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A two-region model of the nuclear force is developed by using quark degrees of freedom at
short ranges and nucleons elsewhere. In the quark sector, the soliton bag model and generator
coordinates are used so that the quark fields undergo a continuous deformation as the two nu-

cleons overlap. This model describes the spin singlet nucleon-nucleon scattering data very well.
The density and binding energy of nuclear matter are also computed in lowest-order Brueckner
theory. Quark effects are found to decrease both the saturation density and binding energy.

INTRODUCTION

It is generally accepted that the theory of quarks and
gluons, quantum chromodynamics, is the underlying
theory of the strong interaction. Consequently, the
question is not are there quarks in nuclei, but rather are
quarks convenient degrees of freedom for describing nu-
clei? One cannot yet apply quantum chromodynamics
directly to problems in nuclear physics. Instead, one
uses low-energy models of quark dynamics. In recent
years, many workers have used low-energy quark models
to successfully describe the short-range part of the nu-
clear force. ' ' In this study, we examine quark effects
in both the two-nucleon and nuclear matter systems.

It is natural to apply low-energy quark models to the
short-range part of the nuclear force. Since the size of
the nucleon is about 1 fm, one might expect this "short-
range" region to extend to separations of about 1 fm.
The long-range nuclear force is known to be well de-
scribed by meson exchange and is therefore more easily
described with nucleon and meson degrees of freedom.
Here, we develop a model to use a quark model for the
short-range force and to use a nucleon-nucleon potential
to describe the long-range force.

One new feature of our nucleon-nucleon scattering
calculation is that the quark and nucleon degrees of free-
dom are matched (at —I fm) so that the quark wave
functions are continuous. Furthermore this is the first
soliton bag model calculation of the scattering phase
shifts.

Our interest in the many-body system is spurred by
the notion that the many-body system probes the off-
shell nucleon-nucleon interaction. The quark model pro-
vides a microscopic description of that interaction that
may have different features.

Our calculation of quark effects in nuclear matter is
crude but serves as a first estimate of their importance.
The matching techniques developed here for scattering
are little changed in their application to the nuclear
matter calculation. Indeed, the matching technique is
very well suited for extension to the reference spectrum
method of nuclear matter saturation calculation. We
find that quark effects can be large and can possibly
move the saturation point off the Coester line.

The outline of the paper is as follows. Section I de-
scribes the low-energy model, the soliton bag model'
used to describe the short range part of the nuclear
force. In applying this model we rely heavily upon tech-
niques developed by Schuh and collaborators. They
only obtained a qualitative description of the nuclear
force, since they neglected important gluon exchange
effects and used a zero impact-parameter approximation.

In Sec. II a generator coordinate method for calculat-
ing the dynamics of two interacting clusters is discussed.
The calculation of nucleon-nucleon scattering and the
development of our matching technique are presented in
Sec. III, in which the soliton bag model and the method
of generator coordinates are used at short ranges.
Several results are presented, including the sensitivity to
the matching radius (where the quark and nucleon sec-
tors are joined) and sensitivity to different approxima-
tions used for the method of generator coordinates. We
find that all of the spin singlet phase shift data up to lab
energies of 300 MeV can be adequately described with a
single choice of parameters.

The nuclear force of Sec. III is applied to a reference-
spectrum approximation calculation of nuclear matter
properties in Sec. IV. We calculate both the nucleonic
and non-nucleonic components of the short-distance
two-body wave function. The results indicate that quark
effects are important and lead to a decrease in the bind-
ing energy and density. Our calculation also indicates
that a microscopic description should be used in the
"long-range" nucleon sector.

I. SOLITON BAG MODEL

Quark dynamics are to be included in the nucleon-
nucleon interaction mechanism. It is necessary to model
the quark dynamics, and we use the soliton bag model
(SBM).' ' In many ways the SBM is an evolution of
the original bag model, the MIT bag model. ' It is
difTicult to use the MIT bag model in its original formu-
lation for any configurations other than spherical, static
bags. The SBM overcomes this restriction, and the abili-
ty to perform calculations involving deformed and non-
static bags is the reason that it is used here. In the SBM
quark confinement is a dynamical feature of the model
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which appears by introducing an additional scalar field,
the o. field, into the model. For a review of the SBM,
see the articles by Wilets and co-workers. '

It is possible but difficult to calculate nucleon-nucleon
scattering wholly within a quark model. The problem is
that the long range meson exchange force is generated
by highly complicated quantum fluctuations (qq pairs).
Such fluctuations have been included in nucleon and del-
ta mass calculations. ' Unfortunately, including such
effects in a nucleon-nucleon scattering calculation would
be an enormous task. Furthermore, imposing chiral
symmetry, as in the cloudy bag model, leads to the
necessary one and two pion exchange potentials between
nucleons. Here the quark model is used only at small
separations where, we expect, the most important quark
effects are quark Fermi statistics and asymptotic
freedom —not quantum fluctuations. The large separa-
tion force is included by using a nucleon-nucleon poten-
tial. Some features of the SBM necessary for an under-
standing of our calculation of the short-range force are
presented next.

A. Model

The dynamics of the SBM are described by a Lagrang-
ian density,

where the self-interactions of o. are given by

U(o. )=—o +—o +
,

o +B . —
2 3! 4!

The form of X(x) includes the requirements of renor-
malizability and translational invariance. The parame-
ters in U(o ) are chosen so that hadrons appear as non-
topological solitons of the o. field confining the quarks.
This can be achieved (for the classical solutions) by
choosing U(o ) to have a global minimum at a nonvan-
ishing value of o. , o. &,

' and to have a local minimum at
or near o. =0.

The masses and sizes of the low energy baryons and
mesons constrain the parameters a, b, c, and g. A
variety of parameter sets which yield acceptable fits to
the data have been examined by several authors. ' '
In this study a single parameter set is used.

B. Effective one-gluon exchange interaction

One of the deficiencies of the SBM as defined above is
that there are no color charge dependent forces in the
model and color confinement must be put in as an an-
satz. This can be remedied by adding explicit gluon de-
grees of freedom. ' ' Then, color nonsinglet states de-
velop an infinite self-energy and color confinement be-
comes a consequence of the model.

An alternate remedy is to introduce an effective
color-dependent interaction which is motivated by one-
gluon exchange. This has been done routinely for nonre-
lativistic quark models. '

In this study an effective interaction will be added
which is very similar to that of Harvey. The following
term

H "(x):= '—K-

with

+ 3 KooE'.g k Xpg k Xg:—CT (&.3)

a. 0
X= (1.4)

where S, are quark spin operators, very similar to
Harvey's. The choice of —', for the non-spin-dependent
term is made so that the self-energy contribution of H'
vanishes for a single nucleon. The actual calculation is
rather insensitive to that choice. The choice of the form
of Eq. (1.3) is motivated by the nonrelativistic forms and
by its simplicity.

