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Unitary theory of pion photoproduction in the chiral bag model
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We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here,
B is the nucleon or 6(1232), with possible extension to include the Roper resonance and strange
baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral
Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and
then three-body unitarity, taking into consideration the ~~B and ymB intermediate states, we derive a
set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion
of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those
in the crossed, contact, and pion pole diagrams are dressed.

I. INTRODUCTION

The recent interest in the interaction of electromagnetic
probes with nuclei, ' has been primarily motivated by the
theoretical progress in our understanding of the
meson-nuclear interaction, based on models which are
consistent with quantum chromodynamics (QCD). Al-
though gluons and quarks are the only ingredients of
QCD, there is a consensus that both the mesonic and
the gluon-quark description of the nuclear interaction are
possible. This idea is supported not only by the success of
the old meson theory of Yukawa, but also by the
theories of meson-nuclear interactions based on QCD.
Due to the absence of the complexity of the nucleon-
nucleon overlap, the single pion photoproduction from a
single nucleon is the simplest reaction amongst the elec-
tromagnetic interactions with nuclei. Therefore, this is an
ideal place to study the interplay of quarks, gluons, and
mesons in the nucleon.

The single pion photoproduction from a nucleon has
been studied to date in the following four approaches. (i)

The dispersion relation approach of Chew, Goldberger,
Low, and Nambu (CGLN), where unitarity and analyti-
city are strictly imposed. (ii) The Lagrangian approach of
Blomqvist and Laget (BL), in which the amplitude is the
nonrelativistic limit of the Olsson and Osypowski' ampli-
tude but includes the 5 resonance, with a width, in the
S-channel propagators. In one of their approaches which
is popular in nuclear physics literature, unitarity is violat-
ed. In their second approach, they showed a way to re-
cover unitarity, and then examined it in the Ml multipole
amplitude. (iii) The on-shell multichannel approach of
Olsson, " where special attention is paid to the separation
of the amplitude into a resonant and nonresonant part,
within a unitary two-channel formalism. The relative
phase of the two amplitudes is then determined by the
Watson theorem. (iv) The off'-shell multichannel ap-
proach of Tanabe and Ohta (TO), ' in which the pion
photoproduction amplitude is written in terms of the
two-channel (yN, trN) formalism, with the trN amplitude
determined by coupling the mN and ~A channels using se-
parable potentials. This approach gives an off-shell ampli-

tu de that could be used in heavier systems such as
yd~~ d, yt~ He~ —.. . .

Recently, Wittman, Davidson, and Mukhopadhyay'
examined the M, + and E,+ transitions in single pion
photoproduction using the first three of the above four
methods. Their conclusions were (a) the nonunitary ap-
proach of BL violates the Watson Theorem, (b) the Eii
and M &+ amplitudes resulting from BL method gives

poor agreement with experiment, and (c) unitarizing the
BL amplitudes improves the agreement with the data and
brings the results in line with the theoretical analysis of
Olsson. "

The unitary method of CGLN (Ref. 8) and Olsson (Ref.
11) can be formulated within the framework of a Lagrang-
ian whose coupling constants may be compared with the
observed values or with the prediction of the quark mod-
els. However, the connection between the multiple
scattering formalism and the quark model is not clear. In
particular, if the Lagrangian is an effective Lagrangian to
be used in the tree approximation, then the coupling con-
stants, which are already renormalized, can be determined
from experiment. This approach does not satisfy unitarity
which plays an important role in pion photoproduction.
On the other hand, if the Lagrangian is not an effective
Lagrangian, i.e., the coupling constants have to be renor-
malized, then the renormalization has to be carried out in
such a manner as to incorporate, or at least be consistent
with, unitarity.

With the recent success of the quark meson models
(QMM), that are consistent with QCD in describing
the baryon spectrum [in particular, the nucleon (N) and
b, ] in terms of three quarks, it is desirable to establish a
unitary theory of pion photoproduction based on QMM.
In this way the b, and possibly the Roper (R) will be treat-
ed in terms of their quark content rather than their tradi-
tional representation as a ~—N resonance. We therefore
need a theory, based on the Lagrangian from the QMM
with minimal electromagnetic coupling, that includes the
following. (i) The coupling between the yB and trB chan-
nels with B=N, A, R, . . . given in terms of their quark
substructure. (ii} The coupling constants and vertex func-
tions calculated from the QMM Lagrangian which is
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gauge and chirally invariant. (iii) The renormalization of
the propagators and vertices which is carried out in a
manner that is consistent with unitarity. In other words,
the same equations are used to calculate both the scatter-
ing amplitude and the renormalization constants. In this
way we have a formulation of single pion photoproduction
that is consistent with QCD and includes the quark con-
tent of the N, A, R, . . . , yet satisfies unitarity which is
demanded by previous analyses. '

