stein, Phys. Rev. C 22, 2253 (1980).
- <sup>15</sup>M. Carchidi and H. T. Fortune, Phys. Rev. C 31, 853 (1985).

- <sup>16</sup>S. Sen et al., Phys. Rev. C 31, 787 (1985).
- <sup>17</sup>L. H. Rosier et al., Nucl. Phys. A453, 389 (1986).
- <sup>18</sup>M. Vergnes, in Proceedings of the Sixth European Physical Society Nuclear Divisional Conference on the Structure of Medium-Heavy Nuclei, Rhodes, Greece, 1979, Institute of Physics Conference Series No. 49, edited by G. S. Anagnostatos, C. A. Kalfas, S. Kossionides, T. Paradellis, L. D. Skouras, and G. Vourvopoulos (IOP, Bristol, 1980), p. 25.
- <sup>19</sup>S. Mordechai, H. T. Fortune, R. Middleton, and G. Stephans, Phys. Rev. C 19, 1733 (1979).
- <sup>20</sup>S. LaFrance, S. Mordechai, H. T. Fortune, and R. Middleton, Nucl. Phys. A307, 52 (1978).
- <sup>21</sup>S. Mordechai, H. T. Fortune, R. Middleton, and G. Stephans, Phys. Rev. C 18, 2498 (1979).
- <sup>22</sup>J. F. Mateja et al., Phys. Rev. C 17, 2047 (1978).
- <sup>23</sup>P. F. Hinrichsen, D. M. Van Patter, and M. H. Shapiro, Nucl. Phys. A123, 250 (1969).
- <sup>24</sup>S. Raman *et al.*, At. Data Nucl. Data Tables **36**, 1 (1987), and references therein.
- <sup>25</sup>M. R. Bhat, Nucl. Data Sheets **51**, 95 (1987).
- <sup>26</sup>H. T. Fortune and M. Carchidi, J. Phys. G 11, L193 (1985).