The coupling constant, KQGE, could be fixed by fitting
the nucleon-delta mass difference. However, in this
study KQGE will be chosen to obtain a best fit to the
nucleon-nucleon scattering phase shifts.

C. Two-nucleon states

If one were to search for the lowest energy, spherical
six-quark state of baryon number equal to two in the
mean field approximation, one would find a spherical
bag containing six quarks in the lowest energy orbital.
However, because of one-gluon exchange contributions,
the energy of this spherically symmetric state would be
greater than the energy of two separated nucleons.
Therefore, using a single mean field approximation state
is not sufficient. Clearly, one expects this since even the
deuteron is more like two nucleons than a single six-
quark bag.

The fissioning of a spherical six-quark bag into two
separated nucleons is described with generator coordi-
nates. This allows a variety of baryon number equaling
two states to be used in the expansion of the complete
state vector. One expands the two-nucleon state vector
in a set of basis states labeled by the generator coordi-
nate. In principle one should use a complete or over-
complete set of states as basis states for a calculation us-
ing the method of generator coordinates. However, in
practice one chooses a physically motivated but incom-
plete set to make the calculation tractable.

There are many possible choices for two-nucleon basis
states. Here we use two different sets of basis states. It
is found that one set (sudden approximation) yields an
acceptable fit to the scattering phase shifts, while the
other (volume conserving) does not. The states used here
are very similar to those used by others ' for the quark
sector in nonrelativistic calculations. The main

is added to the normal ordered Hamiltonian density.
The o are the Pauli matrices and the A,', the SU(3) ma-
trices. The CT represents the counterterm which is
chosen to exactly cancel the irrelevant one-body pieces
of:H':. Sums on the quark colors and flavors are im-
plied as well as sums on the color matrix labels and the
spin matrix labels. This term would lead to a nonrela-
tivistic potential,

(1.5)
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(cr
~

o(r)
~

cr )
(cr ~cr )

=cr (r), (1.7)

where cr (r) is a function which approximates the adia-
batic o. field configuration for the quark density of state

~
a)s~. Following Dethier' cr (r) is fitted to the form

P 0 )
—sir —zl

o (r)=cri — f d'z e (z)
4m r —z

(1.8)

difference is that the o. field must also be specified for
our states. For the o. field we use a coherent state. This
has the simplicity of being closely related to the mean
field approximation state but is a properly defined quan-
tum state. The definition and properties of the coherent
state are described in Refs. 9, 12, and 17.

Many features of the sudden approximation set and
the volume conserving set are the same. These are:

(1) The generator coordinate which labels the states
corresponds closely to the relative separation distance
between the two nucleons. At large separation the gen-
erator coordinate is the separation between the bag
centers.

(2) The states for large values of the generator coordi-
nate correspond to two separated mean field approxima-
tion nucleon states.

(3) To a first approximation, the o field is assumed to
adjust adiabatically to the quark density.

(4) The states are defined so that as the two bags over-
lap the quark states remain spatially in spherically sym-
metric orbitals, with each quark's state centered in its
respective bag.

Next turn to the differences. In the sudden approxi-
mation the spherically symmetric wave functions cen-
tered at the bag centers remain fixed. Thus, for any de-
formation they are the same as the single-nucleon mean
field approximation quark solutions. In the volume con-
seruing case the quark wave functions are the same as
the mean field approximation wave functions except that
they are scaled so that the total enclosed volume of the
two bags remains constant. To a very good approxima-
tion the zero deformation parameter state in the volume
conserving basis is the same as the spherical six-quark
bag in the mean field approximation.

Mathematically the states are defined as follows. For
the sudden approximation,

~

a)s~=A I [a, (a/2)a 2(a/2)a 3(a/2)]N

X
~
a&( —a/2)a&( —a/2)a6( —a/2)]NI

~

o ),
(1.6)

where the a (r) operators create a quark state with the
lowest energy mean field approximation wave function
centered at r. The subscripts on the creation operators
refer to the spin, isospin, and color of the quark state
created. The A is the quark antisymmetrization opera-
tor necessary since a„(a/2) and a„(—a/2) do not obey
canonical anticommutation relations. The N subscript
denotes that the three quarks in the brackets are coupled
to the spin, isospin, and color quantum numbers of the
nucleon. The coherent o field state

~

o. ) is defined so
that

where 6 (r) equals 1 if
~

r —a/2
~

&RN or

~

r+a/2
~

&R N, and equals 0 otherwise. The parame-
ters p, cr „and R~ are chosen so that o. , for large a, is
the sigma field for two separated nucleons.

The volume conserving states,
~
a)vc, are similarly

defined except that the total volume enclosed by the two
bags is kept fixed. Specifically, the o. field coherent state
would be defined as in Eqs. (1.7) and (1.8) except that the
theta function, e (r), equals 1 for

~

r+a/2
~

&R in-

stead of R N. R is defined so that

d r6 r =2&( —', URN (1.9)

for all a. Equation (1.9) defines the term "volume con-
serving. " For a given a the same linear scaling of R
(namely R /R N ) is applied to the quark wave functions
as well, so that the quarks are scaled so as to fill the bag.

The title "sudden approximation" used to describe the
set of basis states refers to the fact that the quark wave
functions are not distorted as the bags overlap. The o.

fields in the basis states used here adjust adiabatically to
the quark field density. We may compare the quark
states used here to states used in the nonrelativistic
quark model. In the nonrelativistic model the quarks
have a large mass ( =300 MeV) and are assumed to ad-
just slowly to changes in the potential. In relativistic
models, such as the SBM, the quarks are massless but
still contribute a similar amount of energy to the nu-
cleon mass as do the nonrelativistic quarks. However, in
relativistic models the energy arises from the quarks ki-
netic energy and the quarks have large inertia. The as-
sumption made here is that the inertia of the quarks
causes them to adjust slowly to changes in the gluon
field around them.

II. GENERATOR COORDINATES METHOD

The method of generator coordinates or the resonat-
ing group method is a popular technique for comput-
ing the scattering of composite clusters. In hadron
physics quarks cluster to form three-quark color singlet
hadrons and the method of generator coordinates can be
profitably applied.

The degree to which quarks cluster into three-quark
color singlets as two nucleons overlap is determined by
energetics. The energy involved is the energy to excite
the system of six quarks into a state which does not look
like two three-quark color singlet clusters. A naive esti-
mate of this energy is the 300 MeV nucleon-delta mass
splitting. This is partly a hyperfine interaction from
gluons. Color confinement is caused by gluons, so this
mass splitting may be indicative of other gluonic ener-
gies. The nucleon-delta mass difference is large com-
pared to binding energies in nuclei, indicating that clus-
tering of quarks into three-quark color singlets might be
quite strong even if two nucleon bags overlap a great
dea1. This is a motivation for both the method of gen-
erator coordinates and the two-nucleon soliton bag mod-
el basis states discussed above.