In Sec. II we first consider the Lagrangian for the
chiral bag model. The photon-quark and photon-pion
coupling is induced by demanding U(1) gauge invariance.
This Lagrangian and the corresponding Hamiltonian is
projected onto the baryon space which is truncated to in-
clude the asymptotic states

i
B),

i
irB),

i yB),
~

yirB),
and

i
iraB). To render a problem that is manageable, we

neglect the direct coupling between the
i
B) and

~

yirB)
and also the coupling between

i
B) and

~

arm.B). We
then proceed in Sec. III to exposing the two body unitari-
ty cuts. This allows us to write equations that satisfy
two-body unitarity for the reactions B(ir, ir)B' and
B(y,vr)B'. These equations are similar to those derived by
Tanabe and Ohta' except for the following facts. (i)
Tanabe and Ohta do not treat the N and ~ on equal foot-
ing in terms of their quark substructure. (ii) Their renor-
malization is not carried out consistently. (iii) The La-
grangian they use is not self-contained in that the parame-
ters in the (yirB) vertex functions are adjusted to fit the
calculated E,+ and M, + amplitudes to experiment in the
region of the 5 resonance. We hope that our more gen-
eral formulation will be valid even away from the 6 reso-
nance. At this stage the Born term in our equation in-
cludes all the diagrams in Fig. 1. The diagrams in Figs.
1(a)—1(d) are included in the theories of CGLN, 8 BL,9
and Olsson;" and, in addition, BL include the diagram in
Fig. 1(e). At this stage we make no distinction between
the ~BB vertices in the different diagrams. However,
when we expose three-body unitarity in Sec. IV, we find
the surprising result that the vertices in the pole diagram
[shown in Fig. 1(a)] are undressed while the vertices in the

other Born diagrams are dressed, due to the rr —q interac-
tion. In this way the renormalization and scattering am-
plitude are calculated in a consistent manner; in that the
final amplitude gives both the renormalization constant
and scattering amplitude. For completeness, we present
in Sec. V explicit expressions for the Born diagrams in
Fig. 1, while Sec. VI is devoted to a partial wave expan-
sion of our equation and a discussion of their content.

II. THE EFFECTIVE HAMII. TONIAN

Since we are to deal with both the strong and elec-
tromagnetic interactions, it is essential that we start from
a Lagrangian that is chirally symmetric and gauge invari-
ant. In particular, we take the chiral bag model' ' La-
grangian that has the pseudovector ~qq coupling. At the
tree level calculation, it is known that this Lagrangian
reproduces the current algebra results' in m.-N scatter-
ing' and pion photoproduction. ' Therefore, this La-
grangian is considered to be more adequate than the La-
grangian with the pseudoscalar coupling. ' ' Although
our final equations do not depend on the details of the La-
grangian, it is advantageous to specify the form of the La-
grangian in use. This is necessary, first in order to carry
out the actual calculation and second, in order to make
the formulation tractable. '

We commence with the chiral bag model Lagrang-
ian' ' and expand the interaction term to order
g =(2f ), where f is the pion decay constant at the
tree level. To introduce the electromagnetic coupling, we
impose U(1) gauge invariance on the truncated Lagrang-
ian and keep terms to order eg, where e is the charge of
the baryon or meson. In other words, we keep the terms
to order g, g, e, and eg, and discard the eg term with
the hope that it is negligible. This truncation does lead to
the breaking of both the gauge and chiral symmetries at
higher orders. On the other hand we gain the ability to
impose two- and three-body unitarity. It is always possi-
ble to treat the neglected terms in perturbation at a later
stage, particularly since we expect them to be small. The
resultant Lagrangian may be written as

+ =+MIT++n ++@++I
where

(2.1)

(a)
XMi~=( —,'qy" B„q—B)0, ,'qqb„, ——

= —,'[(B„P)—m„P],
(2.2)

(2.3)

(2.4)

and the interaction Lagrangian is given by

&I =&qqn++qqan ++m~vrw+&qqr+. +qqmy++vrmy

with

(2.5)

(e)

FIG. 1. The time ordered diagrams that contribute to the
Born amplitude for pion photoproduction. Note time goes from
right to left.

Xqq ——gqy"y5~ (B„P)q8,,

Xqq —— g'qy"r. (px d„p)q—O. ,

Xqqr Qeq y"q A „0——, ,

Xqq y
—egqy"y5(r X p )3q A IJ 0

X „r=eF„(B"QXQ)3A„,

(2.6)

(2.7)

(2.8)

(2.9)

(2. 10)
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where g is the quark charge. For the 7T 7T-Lagrangian„,we have a choice of two models. The cloudy bag
model' ' gives

(2. 1 la)

HI = ( 8
~

H
~

B7T ) + ( B7T
~

H
~

B7T ) + ( 7T7T
~

II
~

777T )

+&B IH IBy&+&BOIH (By&+&~~IH Iy&

+ (7T
~

H
~ 7Ty ) +five Hermitian conjugate terms .

while the model of Eisenberg and Kalberman' gives

g'[—(~pl')'0' m'—0'j . (2.11b)

Recently, Roberts et aI. have shown that the bosoniza-
tion of QCD does in fact lead to the sum of these two
terms, and this is required if we are to get the current
algebra results for the m —~ scattering length. In Eq.
(2.10) we have introduced a pion form factor F . If the
pion is regarded as a Goldstone Boson or elementary,
then F =1. However, if we regard the pion field as an
approximation for the center of mass of a qq composite
pion, then F =F (k ) (1. The pion form factor may be
obtained in the bag model, either by boosting the bag
wave function or by considering the sequential decay
y~p~2m. In the pion photoproduction reaction, it is
expected that one can get more information about F .

