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In the context of the quark exchange model of Lenz et al. , effective hadron theories are con-
structed and the resulting physical observables compared to their "experimental" values as defined

by the calculations using the exact quark model operators. This model study illustrates conver-
gence issues for an effective hadron basis in a quark model in which all physical observables can
be computed exactly.

I. INTRODUCTION

The quark exchange model of Lenz et al. ' has
confining, saturating forces and provides an unambigu-
ous model context in which the convergence of effective
hadron theories can be examined. Traditionally, such
theories have been successful in describing long range,
low energy nuclear observables with a small number of
hadronic degrees of freedom. However, their success in
describing short range phenomena has not been firmly
established, particularly since there are a large number
of variable parameters, such as the meson-baryon cou-
pling constants and form factors. The quark model to
be used here as the basis of a model study exhibits the
qualitative features of low energy nuclear phenomenolo-
gy and can be solved exactly. It is desirable to confront
convergence issues in the context of such an exact mod-
el, as the presumably correct underlying theory, quan-
tum chromodynamics (QCD), is yet intractable at nu-
cleonic distance scales. The large X, limit of QCD
strengthens the notion that, at low energies, QCD must
be equivalent to some meson theory. ' However, a pic-
ture of nucleons and mesons as extended composite ob-
jects makes it difficult to understand the success of the
traditional nuclear phenomenology and makes one ques-
tion the efficacy of a meson theory at extremely small
distance scales. We discuss here the methodology for
"hadronizing" the quark model and focus upon applica-
tion of the resulting theory to the bound state form fac-
tor at large momentum transfer, a direct measure of
short-distance structure.

The model used is a many body potential model with
quark exchange dynamics, the minimal dynamics con-
sistent with confinement. The quark exchange model is
a dynamical extension to the multihadron regime of non-
relativistic potential quark models, which generally have
had substantial success in quantitatively reproducing
static hadronic properties such as masses and decay
widths. It is based upon a partitioning of color and
configuration space at the hadrons's quark rearrange-
ment surface, such that only color singlet hadron
configurations are permitted outside the interaction re-
gion. In addition, unlike the case of two body potential
models, confinement in this model can be enforced
without the usual long range van der Waals forces,
which empirical evidence has shown to be nonphysi-

cal. ' As noted already, the model yields a surprisingly
rich set of phenomena. ' In the specific example of a
q q system, which is technically simplest and yet con-
tains the qualitative features of more complicated sys-
tems, one finds that the scattering from the system ex-
hibits resonances at the inelastic hadronic thresholds and
that a weak deuteronlike bound state exists with a bind-
ing energy of only a few percent of the hadron excitation
energy scale.

The calculations which follow have been performed
for the q q system in the limit of U(1) color. The
quark level scattering and bound state properties of this
system have been examined in great detail in Ref. 1. In
this many-body model, the SU(X, ) interactions are not
specified by confinement, and a parameter specifying the
relative strength of color nonsinglet and color singlet
confining forces is thus needed. The U(1) limit contains
only the confining dynamics determined from isolated
hadron spectroscopy and, most important, is shown in
Ref. 1 to display all the qualitative features seen for
N, ) 1 when the color nonsinglet forces are chosen
"reasonably. " Consequently, we have every expectation
that this simple model is rich enough to answer the most
important questions and defer to a later and more exten-
sive report results for N, =3.

II. QUARK MODEL CALCULATIONS

We consider a q q system in the quark exchange
model of Lenz et al. with harmonic confinement. The
q 's are not required to be antiquarks but merely objects
distinguishable from quarks. Labeling the position of
quarks 1,2 and antiquarks 3,4 with r, , the quark Hamil-
tonian is

4

h(rl r2 r3 r4)
2p

1 2 . 2 2 2 2+—pco mtnIri3+r24, rig+r~3 )

where p=m /2, r,"—= r, —r . The Hamiltonian is
confining and saturating by ansatz as the quarks and an-
tiquarks are always paired in the lowest potential energy
hadronic state. A two-dimensional reduction can be
effected by introducing center of mass and relative coor-
dinates:
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r, = —,'(r, +rz+r3+r4),
x= —,'(r, +rz) ——,'(r3+r4),

p= —(ri+r3) ——(r2+r4),

z= —,'(r, +r4) ——,'(r2+r, ) .