This section covers the aspects of the method of gen-
erator coordinates used in the quark sector. The main
topics are: (1) the Griffin-Hill-Wheeler equation; (2) the
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effective energy which appears in the Griffin-Hill-
Wheeler equation and the center of mass corrections
which it contains; and (3) the direct and exchange con-
tributions for the problem of nucleon-nucleon scattering.

A. GriSn-Hill-Wheeler equation

A set of two-nucleon basis states can be defined which
are labeled by a parameter, a, known as the generator
coordinate. These states correspond to two three-quark
clusters separated by a distance a along with a o. field
configuration. The state vector of a two-nucleon system
can be expanded as

l

4)= j d a a)P(a) . (2. 1)

u~(a)a2du:H: —E u
R

The partial wave decomposition is

uq(a)
P(a)= g Y~o(a),

CX

(2.2)

(2.3)

where Yzo(a) is a spherical harmonic. For matrix ele-
ments of an operator, 0, it is

(P
l
8

l
a) = g (P

l

0
l
a)~P((P.a), (2.4)

where P~ is a Legendre polynomial. In Eq. (2.2) R is

chosen larger than the range of interaction between clus-
ters and the asymptotic weight-function, u & (a ), has the
form

uq(a) sin(5~)=jq(ka)+ nq(ka),
cos(5& )

(2.&)

where k is the relative momentum, 6& is the unknown
phase shift, and j&(x) and nz(x) are, respectively, the
regular and irregular spherical Bessel functions of order

In this study the method of Tikhonov regularization
is used to eliminate the numerical divergences associated
with the GHW equation. Tikhonov regularization is
also used for solving all other first-kind Fredholm in-
tegral equations which arise in this study.

B. EfY'ective energy and center of mass corrections

The energy, E, enters Eq. (2.2) as a Lagrange multi-
plier. It can be shown that the relation between E and
the relative momentum, k, depends only upon the
asymptotic form of P(a ) and is given by

The Griffin-Hill-Wheeler (GHW) equation is derived by
requiring that the expectation value of the normal or-
dered Hamiltonian is stationary with respect to varia-
tions in the generator coordinate weight function, P(a).
The relevant equations are shown for the spin singlet
states in which case the partial waves completely
decouple. Then the GHW scattering equation is

uz(a)a2da:H: —E a
0 CX

f a da(X l:H:
l
a)&jr(ka)

E(k)=
a do. L a &j&

(2.6)

for any 8, if
l

X
l

is chosen much larger than the region
of interaction. E(k) as defined by Eq. (2.6) is indepen-
dent of both 8 and x. The region of integration must
extend far enough above and below a=L to include all
of the nonlocalities of the kernel.

The interpretation of E(k) can now be made. In Eq.
(2.6) the contributions to the integrals occur only for
a =X, i.e., for large

l
a

l

. The two-nucleon states,
l
a),

for large
l
a are simply product states of two separated

nucleons, one at a/2 and the other at —a/2. In deter-
mining E (k) one is projecting onto a state of well-
defined relative momentum. Since the mass of the total
system is larger than the mass of a single nucleon, total
center of mass corrections are less important than rela-
tive center of mass corrections. In fact, Eq. (2.6) is the
equation for the energy of a Peierls-Yoccoz projected
state of relative momentum k for two nucleons.

These center of mass corrections are important for ob-
taining the correct solutions to the GHW equation. It
should be mentioned that Peierls-Yoccoz projection is a
low-energy approximation; a better technique is to first
project the nucleon onto a state of zero momentum and
then perform a Lorentz boost of the wave function. '

C. Direct and exchange contributions

For the two nucleon system the kernels of the GHW
equation involve matrix elements of one- and two-body
operators. These can be classified as direct or exchange
depending on whether they are evaluated between
quarks in the same nucleon cluster or quarks in different
nucleon clusters. One must compute the direct and ex-
change matrix elements for the normalization and H be-
tween the two-nucleon states defined in Sec. I C. The
technique that is used is described elsewhere, so further
details are not included (see also Ref. 27).

III. NUCLEON-NUCLEON SCATTERING

The problem of calculating the nucleon-nucleon in-
teraction from meson exchange theory is a very old one.
Meson exchange theories include the dynamics of the
internal structure of the nucleon by expanding the model
space to include excitations of the nucleon. ' ' Howev-
er, the degree to which quark substructure of the nu-
cleon is responsible for phenomenological form factors
and the nucleon resonances is not made explicit.

An alternative approach is to begin with a model for
the quark dynamics. Then the inhuence of the quark
substructure is explicit, but the long range meson ex-
change effects are difficult to include wholly within the
framework of a quark model. One way to do this is to
introduce the meson fields as fundamental fields of the
model which interact with the quarks. The cloudy bag
model and other chiral bag models include explicit
pions. Yang and Zhong' calculated the nucleon-
nucleon interaction in the cloudy bag model and ob-
tained the one-pion exchange tail at large separation.
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The approach here is to use quark dynamics only at
small separation and to use explicit nucleon degrees of
freedom interacting via a potential at large separations.
The new aspects of our nucleon-nucleon scattering work
are contained in this section. Namely, we develop and
apply a technique for matching a small separation
description in terms of quarks with a large separation
description in terms of nucleons.

A. Matching quarks and nucleons

There are several techniques of incorporating quark
dynamics into the nucleon-nucleon interaction. F-matrix
or P-matrix calculations are popular. A drawback
of most F-matrix calculations is that the quarks are only
explicitly included in a single spherical six-quark bag.
The generator coordinate method avoids this by allowing
a series of bag states which undergo a smooth deforma-
tion from a spherical six-quark bag into two separated
three-quark bags to exist.

For the nonrelativistic many-body problem one can
separate the relative, center of mass, and internal coordi-
nates for two clusters. If one writes the state vector of
the two-cluster system as an unknown wave function of
the relative coordinate times two fixed internal wave
functions of the internal coordinates, then one is led to
the equations of the resonating group method. More-
over, the resonating group wave function can be related
to the generator coordinate weight function. In general
the wave function and the weight function are related to
each other by an integral transform.

For the relativistic many-body problem it is not
known how to separate relative, center of mass, and
internal coordinates. However, at a large separation the
distance between the geometric centers of the two nu-
cleon clusters should be approximately the relative
nucleon-nucleon coordinate.

Here we assume that for large separations the distance
between the geometric centers of two nucleon clusters is
the relative nucleon-nucleon coordinate. Moreover, we
assume that the nucleon-nucleon wave function can be
related to the generator coordinate weight function via
an integral transform like the one which relates the
resonating group wave function to the generator coordi-
nate weight function for nonrelativistic calculations.