We now quantize our pion and photon fields following
the convention of Bjorken and Drell; the pion field is
given by

d3
(x)= f (e q a q+e'qa q)

(27T)' +2aiq

and the photon field

(2.12)

gh. ( )
1 d k

(e
—ikx k A+ ikx ke kt)

V'2k,

(2.13)

On the other hand, the quark field can be written by ex-
cluding antiquarks, as

q (x)=g it7„,b„,, (2.14)

H=+ e„B„B„+gf d qcoqatqa q

+g f d'kkoCkktCk+H, , (2.15)

where the first term in the mass term of the baryon, with
e„possibly including the kinetic energy, by expecting a
proper prescription for the c.m. correction. The interac-
tion Hamiltonian Dl is the sum of the following twelve
terms,

where b„arethe annihilation operators for the quarks.
We now have to project our Lagrangian X, given in Eq.

(2.5) in terms of the quark field, onto the space of hadrons
to get the corresponding effective Hamiltonian. Here, we
restrict our basis to one-, two-, and three-particle states

~

B),
~

7TB),
~
yB),

~
7T7TB), and

~

y7TB}, where
~

B}is a
bare baryon composed of three quarks. In the Fock space
representation, the effective Hamiltonian (written in terms
of creation and annihilation operators for the baryons,
meson, and photons) is

(2.16)

For example, (B7T H
~

By) may be written, in terms of
the Hamiltonian at the quark level as

(B7T
~

H
~
By) =g f d qd k(m, aq

~ H«T n, A.k)
mn

(2.17)

We have chosen to truncate our interaction Hamiltoni-
an in such a way as to avoid any direct coupling between
the single particle state

~

B ) and the three-body state
~

B7T7T) or
~
B7Ty). This truncation was utilized in writ-

ing Eq. (2.16) and was introduced to render our final re-
sult simple and manageable from a computational point of
view. Also, we can see that Hl is not covariant because
we have neglected terms such as (B

~

H
~

B7Ty ). These
neglected terms can always be estimated in perturbation.

III. TWO-BODY UNITARITY

Let us now derive the equations which satisfy two- and
three-body unitarity. To accomplish this, we use the
last-cut lemma, which was first introduced by Taylor
and later used by other groups for the three-body prob-
lem, in the ~NN system ' and in the ~~N system. '
We refer the reader particularly to Refs. 22 and 28 for the
details. However, for the sake of completeness, we outline
this procedure below.

To derive equations for the amplitude for a given pro-
cess, we need to classify the diagrams that contribute, in
perturbation theory, to this amplitude according to their
irreducibility using the last-cut-lemma. To achieve this
we need to first define a k cut as an arc that separates the
initial state from the final state, in a given diagram, and
cuts k-particle lines with at least one line being internal.
Second, an amplitude is r-particle irreducible if all dia-
grams that contribute to this amplitude will not admit any
k cuts with k & r. With these two definitions, we can in-
troduce the last-cut-lemma which states that for a given
amplitude that is (r —1)-particle irreducible, there is a
unique way of obtaining an internal r-particle cut, closest
to the final (initial) state for all diagrams that contribute
to the amplitude. By virtue of this lemma, we can expose
one-, two-, and three-particle intermediate states and the
corresponding unitarity cuts and, in this way, derive equa-
tions for the amplitude that satisfy unitarity. From the
statement of the lemma it is clear that one needs to expose
n-particle unitarity before exposing the (n + 1)-particle
unitarity.