(2a)

(2b)

(2c)

(2d)

As a consequence of the harmonic confinement, the
dependence on the confined variable x factorizes, and the
y, z orbital angular momenta decouple. One expects the
effect of quark exchange dynamics to be maximized for s
waves; and since that channel contains a bound state, we
consider only the y, z channel Hamiltonian for relative
angular momentum l =0 and obtain

h (y, z) = —8 —8, +4[z 8(y —z)+y 8(z —y)] (3)

in units of 2m =1, ho=(pea) '=1. Solutions to Eq. (3)
can be classified with respect to their symmetry under
the spatial exchange of y, z, as the internal degrees of
freedom have been neglected. Consideration can thus be
restricted to the y )z triangle in the y —z scattering
plane. The 'symmetric state satisfies (0» —8, )it (y, z) =0
at the rearrangement surface y =z and has a bound
state; this is the state whose properties shall be con-
sidered. Using functions which satisfy the y &z Hamil-
tonian, one can use Green's identity to find an integral
equation for g(y, z). The scattering phase shifts, as well
as the bound state energy and form factor, can be calcu-
lated; see Ref. 1 for details. The bound state form factor
1S

F(q)=2e 'i » f dy f dzj0(qyl2j)0(qzl2)itii(y, z)

(4)

F(q)= g (P, ~P„(P„P P„)P„~q, ) .
n, m

Thus, P
~ g~ ) defines an effective hadronic wave func-

tion
~
g ) and P„p~P an effective hadronic charge

operator [p ]„,where the m subscript corresponds to a
hadron in its mth internal state. Self-consistency of the
hadronic operator and wave function expansion is impli-
cit. (One could consider different expansions for the
operators and wave functions, using projectors P and P,
say, but this is unnatural as (P„~P )&5„ in general. )

The calculation is also self-consistent in that inclusion of
higher level terms in hadronic excitation requires solu-
tion of coupled channel equations to obtain the ap-
propriate effective wave functions. Clearly, a sum over
all terms in the hadronic expansion will yield the quark
model result; however, interest resides in the possible
rapid convergence of this expansion, particularly at large
q. Certainly, nuclear phenomenology appears to be suc-
cessful with a rather small number of hadronic degrees
of freedom.

One can straightforwardly "hadronize" the model by
merely picking either y or z as the confined coordinate.
This corresponds to using the hadronic states at asymp-
totic separation as the hadronic basis for all separation.
With z as the confined coordinate, the projector becomes

P„(y,z,y', z') =6(y —y')@„(z)4„(z')

where 4„(z) satisfies

d2
+4z 4„(z)=e„4„(z),

dz2

c„= 2n +—', co=8n+6 .

where Qadi(y, z) is the bound state wave function generat-
ed by the Hamiltonian of Eq. (3) and the decoupled x os-
cillator is in its ground state. This form factor generated
by the quark model will serve as the reference point for
the "equivalent" hadron theories derived below.

III. HADRONIZATION

One now wants to construct an equivalent model in a
hadronic basis. This procedure necessarily involves
identifying and projecting out the hadron internal de-
grees of freedom and thus is necessarily nonunique. This
follows as no unique definition of a hadron exists at dis-
tances less than the interhadron separation and as one
cannot identify which hadron contains which quark.
Equivalently, no unique prescription exists for the chan-
nel variable, which specifies the hadron relative separa-
tion. The procedure to be illustrated will work for any
quark model operator, though the charge operator will
be used as an example. The charge form factor can be
written formally as

The x coordinate is ignored in the above projector and
in all subsequent projectors since it decouples from
h (y, z).