The state vector is related to the generator coordinate
weight function by

i

4)= f d a ia)P(a) . (3.1)

To obtain the nucleon-nucleon wave function, one pro-
jects the state vector onto a state

~

r) of two nucleons
separated by r. The wave function, it(r), is given by

p(r) =—(r
~

qj) = f d a(r
~
a)p(a) . (3.2)

The kernel of the integral transform relating the wave
function and the weight function is ( r

~

a ). In order to
obtain this kernel the state

~
a) should be projected

onto the state of two nucleons separated by r. For large
separation, the basis states

~

a) are just such states [see
Eq. (1.6)]. For intermediate separations the basis state
a) differs from the state

~

r) mainly by deformations

V g(r)+ V~(r)g(r)=EQ(r),
2m

for
~

r
~

& RM, (2) the Griffin-Hill-Wheeler equation,

da:H: —E a a

(3.4)

= —f d a(P ~:H: E~ a)i))(a)—, (3.5)

for
~ p ~

&R~, and (3) the transformation between p(a)
and g(r),

it(r)= f d a(P=r
~

a)P(a)

+ f d a(p=r
~

a)p(a), (3.6)

for
~

r
~

&RM. The function P(a) is the generator coor-
dinate weight function for

~

a
~

&RM and it is deter-
mined by Eq. (3.6). The weight function is required to
be continuous at

~

a
~

=RM, i.e.,

P(a=RM a)=P(a=RM. a), (3.7)

a is the unit vector in the direction of u. Equations
(3.4)—(3.7) must be solved self-consistently.

In practice a partial wave decomposition of the equa-
tions is made and the resulting equations are solved by
iteration. For each partial wave the phase shift, 5&, is
determined as a function of energy. For details of the
iteration procedure, see Ref. 27.

This technique of including both the nucleon-nucleon
physics at large separation and the quark physics at

in the o field. In this calculation the basis states
~

a)
will be used as the two nucleon projection states

~

r) in
obtaining the integral transform of Eq. (3.1). The ker-
nel of this transformation is nonlocal, just as in the non-
relativistic problem, because the states

~
a) for different

a are not orthogonal. Thus

it(r)= f d a(P=r
~
a)P(a) . (3.3)

The notation
~

p=r) indicates that the ket which is
used is a basis state which has previously been denoted
with Greek vectors, ~a) or

~
p); but here the ket is

used in an integral transform which relates the weight
function, P(a), to the wave function, P(r).

With this transformation, both the wave function and
the weight function are defined over all of space. How-
ever, the physics at small separation should be deter-
mined only by the quarks and the physics at large sepa-
ration should be determined only by the nucleon-nucleon
potential. These two requirements are implemented by
requiring that the wave function, g(r), satisfy the
Schrodinger equation with the Reid nucleon-nucleon po-
tential for

~

r
~

&RM, RM being the matching radius
between the quark sector and the nucleon sector. On
the other hand, the weight function, P(a), is required to
solve the Griffin-Hill-Wheeler equation for

~

a
~

&R~.
These two requirements and the transformation between
P(a) and P(r) completely determine both P(a) and g(r)
for all values of a and r.

The equations determining the solution are: (1) the
Schrodinger equation,
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short separation requires one to obtain both a wave
function and a weight function. There are four points
which should be emphasized:

(1) The calculation does not depend on the nucleon-
nucleon potential, Vz, for

~

r
~

~RM.
(2) The calculation also does not depend on the kernel

of the Griffin-Hill-Wheeler equation for
~

u
~

and

~
P

~

&RM. The kernel of the GHW equation is calcu-
lated using the model of quark dynamics, the soliton bag
model. This shows that the quark dynamics are used
only at small separations.

(3) The integral transform which relates the weight
function to the wave function is used to find the wave
function only for r

~

&RM. The use of the generator
coordinate a to represent the nucleon-nucleon coordi-
nate should be more reliable at larger separations.

(4) This technique for matching the nucleon-nucleon
sector with the quark sector will be applied to the nu-
clear matter calculation.

B. Numerical techniques

The solution of the equations presented in the previ-
ous section requires the numerical evaluation of the
GCM basis states, the GCM kernels, the solution of the
Schrodinger equation, and the solution of the coupled in-
tegral equations, Eqs. (3.5) and (3.6). Since these evalua-
tions may introduce errors into the solutions, one must
check the accuracy of the individual calculations and of
the procedure.

The SBM parameters defined in Sec. I used here are

a =30.23 fm

b = —612.3 fm

c =4000,

B =9.69 MeVfrn

g =10.0 .

(3.8)

These are slightly rescaled parameters taken from previ-
ous work' which yield the correct nucleon mass after
center-of-mass projection. These parameters are not ad-
justed at all. The remaining parameter in the SBM, the
effective one-gluon exchange interaction coupling con-
stant, KQ&E, is discussed in the next section.

All of the equations are solved in coordinate space
with a mesh size of approximately —,

' fm. The only ap-
proximation made in the evaluation of the kernel is to
omit a small spin-dependent term. Since tensor forces
from one-gluon exchange have also been neglected we
will not examine the spin triplet phase shifts closely.
Nor will we include quark effects in the spin-triplet
states in our nuclear matter calculation in the next sec-
tion. There are many checks for individual steps in our
calculation which are described in Ref. 27.

A final check on the entire calculation is to calculate
the phase shifts for nucleon-nucleon scattering in which
all the interactions between the two nucleons are
"turned off." To do this one must calculate basis states
in the quark sector which are product states of two nu-

cleons separated by the generator coordinate, a. These
free two-nucleon states are defined so that parity is a
good quantum number. The quarks within each nucleon
are in an antisymmetric state; however, there is no an-
tisymmetrization between quarks in different nucleons.

The kernels of the GHW equation are evaluated as in
the full calculation except that there are no interactions
between the quarks and o. field of the different nucleons.
The effective energy in the GHW kernel is unchanged
since it is an asymptotic property.

In the nucleon sector of the problem, the potential in
the Schrodinger equation is set to zero. The problem is
solved using Eqs. (3.4)—(3.7) exactly as it is solved in the
full problem: the same mesh is used, the same regulari-
zation scheme and parameters are used, the same itera-
tion procedure is used, and the same technique for ob-
taining the phase shift is used. Thus, this constitutes a
problem solved with exactly the same technique, but the
exact solution for this problem is known. For the exact
solution the phase shifts vanish at all energies for all par-
tial waves. The calculation of the phase shifts yields all
phase shifts to be smaller than 0.001 rad for all partial
waves and all lab energies up to 352 MeV. This is the
strongest single check of the accuracy of this calcula-
tional program.

C. Results

The nucleon-nucleon scattering calculation is carried
out with two different choices of basis states in the quark
sector: (1) the sudden approximation basis states for
which the quark orbitals are kept equal to the single nu-
cleon quark orbitals even as the two nucleons overlap,
and (2) the volume conserving basis states for which the
overlapping bags expand as they overlap (so as to keep
the total enclosed volume of the two bags constant).
Otherwise the volume conserving basis states are the
same as the sudden approximation states.