Here, we will treat the ~B scattering and the pion pho-
toproduction as coupled channels. However, if we restrict
our analysis to include amplitudes to lowest order in the
electromagnetic coupling (i.e., to order e), then we need to
carry out the analysis for the m-B amplitude and the pion
photoproduction amplitude separately. Also in the ap-



36 UNITARY THEORY OF PION PHOTOPRODUCTION IN THE. . . 253

proximation, the S matrix for Compton scattering is uni-

ty, and all radiative corrections to the ~—B amplitude are
neglected. Since the analysis for the m —B amplitude has
been discussed in detail in previous works ' at least at
the level of two-body unitarity, ' we will present here a
summary of the results. For ~—B scattering with no
coupling to the photoproduction channel, the amplitude is
given by

t(0) t(1)+ f (1)td f(1) (3.1)

with g =dad, the m.-B propagator. To get an explicit
form for the two-particle irreducible amplitude t' ', we
need to expose the three-particle intermediate states. The
B~m.B amplitude f'" is given by

where t is the m —B amplitude, f is the B~vrB amplitude,
and dB is the dressed baryon propagator. The superscript
gives the irreducibility of the amplitude, e.g. , t" is the n-
particle irreducible ~B~m.B amplitude. The one-particle
irreducible ~B~m B amplitude satisfies the Lippmann-
Schwinger equation

(3.2)

t (&) t (2)+t(1) t (&)

t (2)+ t (2) t (1) (3.8)

divided the photoproduction ampltiude into a pole or res-
onance part and a nonpole part. Since dB is the dressed
baryon propagator, it includes not only the nucleon but
the b, and possibly the Roper resonance (provided the
bare Roper is included in terms of its bare three-quark
structure). The one-particle irreducible vrB~B amplitudef"', in the absence of radiative correction, is given by
Eq. (3.3).

Turning to the one-particle irreducible photoproduction
amplitude t "', we can classify the diagrams that contrib-
ute to this amplitude into two groups: (i) those that are
two-particle irreducible which we denote by t ', and (ii)
the two-particle reducible diagrams that contribute to t '".
Here again, if we maintain terms that are of first order in
the electromagnetic coupling, the two-particle reducible
diagrams are of the form t "gt ' ', where g is the ~B prop-
agator and t '" is the ~—B amplitude that is a solution of
Eq. (3.2). Thus, to first order in the electromagnetic cou-
p1ing, we have

f(1) f(2)+f{2) t(1) f(2) +f(1) t (2)

while the dressed baryon propagator is given by

(3.3)
The second of these equations demonstrates that t "' in-
cludes the contribution from the m. —B unitarity cut.

To complete our definition of the photoproduction am-
plitude, we need to examine the one-particle irreducible
amplitude for B~yB, f ''. The diagrams that contribute
to this amplitude are divided into two classes: those that
are two-particle irreducible we denote by f ( ', while the
two particle reducible diagrams can again be divided into
two groups. Those of order e can be written using the
last-cut-lemma as f"'gt '=f 'gt (". The rest of the dia-
grams, which are of higher order in the electromagnetic
coupling, and include all radiative corrections to this am-
plitude, we neglect. Thus, to lowest order in the elec-
tromagnetic coupling, we have

d —' =d —' —r("B 0 (3.4)

where X'", the self-energy, is given by

y(1) y(2)+f (1) f (2)$ y(2)+f (2) f(1)t (3.5)

In Eq. (3.4), the bare propagator d0 given by

f (1) f (2)+f(1)gt (2) f (2)+f(2)gt (1) (3.9)

In Eqs. (3.7)—(3.9), which are illustrated diagrammatically
in Fig. 2, we have the amplitude for single pion photopro-
duction t ' ' expressed in terms of the two particle irreduc-
ible amplitudes f' ' for B~vrB, f ' ' for B~yB, t' ' for
~B~wB, and t ' ' for ~B~yB. Although these ampli-
tudes can be defined, at this stage, in terms of the corre-
sponding elements of the interaction Hamiltonian in Eq.
(2.16), we will show in Sec. IV the advantages of exposing
the three-body unitarity cuts. In particular, we find that
t' ' and t ' ' includes more than one expects, from just
taking the matrix elements of HI.

The above result can be recast in terms of a distorted
wave Born approximation. This is achieved by using Eqs.
(3.8) and (3.9) in Eq. (3.7) to get

)=(t{ ) +1)t ( )+f(')td f (3.10)

The second term on the right-hand side (rhs) can be recast
using Eqs. (3.1), (3.3), and (3.4) to the form

f(1)tdaf (2) (t(0) + 1)f(2)td0f (2) (3.1 1)
t (0) t (1)+f(0)td f (1) t (1)+f(1)'fd f {1) (3.7)

In writing the second equation we have made use of the
fact that f( ' d0=f ""da (Ref. 28). In Eq. (3.7) we have Combining the results of Eqs. (3.10) and (3.11), we get

dO
' ——E —mB', (3.6)

where m 8 ', the bare mass of the baryon, is predicted by
the MIT bag model. Considering the fact that we have
neglected the direct coupling between the

~

B) and

~

mvrB) states, then X( '=0 in Eq. (3.5) (see Sec. IV).
Equations (3.1)—(3.6) are the basic equations for the nB.-

scattering below the threshold for pion production. The
basic input into these equations are the two-particle irre-
ducible amplitudes t' ' and f' '. To determine these am-
plitudes in terms of the interaction Lagrangian, we need
to examine the three-body unitarity structure of these two
amplitudes. This we leave for Sec. IV.