Using the Pnp P prescription, one finds the effective
charge operator,

[p, (y)]. =f~(q)f. (q)JD(qyl2)

where f„(q)= f 0 dz 4„(zj)o(qzl2)C& (z) and f~(q)
comes from the x integration. As the isolated hadron
form factor with internal state n is

~ f„„(q)~, the point
charge operator is modified by the elementary hadron
form factor to lowest order of truncation. This is rather
appealing since this is the standard charge operator used
in nuclear physics. The effective wave functions are ob-
tained by inserting the projector of Eq. (7) in the energy
matrix element:

E= g f dy X„(y)
n, m

x S„.( —a,'+.„)

dz4y —z @„zN z P y

where p~ is the quark model charge operator. Any pro-
jector which satisfies Q„P„=1, P„P =5„P„yields f dy Y„(y)h„(y)X (y)

n, m

(10a)

(10b)



2506 S. GARDNER AND E. J. MONIZ 36

where X (y) —= dz @ (z)@z(y,z). h„(y) yields a lo-
0

cal effective coupled-channel potential; for example, the
ground state channel Hamiltonian is just

and

dz y„(z;y)p (z;y) =5
0

hQQ(y) = —B,'+ V,s(y),

V,~(y ) = —4 f dz (z —y )NQ(z ) .

The potential is everywhere attractive. As y ~ ap,

V,z- —4(2/m)'~ y exp( —2y ), and as y ~0, V,ft—
—4(z ) = —3. Direct integration of this equation yields
a scattering length of —2.07; there is no bound state to
this level of truncation. This is wholly consistent with
the slow convergence of the hadronic state occupation
probability as noted in Ref. 1 and, given that the bound
state in the original model came from quark exchange
dynamics, is not at all surprising. Clearly, this approach
based upon labeling which quarks are assigned to which
hadron yields a simple but entirely unacceptable
equivalent theory.

Incorporation of the quark exchange dynamics in the
projection operator is apparently crucial. This can be
done by defining confined wave functions which recog-
nize the quark rearrangement embedded in the imposed
rearrangement surface boundary conditions. Thus, the
definition of a hadron is modified from its free value for
finite separation; this modification is surely arbitrary as
the hadron definition is itself arbitrary when hadrons
overlap. We start with one specific choice. For y &z,
we define p„(z;y) such that

One would like to embed the exact condition at z =y in

g„(z;y) and we return to such a choice below; however,
for these coordinates, the normal derivative at z =y cou-
ples the confined and channel wave functions. Thus, for
technical convenience, only a constraint on the z deriva-
tive is made at z =y. One can now define the projector

P„(y,z,y ', z') = [g„(z;y )y„(z';y ')5(y —y ')

X 6(y —z)&(y' —z')

+p„(y;z)y„(y';z')5(z —z')

X 8(z —y)8(z' —y ')],
which can be used to "hadronize" h (y, z). Defining

X„(y)—= V'2 f dz y„(z;y)g~(z, y)
0

so that

tt&(z, y) = —g [X„(y)y„(z;y)&(y —z)
1

2.

(13)

+X„(z)y„(y;z)0(z —y) ), (14)

one has

E= —,
' g [(X y ~

h@„X„)+(hX q ~
g„X„)]. (15)

n, m

( —8, +4z )g„(z;y)=e„(y)p„(z;y),

where

B q „(z;y)
~

—y
=0

(12) A symmetric prescription in the hadronic expansion is
necessary and sufFicient to yield a Hermitian effective
Hamiltonian. Integration by parts with respect to y, in
conjunction with Eq. (12) and the y„(z;y) orthogonality
relations, yields

~ .(3)=[—~,'+e. (y))&. +V. (y;y)~, v (3 3)

+ 1 dz[8 p„(z;y)B y (z;y)+ —,'[q&„(z;y)B y (z;y) —g (z;y)B~y„(z;y)]I

+ f dz[q„(z;y)&, q (z;y) —q (z;y)&, y„(z;y)]&, .
0

(16)

and

h~(y) = —~,'+ V~(y) (17a)

To lowest order of truncation, one finds a local effective
Hamiltonian:

yahoo. That is, asy~0,
]. /2

2
yQ(z y)-

and thus,

7jz

[
2y

VQQ(y) =eQ(y) —EQ( )+/ Q(y;y)B, q Q(y;y)

+ dz 8 yoz;y
0

(17b)
—6.