There are two parameters in this calculation which are
adjusted to fit the scattering phase shifts: (1) the cou-
pling constant, KQGE, for the effective one-gluon ex-
change interaction, and (2) the matching radius, RM, be-
tween the quark sector and the nucleon sector. The
value of KQQE can be chosen close to the value K~&,
which produces the proper nucleon-delta mass splitting,
but is not. There are several reasons for this: First, this
calculation is not a determination of the prediction of
the soliton bag model for nucleon-nucleon scattering.
Rather, it is a model of the nucleon-nucleon interaction
motivated by quark physics at short separation and nu-
cleon physics at large separation. It is important that
this model fit the nucleon-nucleon scattering data. Only
then can it be applied to a calculation of nuclear matter
and compared with other calculations which do not in-
clude quarks. Second, the effective one-gluon exchange
interaction is an effective operator which may not affect
six-quark systems and three-quark systems in the same
way as true one- or many-gluon exchange. Third, there
are other, contributions to the nucleon-delta mass split-
ting which are not included; pion exchange is an exam-
ple. Fourth, in this calculation the center of mass ener-

gy of the nucleons at large separation is subtracted; how-
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ever, the center of mass of the entire two-nucleon system
is fixed in the basis states used here. Thus, there are
corrections to the kernels of the G riffin-Hill-Wheeler
equation for the motion of the entire two-nucleon center
of mass. These corrections should be smaller than the
corrections for the single nucleon center of mass motion
because the two nucleon system is heavier. The value of
KQQE which fits the nucleon-delta mass splitting in this
model is EN~= —0.9 fm .

The matching radius between the quark sector and the
nucleon sector is also adjusted to fit the scattering data.
Earlier workers who have separated the nucleon-nucleon
interaction into an interior quark sector and an exterior
nucleon sector have found matching radii of approxi-
mately R~ =0.3 —0.9 fm; see, for example, the work by
Kisslinger and Miller, ' Lomon, or Simonov.

The parameters KQQE and RM are fitted by calculat-
ing the 'So phase shift and attempting to fit the experi-
mental phase shifts in the 0—300 MeV lab energy region
important in nuclear matter. Once the parameters are
determined, all other partial waves are calculated with
the same parameters.

First, consider the volume conserving basis set in
which the quark wave functions expand as the bags
overlap. This leads to an increase in the confinement
size and a decrease in quark kinetic energies. Thus, one
expects less repulsion in the volume conserving basis
than in the sudden approximation basis. We find that
the 'So phase shift cannot be accurately described using
the volume conserving basis with any reasonable KQ&E
and RM even though the qualitative features can be ob-
tained. Figure 1 is a plot of the calculated 'So phase
shifts versus lab energy for three different sets of param-
eters. In Fig. 1 the solid line shows the Reid potential
phase shifts which accurately describe the experimental
results; the dotted lines are drawn through the calculat-
ed phase shifts for the three parameter sets. The three
parameter sets shown are typical of results obtained with
the volume conserving basis set. In all of the results

shown, the decrease with energy is too small, indicating
insufficient repulsion. We need to describe accurately
the 'So phase shift. The volume conserving basis set
leads only to a qualitative fit, so we will not consider it
further.

For the sudden approximation basis states the So
phase shift can be very well described, as shown in Fig.
2. In Fig. 2 the effective gluon coupling constant is fixed
at KQQE —1.55 fm and three values for the matching
radius are shown: (1) for RM =0.670 fm the phase shifts
are slightly too large but the slope is quite close to the
experimental value, (2) for RM =0.837 fm the calculated
points lie nearly on top of the data (the best fit), and (3)
for RM ——1.004 fm the calculated points are close to the
data for E~,b &100 MeV. However, the magnitude of
the slope is too great and for large energies the points lie
below the experimental values. This figure also shows
the sensitivity to the matching radius. If the same dy-
namics were included in both the quark sector and the
nucleon sector, then there should be no sensitivity to the
matching radius. In this calculation different dynamics
are included in the two sectors, so sensitivity to RM is
expected. However, the sensitivity is seen to be rather
small.

Other parameter sets do not give a better description
of the Sp phase shifts. If the matching radius is made
smaller than 0.837 fm, then the phase shifts become
rather insensitive to KQ&E and a very large value would
be required to produce a good fit.

The choice of matching radius RM ——0.837 fm gives
the best description of the "data, " which occurs for an
effective one-gluon exchange coupling constant
KQQE ——1 . 5 5 fm . A reduction of the magnitude of
KoGE from —1.55 fm to —0.9 fm (from the 6-n split-
ting) would result in insulftcient repulsion. It has been
stated by many other workers; see, for example, Oka, 3

that magnetic one-gluon exchange is largely responsible
for the repulsion in the nucleon-nucleon interaction.

With the matching radius and the effective one-gluon
exchange coupling constant fixed by the 'So phase shifts,
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FICJ. 1, Sp phase shifts for the volume conserving basis.
The matching radius is RM ——0.837 fm. Phase shifts for three
values of KoQE are shown: Ko~E ———1.2 fm', ; Ko~E ———1.3
fm, 0; &ooE = —l. 5 fm, + . The dotted lines are drawn to
guide the eye (in this and Fig. 2). The solid line represents the
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FIG. 2. 'Sp phase shifts for the sudden approximation basis.
The effective coupling constant is KQ+E ——1.55 fm . Phase
shifts for three values of RM are shown: RM =0.670 fm, 0;
RM ——0.837 fm, +; RM =1.004 fm, . The sudden approxi-
mation basis is used in this and Figs. 3—10.
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one can compute the phase shifts for the other partial
waves. Recall that some spin dependent contributions to
the quark sector have been omitted so there is a larger
theoretical error in the spin triplet phase shifts.

Figures 3 through 8 show the phase shifts for all par-
tial waves with L & 2 as well as for the F2. For the cou-
pled channel phase shifts and mixing parameters the bar
phase shift conventions are used. Note that all spin
singlet phase shifts ('So, 'P, , and 'D2) agree remarkably
well with the data. The L =J spin triplet phase shifts
( P, and D2) are also in quite good agreement. The
rest of the spin triplet phase shifts are only good at low
energy, if at all. The low energy agreement is probably
due to the dominance of the long-range interaction.

IV. QUARK EFFECTS IN NUCLEAR MATTER

The formalism for a quark-nucleonic description of
the nucleon-nucleon interaction is developed in Secs. II
and III. Here, we apply this model to nuclear matter to
see if quarks matter. We find that quark effects can be
large and can move the saturation point off the Coester
line.

Our model for nucleon-nucleon scattering is based
upon four equations: (I) the Schrodinger equation for
the nucleon sector (r & RM); (2) the Griffin-Hill-Wheeler

equation for the quark sector (r &RM); (3) the integral
transform which relates the nucleon sector wave func-
tion to the generator coordinate weight function; and (4)
a regularity condition for the weight function.