Turning to the amplitude for single pion photoproduc-
tion, i.e., m. +B~B+y, we can classify the diagrams that
contribute to this amplitude into two classes: those that
are one-particle irreducible, which we denote by t "', and
those that are one-particle reducible. The one-particle re-
ducible diagrams can be further divided into two classes:
those of order e, i.e., first order in the electromagnetic
coupling, and the rest. Those of order e can be written
using the last-cut-lemma as f' ' d0f "'=f"' daf "'.
Here, f '" is the one-particle irreducible amplitude for
B~yB. If we neglect the higher order terms in the elec-
tromagnetic coupling, then
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/~3j+ I ~3~6~&~I-~2~~+I ('3j G ~2j I (2j~ (4.1)

01

02

02 'Oi 02

(ej

02 Oi

FIG. 2. A diagrammatic representation of the equations to be
solved for pion photoproduction. The numbers in the circle
represent the irreducibility of each amplitude. Here (a) is Eq.
{3.7), (b) is Eq. {3.8), (c) is Eq. (3.9), (d) is Eq. {3.3), and (e) is Eq.
(3.2).

t (0) (t(0) + 1)- (3.12)

where

U t (2)+f(2)td J(2) (3.13)

IV. THREE-BODY UNITARITY

In Sec. III we showed that the amplitude for ~—B elas-
tic scattering and pion photoproduction can be written in
terms of the two particle irreducible amplitudes X' ' for
B~B, f' ', for B~Bm, f ' ' for B~By, t' ' for nB~mB,
and t ' ' for vrB~yB. The determination of these ampli-
tudes in terms of the interaction Hamiltonian in Eq. (2.16)
will require the exposure of three-body intermediate
states. To this end, we use the last-cut-lemma to expose
the three-body unitarity cut for X' '. This gives

The basic results in this section are similar to those of
Tanabe and Ohta. ' However, some of the details are
different, particularly since we start from a Lagrangian
and use that Lagrangian to determine all the free parame-
ters of the theory. Numerical results for the ~—B sec-
tor ' give a good description of p-wave scattering and we
expect this to carry over to the photoproduction. At this
level, t' ' and t ' ' are not uniquely determined by the La-
grangian. Their determination will require the examina-
tion of three-body unitarity, which is the subject of the
next section.

where 6' '=d d dB and G ' '=dzd dB. Here, I' ',
(I I ') and X' ' are the three-particle irreducible ampli-
tudes for B~mvrB (B~ymB) and B~B. Note that in
writng Eq. (4.1) we have neglected two photon intermedi-
ate states. In fact, for the Hamiltonian under considera-
tion, and taking only the diagrams that are to lowest or-
der in the electromagnetic coupling, the last term on the
rhs of Eq. (4.1) should not be included. Both I' and
I ' ' involve the coupling of the B to the m~B and ymB
Hilbert spaces, respectively, with at least four-particle in-
termediate states. Since there are no terms that directly
couple the 8 with ~~~8, y~vrB, yy~B, or yyyB Hilbert
spaces in the Hamiltonian, then I ' '= (B

~

H
~

mm. B) and
I ' '= ( 8

~

8
~
yvrB). But such terms are absent from the

interaction Hamiltonian in Eq. (2.6) and thus
r"'=I "'=0. We therefore have X' '=X' '. In a similar
manner we can show that X' '=X' '=X' '

= ( B
~

H
~

B ) . The last equality results from the
contribution of diagrams with no intermediate states.
Thus, in the absence of any baryon counter terms in Bt
we have X' '=0.

In a similar manner, if we apply the last-cut-lemma to
the two-particle irreducible amplitude for B~~B, we ob-
tain

&~~~ —&'3~+ I-'3~6(2~/(2~~+ I ~3~ G ~2~ F (2~~
3

3
—f j~~+ I I ~G~2~F~2~t+ I' I ~ G I2~F I~~t (4.2)

where F'"' (F 2"I ) is the n-particle irreducible amplitude
for mmB~vrB (yvrB~vrB) Here ag.ain, the last term on
the rhs does not contribute if we only maintain terms to
first order in the electromagnetic coupling. Since both
I' ' and I ' ' are zero, as shown above, then f' =f
In this way we can show that fI '=f' '

=f' '= =(B ~H
~

~B). Here again, the last equality
is the result of the contribution from diagrams with no in-
termediate states. In other words, the two-body irreduc-
ible amplitude for B~mB is in fact the ~BB vertex in the
interaction Hamiltonian.

We now turn to the two-particle irreducible B~yB am-
plitude, f ' '. With the application of the last-cut-lemma,
this can be written as

(4.3)

where F I"' (F~q"') is the n-particle irreducible amplitude
for yB+—m~B (yB~y~B). By classifying the diagrams
that contribute to I' ' and I ' ' according to their irredu-
cibility, and using the last-cut-lemma, we can show that
I' 'o: I' ' and I ' '~ I ' '. Since both I' ' and I ' ' are
zero, we have that f ' '=f ' '. Repeating this procedure
will give us f '=f ' '=f ' '= . = (B

~

+
~

yB).
this way we have related the two-particle irreducible am-
plitudes 2' ', f' ', and f ' ' to the terms in the interaction
Hamiltonian given in Eq. (2.16). In particular, we have
shown that three-body unitarity has no contribution to
these amplitudes for the Hq under consideration.