3 4 y2

The energy has been defined relative to EQ( oo ) =6. The
potentials through n =m =1 are shown in Fig. 1(a), and
Voo can be seen to have a shape familiar from the usual
meson-nucleon phenomenologies: there exists a short
range "hard core" repulsion and intermediate range at-
traction. Analytic limits can be extracted as y —+0 or as

The yahoo asymptotic form follows from the formal
solution for yQ(z;y) in terms of the confluent hyper-
geometric function and its asymptotics. One finds that

VQQ ——64(2/n)'~ y exp( —2y )

as y ~ oo . The Gaussian damping as y ~ ~ is a conse-
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Voo V Voo

(2)
Vol

(b) [o,(y)l. =[),'"'"(y)l +[ '"'"(yy nmi

with

) -body(
)q"' y '. =f00(q)f. (q)jo(qy/2),

[ exch
) q y)lnm foo(q)jo(qy/2)

f 'd. [q „(z;yj),(qz!2)

(18a)

(18b)

0 &&I (z y») l f. (q—) (18c)

0
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&oo to polar coordinates, so that for y )z,

y =r cosO,

z =r sinO .
(20)

)0

In analogy to Eq. (12) in the limit of z «y, confined
wave functions q&„(8; r ) are introduced for 8 & m. /4 such
that

1 'd +4r 8 y„(8;r ) =E„(r)y„(8;r), (21)

10
where

IO
and

B~(8; )
~

„=0

f r dBg (8;r)p„(B;r)=5„
0

t
I.

I

$O
~ I I I ( I I I I I I I I I ) I I il » i I r

0 2 4 6 8 &0

FICx. 3. One-body and exchange contributions to the v= 1
eff'ective form factor. "Quark" and "hadron" are as in Fig. 2.
Dashes: (y, z). Dots: (r, O).

tive cancellation of the one-body and exchange contribu-
tions in the example of the v= 1 truncation.

The previous projector [Eq. (13)] incorporated the
internal rearrangement, but not the full exchange dy-
namics, as the confined wave functions did not incorpo-
rate the correct boundary condition at z =y. The natu-
ral step is now to construct a projector which does in-
corporate this boundary condition. This can generally
be done by transforming to other coordinate systems in
which the normal derivative constraint at the rearrange-
rnent surface can be imposed in terms of the "confined"
coordinate. The most naive transformation is a mapping

I

The projector

P„(B,r, B',r')=v r &r'p„(8;r) p„(8';r')Sir —r') (22)

(23)

and a symmetric prescription for the energy as described
above yields the effective Hamiltonian

can then be used to "hadronize" h(B, r). This projector
holds for all O; as for O )~/4, one makes the
identification z =r cosO and y =r sinO, so that the inter-
nal rearrangement is incorporated in the coordinates.
The 1/r kinetic energy pieces that occur in the polar
quark Hamiltonian suggest that the resulting effective
hadronic potentials will be long range; nevertheless, we
go on to investigate the convergence of this scheme.
Now

X„(r)—=V2 f dBy„(B;r)gs(B,r)
0

implies that for O & n/4

h„(r)= —8„+ E„(r)—Eo( oo ) — z
2 1

r

r d 8 4r ( sin 8 8)qr„p +B„@—B„y„+ (y B„y„—y„B„p )+ ,'(p "r)„p„—y„B„—y )
0 2r

+ f r dB(qr B„p„—y„B,p )8„,
0

(24)

where the p„(8;r) arguments have been suppressed and,
as before, the energy is defined relative to Ec(oo )=6.
The Hamiltonian is again local to lowest truncation with