We proceed by obtaining appropriate generalizations
of these four steps. Then the reference-spectrum
method is employed to simplify this first calculation.
Pauli corrections are implemented by assuming that the
energy shift due to Pauli corrections is not modified by
quark effects. This is a crude approximation, but work
by Green and Niskanen indicates that such an approxi-
mation is reasonable in the similar case when deltas are
the non-nucleonic degrees of freedom.

A. Nucleon sector

We expect that the inhuence of quarks will be to pro-
vide short-distance corrections to conventional nucleonic
treatments. Thus we state the standard procedures for
computing the binding energy and density of nuclear
matter.

One starts with the independent pair approximation.
The plane wave functions are labeled by 1$'P, ). In-
teractions between the independent pair are included in
the wave function loki), which satisfies the Bethe-
Goldstone equation
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spectrum method of Bethe, Brandow, and Perschek
(BBP). It has the simplicity of leading to a differential
equation. The resulting equation is expressed in terms of
the defect wave function, gkl, where

~ gkl ) =
~ pkl )

—
~

Itlkl ). one writes

c/)

C3

O

I I I
I

I I I
I

I I I I
I

M
~'+r' kkl(r) V(r) kkl(r) (4.2)

0
V)

P P+K
02V+ (4.3)

in the coordinate space representation. The number y
in Eq. (4.2) is related to the energy denominator in the
Bethe-Goldstone equation; y is given by
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As a result the functions uI (Kr ) depend upon the
boundary condition imposed at r =RM. This is dis-
cussed in the next section. Even when quarks are in-
cluded, we compute G matrix elements such as in Eq.
(4.6) for the calculation of V(k;). However, quark de-

grees of freedom are used to determine the necessary in-
tegrands for r & RM.

B. Quark sector

I i I I I I I I I I I I I

IOO 200
E(pb ( MeV)

FIG. 8. 'D, phase shifts.

300
We again require that Eq. (4.2) be satisfied, only now

quarks are to be used. This equation can be written as

[H i+(T . . eke)l
l 0k@& (T . . +T I eke)

l Oker)

(4.7)

Partial wave decompositions of the wave functions
and ski can be made, and the reference-

spectrum equation for uncoupled partial waves is found
to be

1

M Br2
L(L+1)

r2
—y' XL(r)= —VL(r)uL (r),

(4.4)

OI

where the average momentum, P, is given by
P = (kk + k& )/2, and the relative momentum, K, is given

by K=(k; —k )/a. Vo and m* are parameters describ-
ing the hole energy spectrum which are chosen to obtain
self-consistency,

ek(k, )=k; /2m*+ Vo .

where T, and T„, are, respectively, the center of mass
and relative kinetic energy operators. In this case, the
correlated state vector pkl is expanded in the generator
coordinate sudden approximation basis set used in the
scattering problem. The free two-nucleon state

l pkpi )
is expanded in free two-nucleon basis states a;NN)
(states formed by taking the product of two nucleons
separated by a). Then, after the center of mass degrees
of freedom are removed, the states are given by

10k(&= f d'ala&4(a»
(4.8)

l Pkgl ) = f d a
l

a;NN)P"'(a) .

We require Eq. (4.7) to be satisfied to within small varia-
tions of

l
i(tki ); thus

H: Eo+r'l 0—ki &

1

M ($r 2

L (L +1) 2+ Vl +y uL(r)
r

+y Fl (Kr) .
K
M

(4.5)

—«'/M +)")
l 4k 4i & 1

=0 (4 9)

(Eo is the K =0 effective energy discussed in Sec. II.)

Thus the Griffin-Hill-Wheeler equation is replaced by

d a:H:—Eo+y a a

(K'JLT
l
G(P)

l
KJLT )

dr FL(K'r) Vl (r)uI (K,P, r),KK' o
(4.6)

where JLT are quantum numbers of the nucleon pair.
The dependence of uI and the G-matrix element upon
the relative and average momenta K and P has been
made explicit. The single-particle hole energies, V(k, ),
and the average binding energy, V, can be calculated
from the G matrix.

So far we have repeated standard lore. The present
calculation proceeds by employing (4.2) only for r & RM.

The functions uL, Fl, and XL are, respectively, the radi-
al wave functions of the decompositions for gk, , p«, and

These are chosen so the FL (Kr) =Krji (K„) (where

jL is the regular spherical bessel function),
ul (r)~FI (Kr) as r~oo, and Xl =Fz —uL. The cou-
pled partial wave equations are similar.

The contribution of an uncoupled partial wave to the
G matrix can be written as

—(K /M+y )(P
l

a;NN)P'"(a)=0 . (4.10)

The function p
"" is an input to this equation and is

determined by solving the Griffin-Hill-Wheeler equation
in which all the interactions between the two nucleons
are "turned off." As in the scattering problem, we only
require Eq. (4.10) to be satisfied for lPl &RM. The
weight-function for

l P
l

& R~ is determined from the
integral transform which relates it to the wave function,
see Eq. (3.7). We also require the regularity condition
on the weight function, Eq. (3.7). Thus, Eqs. (4.2),
(4.10), (3.6), and (3.7) completely determine the correlat-
ed wave function and weight function in the reference-
spectrum approximation.

To evaluate the G-matrix element, one must know the
nucleon-nucleon wave function for r &RM. This is ob-
tained by projecting out the nucleon-nucleon com-
ponents of the state vector. Thus, we use the free
nucleon-nucleon states,

l
r;NN), described above, and

obtain
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1()NN(r &RM ) = f d a(r;NN
~
a)(t)(a) . (4. 1 1)

4w

K
M

2 R

+p dr Fl (FL —u NN )
tL)

M 0
o

au"' aF,
r=RM

The G-matrix element is determined from an overlap be-
tween 1()NN (r &RM), the effective potential V, and the
undistorted free wave function. Since we do not know V
in the quark sector, we try to eliminate it. We assume
that the wave function in the quark sector satisfies a
coupled-channel Schrodinger equation with completely
unspecified potentials, except that any nonlocalities con-
necting the interior and exterior sectors are prohibited.
The term with the effective potential acting on the two
baryon wave function is replaced by (y +V' /M)i)'jNN.
After integration by parts we find that the G-matrix ele-
ment for an uncoupled partial wave is given by

(KJL
~

G (P)
~

KJL )

en to be the difference between our model and the full
Reid calculation.

There are several technical points which should be
mentioned. When solving the scattering problem one
first obtains two linearly independent solutions of the
Schrodinger equation for r &RM, p"), and 1t( '. These
two wave functions are used to obtain two weight func-
tions, P") and P( ', by solving Eqs. (3.5) and (3.6) self-
consistently. The regular solution, itt=itj")+ A it)( ' (or
P=P("+ AP( ') was obtained using Eq. (3.7), the regu-
larity condition for the weight function.