In the absence of coupling to the photon channels, the
contribution of three-body unitarity to t' ' has been exam-
ined in detail by Afnan and Pearce. Here, we summa-
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F(n) ~|n)+~(n) (4.5)

both of which contribute to the second term on the rhs of
Eq. (4.4), we can write

F' '=F' '+F 'g M' '=F' I+/' 'G'~'M' ~ (4 6)

where M'"' is the n-particle irreducible 3~3 amplitude
for the reaction mmB~m. mB. Here again the 3~3 ampli-
tude can be divided into connected and disconnected
parts, i.e.,

(4.7)

If we now take M,' '=0, i.e., no three-body forces, then
the 3~3 amplitude M' ' can be written in terms of the
Alt-Grassberger-Sandhas (AGS) amplitude U p, as

M' '=+[Md '(a)5 p+Md '(a)G' 'U pG' 'Md '(13)],
aP

(4.8)

where we have made use of the fact that

(4.9)

with

Md '(a)=+5~d '(i)t"'(j) for a=j =1,2,

=dB 't"'(3) for a=3 . (4.10)

Here t'"(j), j=1,2, is the one-particle irreducible m-B
elastic amplitude, while t'"(3) is the vr vr one-particl—e ir-
reducible amplitude. In writing Eqs. (4.8)—(4.10), we
have labeled particles 1 and 2 to be pions while particle 3
is the baryon. We have also used the convention that t(j)
is the interaction of the jth pion with the baryon. If we
now substitute Eq. (4.6) into Eq. (4.4), make use of the
fact that

rize their results for completeness. Making use of the
last-cut-lemma, we can expose the three-particle inter-
mediate states for t' ' to get

) t( )+ (~(3)G( ~F(2)f )
) C

t(3)+ IF(2)g(2)FI3)TI

where the subscript c implies that only connected dia-
grams are to be included when the last-cut-lemma is ap-
plied. Making use of the fact that F'"' has both connected
and disconnected parts, i.e.,

IF(2)g(2) F (3)t
I + (F (2) g (2) F (3)tI (4.14)

In writing this expression we have neglected the inter-
mediate states with two or more photons, on the grounds
that they are of higher order in the electromagnetic cou-

r (2) r (3)+y F(2)())g(2}U G(2)F)2)t( .
) (4.13)

IJ

where 6 p ——1 —6 p. Here, and through the rest of this pa-
per, the i,j, . . . sum runs over 1 and 2, while a,p, y, . . .
runs over 1, 2, and 3. A diagrammatic representation of
Eq. (4.13), in its multiple scattering series form, is given in
Fig. 3. The first term t' ' is determined by the contact
term resulting from Xqq „

in Eq. (2.5). The second term
in the series in Fig. 3 has the u-channel baryon pole (i.e.,
the crossed pion diagram) with the special feature that the
m.BB vertices are one-particle irreducible, as compared to
the s-channel pole term which has two-particle irreducible
vertices at the potential level. It is only at the amplitude
level (i.e., after dressing the m.BB vertices and baryon
propagator) that the s-channel pole term has one-particle
irreducible vertices. Here, we observe that if we take
t'"=t' ', then the final amplitude t' ' is crossing sym-
metric. The third term in the series in Fi . 3 gives the
dressing to the contact term t' '=(Bm.

~ ~

Brr). The
other terms in the series give contributions from multiple
scattering including the effect of the m-~ interaction. To
include the full contribution of the multiple scattering
series, we need to solve a three-body problem that couples
the mB to the ~mB channels.

If we now turn on the coupling to the photon channels,
then the only contributions are of second order or higher
in the electromagnetic coupling. This is clearly the case
as both our initial and final states in t' ' are m-B channels.
To maintain consistency with Sec. III we will neglect the
contribution of the coupling to the photon channels in
t(2)

Finally, we turn to the two-particle irreducible ampli-
tude for ~B~yB, t ' '. The diagrams that contribute to
this amplitude are either three-particle irreducible, which
we denote by t ', or three-particle reducible. Using the
last-cut-lemma we can write the three-particle reducible
diagrams as

j=1,2

and use the AGS equations

U p=G' ' '5 p++5 re '(y)G' 'Urp

=G' ' '5 p+g U rg' 'Md '(y)5rp,
r

(4. 1 1)