1
V~(r) =E,(.) —e,( ~ )—

27

+ f r d 8[4r ( sin 8—8 )go+ (B„yo) ] . (2&)
0

The potentials through v= 1 are shown in Fig. 1(b). The
00 potential is qualitatively similar to the 00 potential of
the (y, z) confinement scheme with internal rearrange-
ment [Eq. (13)]; however, it is of much longer range,
though the numerical falloff' for r ~ oo is not O(r ) as
Eq. (25) naively indicates. In addition, as r ~0,

1 1'2

8
po(8; r ) — — sin(28)
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and, thus, V00(r) -15/4r 6—; hence, Vao(r) is much
stiffer as the channel variable goes to zero. For v=1, of
particular interest is the long range nonlocal channel
coupling: Vo&' —O(1/r) as r —+ oo. One sees a substan-
tial lowering of the bound state energy mith truncation:
c' '= —0. 108 and c"'=—0. 150. Direct integration of
the v =0 potential yields a slightly more attractive
scattering length than in the (y, z) scheme, a =4.27.

However, the stiffer repulsion of the potential as r~0
yields poorer agreement to the quark model phase shifts
for large k as seen in a comparison of the effective
ranges: r0' ' ——1.81, ra" ——1.63, and ra ' ——1.51.

With the P„pq Pm prescription, one obtains the
modified charge operator. Pulling out the one body
piece, one has for the exchange part

[pe"'"(r)]„=fca(q) r d8 p„jo cos9 ja sin8
0 2 2

f„(q—)j0(qr /2) (26)

The resulting form factor contributions are calculated as
in Eq. (19), and the convergence by truncation is shown
in Fig. 2. The one-body charge operator is identical to
Eq. (18b); however, the resulting contribution to the
form factor is very different in this confinement scheme
as the channel wave functions are different. The one-
body and exchange form factor contributions are shown
for v= 1 in Fig. 3. As in the (y, z) case, the cancellation
of the one-body and exchange contributions at high q
yields the total form factor's convergence with trunca-
tion. Here, though, the exchange contribution is ex-
tremely large, due to the exchange charge's O(l/r) be-
havior as r~oo. Overall, the agreement of the v=1
form factor with the quark level result is rather good,
which is surprising not only because the first excited
state occupation probability is O(10 ), but also because
the channel couplings and effective charge operator
display an "unphysical" long range behavior. The long
range nature of the channel couplings and exchanged
charge is particularly pathological when one considers
that the original quark Hamiltonian had no such van der
Waals forces, so that the convergence of this scheme to
the various quark observables studied is all the more re-
markable.

I

freedom can reproduce the quark model observables
with remarkable accuracy. This success persists even in
extreme kinematic regimes; in particular, the form factor
is well described by an hadronic basis even when the iso-
lated hadron form factor has fallen by two orders of
magnitude. The most remarkable feature is the rather
close agreement with observables sensitive to different
physics, such as the low energy scattering parameters
and the high momentum transfer bound state form fac-
tor, of phenomenologies which themselves appear to be
very different. Of course, they have the underlying com-
mon feature of building a signature of the quark ex-
change into the hadronization. Consequently, this study
does not provide encouragement that any distinctive
quark signatures are to be found in low energy nuclear
observables. On the other hand, it does give credibility
to programs which would attempt to calculate "ob-
served" hadronic phenomenological parameters from the
underlying theory. In addition, it is to be emphasized
that, regardless of the sophistication of such attempts, a
consistent, understood hadronization scheme is a neces-
sary underpinning of any calculation. This applies
equally well to a lattice calculation as to a potential
quark model.

IV. CONCLUSIONS

The above results show that a parameter-free hadronic
description with a small number of hadronic degrees of
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