In the nuclear matter calculation, we first obtain two
linearly independent solutions, f( 'and . 1t,(. ', of the
reference-spectrum equation, Eq. (4.2), for r &RM. This
is done by solving Eq. (4.2) for the defect solution, with
the correct boundary condition at r ~ oo [namely
g; (~r~ oo )=0], both with and without the inhomogene-
ous term. This yields g," and g,", the homogeneous and
inhomogeneous defect solutions. Two solutions are then
chosen to be

q()) y (g~l~ +gH)

+ drFL VLuR dRM
(4.12)

and

q(2) y (gl gH)

where Fl KrjL—(—Kr) and the interior wave function,
u NN, is the projection of the nucleon-nucleon component
of the state vector of (4.8) determined in the quark sec-
tor for the Lth partial wave. The exterior wave func-
tion, u~, ';„, is determined using the Reid potential, Vl .
This completely specifies the quark-nucleon reference-
spectrum calculation.

Before discussing the actual calculation and results, let
us examine the difference between Eqs. (4.11) and (3.6).
Equation (4.11) results from projecting out the nucleon-
nucleon components of the state vector. It is these com-
ponents which must be used to evaluate the G matrix.
Equation (3.6) is used to match the weight function with
the wave function. However, in deriving Eq. (3.6) we as-
sume that the solution of the Schrodinger equation with
the Reid potential should be matched with a wave func-
tion which contains all of the components (nucleon-
nucleon, delta-delta, etc. ) as are in the state vector for
the quark sector. Since the Reid potential is a phenome-
nological potential, we do not know which components
we should use in the integral transform. Thus, we have
projected onto our basis states to obtain Eq. (3.6). If we
find that the non-nucleonic components of the state vec-
tor are large at the matching radius, then our treatment
of the nucleon-nucleon sector using the Reid potential is
an oversimplification. In that case, an accurate descrip-
tion can only be obtained by using a microscopic theory
in the nucleon sector which contains explicit nucleon ex-
citations. This point is discussed below.

C. Results

The binding energy for spin singlet states is obtained
in the reference-spectrum approximation, first using only
the Reid potential (i.e. , R~ ——0), and second, using our
full model. The difference between these energies is tak-

These are two independent solutions of Eq. (4.2) which
obey the correct boundary condition at r = op. The gen-
eral solution is given by

g,, =(1—A)1(,(,"+A f,',2) .

(For the Reid-only problem, one would determine A by
requiring 1(); to be regular at the origin. ) The solutions

and g,"' are then used to find two independent
weight functions by using Eqs. (4.10) and (3.6). The reg-
ularity condition, Eq. (3.7), is then used to determine A.
Thus, the numerical techniques are almost identical in
the nuclear matter and scattering problems.

There are several results from this calculation. The
final result is the binding energy versus density. Let us
discuss some intermediate results first.

In this calculation, Pauli corrections are not modified
by the quarks. The motivation for this is that the
reference-spectrum wave function is known to yield ac-
curate results at short distances. For the Reid potential
the wave function is excluded from the origin by the
large repulsion. Since the wave function is highly dis-
torted at short distances, it contains mostly high-
momentum components. Thus, the Pauli operator has
little effect on the short-distance wave function. In our
calculations we have observed that the reference-
spectrum wave function accurately describes the correct
wave function except in the region 1 fm & r & 3 fm.
Thus, if one found no significant change in the shape of
the wave function when quarks are included, then one
could be confident that Pauli effects are negligible in the
quark sector. The Pauli corrections discussed here
should not be confused with quark antisymmetrization
in the two-nucleon problem. Our two-nucleon states
have complete antisymmetry among the six quarks. The
Pauli corrections being neglected involve Pauli blocking
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FIG. 9. Nuclear matter wave functions with quarks. The
solid line represents the full quark calculation wave function,
including all components. The long dashed line represents the
Reid potential wave function. The dotted line represents the
nucleon-nucleon components of the quark calculation wave
function, and the short dashed line represents the non-
nucleonic components. Here, k~=1.4 fm ', K = —,'kF, and
P =p.

by other nucleons in the system —not the two interacting
nucleons.

However, the wave functions found from the quark
model exhibit significant qualitative changes. The So
wave functions from the full calculation are plotted in
Fig. 9. The dashed line is the Reid potential wave func-
tion; the solid line is the wave function in the quark
model which contains all of the components from the
quark sector; i.e., it is found from Eq. (3.6) even for
r &RM. The dash-dot line is the nucleon-nucleon com-
ponent of P&& & for r &RM, and the dotted line
represents the non-nucleonic components (the difference
between the solid and dash-dot lines). The values of kF,
K, and P used here are kF ——1.4 fm ', K = —', kF, and P
is its angle averaged value, P. The qualitative features
seen here are typical of those for other kF, K, and P as
well ~

Several features of these functions should be noticed.
First, the non-riucleonic components are large even at
the matching radius. This implies that non-nucleonic
degrees of freedom should be explicitly treated in the nu-
cleon sector. Second, the nucleon-nucleon wave function
for r &RM is not highly distorted (as it is for the Reid
potential). Thus there is a qualitative change in the
wave function due to the presence of quarks. This
change increases as kF is increased, and in all cases
causes a decrease in the binding contribution from the
nucleon sector. Furthermore, Pauli corrections at short
distance may be more important than would otherwise
be expected. Third, the wave function in the nucleon
sector (r & RM ) is changed only slightly.

It is important to understand why the nucleon-
nucleon and non-nucleonic components of the wave
function appear as they do here. It is known that the
nucleon-nucleon component of a spherical six-quark
bag is small; i.e. , (a=O;NN

~

a=O& && (a=O
~

a=0&.
Also, one can show that the nucleon-nucleon com-
ponents of our deformed basis states at 1 fm separation

are predominantly nucleon-nucleon states; i.e.,
(a;NN a&

I a=& r —&a
I
a&

I a=& rm

One might then expect that the nucleon-nucleon com-
ponents of the wave function at r =0 fm would be small,
and also that the non-nucleonic components at r —1 fm
would be small. In Fig. 9 this is shown to be false. The
reason for this discrepancy is that the transformation of
the weight function to the wave function is nonlocal.

The approximate relation

(a NN~a& ]f —(~~rx& ]f

was a motivation for our choice of the integral trans-
form, Eq. (3.6). However, we now see that the nonlocali-
ty of the integral transform produces large non-
nucleonic components in the wave function even for
r —1 fm (and, similarly, produces large nucleon-nucleon
components for r -0 fm).