(4.12)
+ ~ ~ ~

to regroup the resultant multiple scattering series, we ob-
tain

FICx. 3. Diagrammatic representation of Eq. (4.13), and the
lowest order multiple scattering contribution to t' '.
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F '1 F1 d
——=d B (1r'lr

l
Hi y ) =d B

' f, '" (4. 15)

and

F 2
' =F 2 dt =d ' (vrB

l
Hi

l

8 ) —=d r 'f ' ' (4.16)

We now can write the two-particle irreducible amplitude
t(", as

r ( 1 t ( )+ (Fl )Gl ) p 1 )f'I + IF 121 G 121 p(31t
I (4 17)

pling. The three-particle irreducible amplitudes F'1 ' and
F q

' consist of connected and disconnected parts, both of
which can contribute to the above expression. The con-
nected parts of F 1 ' (i = 1,2) are zero because there is no
direct coupling between the yB and either the ~mB or
ywB channels. Also, there is no direct coupling to the
four particle intermediate states via HI. Thus the only
contribution to F,' ' (i =1,2) comes from the disconnect-
ed part. If we only maintain the terms up to first order in
the electromagnetic coupling then

To fully expose the contribution of three-body unitarity,
we need to write the two-particle irreducible amplitudes
F and F 3 in terms of the basic interaction Hamiltoni-

(2) (2)

an HI. For F this was done in the absence of coupling
(2)

to the photon channels by Afnan and Pearce, and the
results are summarized in Eqs. (4.6) and (4.8). The in-
clusion of coupling to the electromagnetic interaction to
first order will not change this result since both the initial
and final channels involve only pions and baryons. Thus,
the second term on the rhs of Eq. (4.17) is of the form

{
Fl2)G121P 131t

I
1F131Gl21P 13)t

)1,d fc —
f 1,d c

+ [F(3)G(21M(21G12)P I3)&
) (4 18)

Because F' ' is the amplitude for ~B~~~B, with at least
four-body intermediate states, and there are no terms in
the Hamiltonian that couples the ~B and vrvr~B spaces,
we have that F' '=Fd '. Furthermore, because of the fact
that the initial photon creates two pions through F '1 d and
one of these pions gets absorbed by the baryon via F' ',

we can drop the subscript c and write our final result as

IF121G12)P I3)t) ~ F13)(.)G12)P131t+~ F13)(.)612)M12)( )Gl2)P 43)t
7 d d 1,d

ia

+y F,'"(1)G"'M "(a)G'"U.,G" M"'(P)G "P,'," .
iaP

(4.19)

Here we note that the first term on the rhs can be combined with the second term for a=i, to replace Fd '(i) by Fdl '(i)
This can also be achieved for the Fdl '(i) in the third term, using the AGS equations for U p. In this way we can replace
Fd '(i) by Fd '(i) in Eq. (4.19) to get

1Gl 1pl 1") =~ Fl 1(j)Gl 1p43dlt+~ F121(j)G'21U. G121M121( )G121pl31t
1,d pc d 1,d

ia
(4.20)

This result can be further simplified by dressing the
~w~y vertex, F'1 d. Making use of the AGS equation
and the fact that

(4.21)

with

f"' =f ' 1 +t "(3)d (1)d„(2)f (4.22)

Now, by iterating the AGS equation, we can generate a
multiple scattering series for the contribution of this class
of diagrams to F' '. In Fig. 4 we present diagrammatical-
ly the first few terms in the series for [Fl 'G' 'F'1 d I, .
Note that in Eq. (4.23) only the one-particle irreducible
amplitudes and vertices are included.

We now turn to the last term on the rhs of Eq. (4.17).
Here, we have to examine the two-particle irreducible am-
plitude for ~B~y~B, F 3

'. This consists of two parts —a
connected and a disconnected part, i.e.,

we can rewrite Eq. (4.20) as

IF121G121P13)tI y F(21(&)Gl 1U G 1F 1 1" (4 23)

P 121 d —1 f 91)+d
—1 f 11) (4.25)

with f '' given by Eq. (3.9) and f 'b ', the n~yn ampli-
tude, given in terms of the interaction Hamiltonian by

1

/
J /

(4.26)

The first equality in Eq. (4.26) is the result of including
the electromagnetic interaction to first order only.

We now turn to the class of connected diagrams that
contribute to the ~B~y~B amplitude, F 3,'. These dia-
grams can be divided into two classes: those that are
three-particle irreducible which we denote by F 3 . To
the rest of the diagrams that contribute to F 3,', and are

where the disconnected part is given by

(4.24)
FICx. 4. The lowest order multiple scattering contribution to

{F 'G' 'F(l, d1 I, . See Eq. (4.23).
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three-particle reducible, we apply the last-cut-lemma to
get

F '=F3,'+ [F' 'G' 'M'g ],+ [F I)
'O' M2)'),

(4.27a)

=F3,'+ [F' 'G' 'M ' '), + [F (3'O ' 'M ' 'I

(4.27b)