The qualitative change in the nucleon-nucleon wave
function at short distances results in a change in the G
matrix. Three terms contribute to the G matrix, see Eq.
(4.12): the interior term, the surface term, and the exte-
rior term. The interior contribution is repulsive and de-
pends on the size of the defect wave function. One can
see that for r & 0.5 fm the defect wave function is de-
creased by quark effects (because the wave function is
larger and, hence, closer to the free wave function), so
that there is less repulsion. However, for 05
frn&r &RM the defect wave function is increased and
one obtains more repulsion. Since the defect wave func-
tion is multiplied by sin(Kr) (for L =0 states), the region
0.5 fm &r &RM is weighted more than the region r &0.5
fm. Thus, the overall repulsion from the interior is in-
creased.

For a matching radius of RM =1 fm the surface con-
tribution is repulsive as well. This is because the slope
of the correlated wave function is larger (and the magni-
tude of the wave function is smaller) than that for the
free wave function. There are two partially canceling
effects from the quarks in the surface contribution. The
nucleon-nucleon wave function at the matching radius is
reduced; this increases the G matrix. However, the slope
of the wave function is decreased; this decreases the G
matrix. It turns out that the entire surface contribution
is less repulsive.

The exterior contribution to the G matrix is always at-
tractive for the 'So channel. The quark dynamics al-
ways tend to decrease the wave function in the nucleon
sector; thus, the attraction is decreased. This decrease
in attraction is larger at high densities. This effect is due
to a change in the off-shell T matrix and should not be
very sensitive to the interpretation of the wave function
in the nucleon sector.

Typical numbers for a 'So G-matrix element are the
following: Without quarks "interior"=0. 27 fm, "sur-
face" = 1.06 fm, "exterior" = —3.30 fm, "total"
= —1.97 fm . With quarks one has "interior" =0.70
fm, "surface"=0. 59 fm, "exterior"= —3.13 fm, "to-
tal"= —1.84 frn . These are the values for the same kF,
K, and P used for Fig. 9. One sees here all the effects
mentioned above.
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FIG. 10. Quark effects on nuclear matter saturation. The
solid line represents the Reid potential saturation curve. The
plotted points ( ) represent the binding energies calculated
with the quark model. The arrow represents the shift in the
Reid potential saturation point due to three- and four-body
clusters. The empirical values are indicated by the large error
barred region; other features are described in the text.

The density dependence of the interior, surface, and
exterior contributions are not the same. Specifically, the
decrease in repulsion due to changes in the surface con-
tribution dominates at small densities and the increases
in repulsion from the interior and exterior dominate at
large densities. The plot of binding energy versus Fermi
momentum is shown in Fig. 10. The solid line
represents the Reid-only calculation of Siemens; the
plotted points ( ) and error bars represent our calcula-
tion; the dotted line is drawn to guide the eye; the arrow
and large circle show the shift and uncertainty due to
three-body and four-body cluster contributions as es-
timated by Day for the Reid potential. The single
point with error bars in kF and E/A represents the
empirical region. The error bars on our points
represent numerical errors as estimated by comparing
our Reid-only reference-spectrum calculation with the
exact Reid calculation in the independent-pair model.
These error bars do not represent uncertainties due to
model assumptions.

Figure 10 shows that the saturation point is shifted to
a smaller binding energy and smaller density. This is
qualitatively similar to the results obtained by including
the delta resonance.

There are several corrections or improvements which
could be made to our results. The most important one
would be to use a microscopic theory in the nucleon sec-
tor. The problems with our assumption concerning the
components of the Reid wave function have been point-
ed out above, see Fig. 10. It is not known whether this
improvement would change the qualitative features of
our results. One would expect that including deltas in
the nucleon sector would shift our curve upward toward
smaller values of the binding energy. This would not be
desired since it might move our saturation point back
into the saturation band. A second important improve-

ment would be to calculate the three-body cluster contri-
bution. Wiringa et al. ' have estimated that three-body
cluster contributions may lead to collapse in some mod-
els of nucleons and deltas in nuclear matter which do
not have a large repulsive core. Three-body cluster cal-
culations in a model with composite particles would be a
formidable task.

Our quark model gives a small decrease in the binding
energy and a large decrease in the density in a
reference-spectrum approximation calculation of the sat-
uration properties of nuclear matter. This is a desirable
change; however, our results indicate that non-nucleonic
components for r & 1 fm should be included as well.
The decrease in binding energy is, in part, due to pro-
jecting out the nucleon-nucleon components of the wave
function for r &RM, thereby increasing the defect wave
function. This is similar to repulsion found from delta
models. The nucleon-nucleon wave functions obtained
for r &RM show a qualitative difference from the Reid-
only calculation. Such differences are not seen in calcu-
lations using delta models and are due to the nonlocal
transformation which relates the quark sector weight
function to the wave function. This new effect may be
responsible for the unusual density dependence of the
binding energy which moves the saturation point slightly
off the saturation band in the right direction. Inclusion
of deltas in the region with r g RM could move the satu-
ration point back into the saturation band.

V. SUMMARY

This study examines quark effects in the two-nucleon
and many-body systems. Quark dynamics produces the
short-range part of the nuclear force via the soliton bag
model and the generator coordinates method. For sim-
plicity, the Reid potential has been used for the long-
range force. In Sec. III it is shown that our model de-
scribes the nucleon-nucleon scattering data in the spin
singlet channels. The matching radius (the separation at
which the quark and nucleon sectors are matched), the
truncation of the generator coordinate basis set, and the
value of the one-gluon exchange coupling constant are
the adjusted parameters. The best value for the match-
ing radius is about —, fm, consistent with earlier esti-
mates. ' Since an adequate description of spin singlet
scattering data was obtained with a single basis set and
choice of parameters, the model was applied to the
many-body problem.

The application of our model to the many-body sys-
tem leads to new results and new questions. The satura-
tion density and binding energy of nuclear matter are
determined by using our model in a reference-spectrum
calculation. Quark eff'ects cause a large decrease in the
saturation density and a small decrease in the binding
energy. More importantly, the non-nucleonic com-
ponents of the two-body correlated wave function are
calculated from the quark configurations and are found
to be large. This indicates a deficiency in our treatment
of the nucleon sector. One should include non-nucleonic
components of the wave function and use a microscopic
theory for the nuclear force in the long-range (r & I fm)
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region. One should also improve the calculations of
Pauli blocking effects and self-consistency corrections.

It should be emphasized that there is a difference be-
tween using quark and nucleonic (nucleons, deltas, etc. )

degrees of freedom to describe the short-distance phys-
ics. This difference arises because in any calculation one
truncates the basis set. For example, in our quark calcu-
lation we have truncated our basis set for the quarks to a
small number of states. These quark configurations

could be expanded in terms of baryonic degrees of free-
dom, but would require a very large basis (more than
just nucleons and deltas, in fact, even color octet-octet
states). Conversely, if one expanded simple nucleonic
two-body states with a set of properly antisymmetrized
quark states, then one would require a large basis of
quark states. Thus, there are real differences between
the two descriptions and many-body calculations should
help distinguish the two.
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