In writing Eq. (4.27) we have dropped the intermediate
states with two photons as they would only result from
including the electromagnetic interaction in second or
higher order. Here, M'q' and M ~"' are the n-particle irre-
ducible amplitudes for the reactions ~n.B+—y ~B and
y~B~y~B, respectively. To lowest order in the elec-
tromagnetic coupling, the amplitude M ~ ' is disconnected,
i.e.,

(4.28)

On the other hand, the ~mB~y~B amplitude M'q' has
both a connected and a disconnected part, i.e.,

(4.29)

The connected amplitude M'~', for ~~B~y~B should be
written, to first order in the electromagnetic coupling, in
terms of the AGS amplitudes U p, the basic two-body
amplitude t'"(a), a=1,2, 3, and t '"(i), i =1,2. This can
be achieved by classifying the diagrams that contribute to
M'~', according to their irreducibility using the last-cut-
lemma. This gives us

++Md '(a)G' 'U Jd„(j)dBt'"(j) .
aj

(4.31)

Here i,j=1,2, while o. =1,2, 3. This equation can be
solved formally for M 'q', to give

M'g' ——M'g' + [M 'O' 'M'g'I + [M g'O' 'M 2)')

=M'" + [M "O"'M"'I + [M'" G"'M"'I
(4.30b)

Here again we have limited our analysis to exclude two or
more photon intermediate states on the grounds that they
are the result of including the electromagnetic interaction
to second or higher order. Because our interaction Ham-
iltonian does not admit the coupling between n and n +2
pion states, M '~', ——0.

In writing Eq. (4.30), we have chosen two different im-
plementations of the last-cut-lemma. In Eq. (4.30a) we
have used the lemma to expose the last (furthest to the
left) three-particle intermediate state. In this case we get a
set of coupled equations for the two-particle irreducible
~mB+—ymB amplitude, M '~', . The second decomposition,
corresponding to Eq. (4.30b), will give us the amplitude
M'~', in terms of the AGS amplitude U p for the ~mN
three-body system. Making use of Eqs. (4.8), (4.28), and
(4.29), and after some algebra that involves replacing
t ' '(i) by t "'(i ) with the help of the AGS equations
(4.12), we can write Eq. (4.30b) as

M'g', ——~ t '"(i)dB5Jt' '( )+M' ' G' 'd 't' '
B IJ

IJ

M'q', =g t ''(i)dB5~t"'(j)++Md '(a)G' 'U;d„(i)dst '"(i)5&(1+d (j)dr)t "(j)) .
aij

(4.32)

In this way we have written the amplitude M (q), for (irmB~y~B), in terms of the AGS amplitude U; and the two-body
one-particle irreducible amplitudes t"' and t "'.

The results of Eqs. (4.28), (4.29), and (4.32) will enable us to write the two-particle irreducible amplitude for
mB~ynB, F 3,', in Eq. (4.27) as

F3,' =f I 'd t"'+f '"dBt'"+g f'"(i)d (i)dBUJd (j)dBt "(j)5~k(1+d„(k)d)3t"'(k)).
ijk

This in turn will allow us to write the last term on the rhs of Eq. (4.17) as

[FO'O' 'F2d ), =f I"d f"' +f '"dBf"' +g f'"(i)d (i)dsU;, d„(j)dBt'"j()57d„(k)dBf("(k) .
ij k

(4.33)

(4.34)

In Fig. 5, we illustrate the lowest order contributions to [F I)
) G ' 'F(2 d) ). We now can combine the results of Eqs.

(4.23) and (4.34) to get

t (2) t (3)+fIl)d f(1)t+f (1)d f())t+y F(2)(.)g(2)U g(2) F (2)1'+y F)2)(.)g(2)U g(2) M (2) (J)g (2) F (2)t (4.35)

From the above result we see that the amplitude t ' ',
which plays the role of a potential in Eq. (3.8) and has a
t-channel pole, is written in terms of the dressed (i.e.,
one-particle irreducible) form factors f''), f "', f I,", and
f,'". This is similar to the situation for pion elastic
scattering where t' ' (which includes the crossed diagram)
is written in terms of the dressed m.NN vertex. Finally, if
we examine the lowest order contributions to t ' ', as illus-

trated in Figs. 4 and 5, we observe that the contact term
(t ' '= (Bm

~

H
~
By) ) gets also dressed, due to the contri-

bution from the third term in Fig. 5.
The analysis in this section has shown us how we can

write the basic input to the equations in Sec. III, in terms
of the interaction Hamiltonian 8t. In addition, we find
that a proper treatment of the multiple scattering series
within the framework of Faddeev-ACrS theory requires
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+ ~ ~ ~

FIG. 5. The lowest order multiple scattering contribution to
tF ("G"'FPd ). See Eq. (4.34).

that t ' ' be written in terms of the one-particle irreducible
two-body amplitude. This, to a certain extent, renders the
problem to be nonlinear, in that we need to know t'",
t '", f'", and f '" in order to calculate r' ' and t ' ' which
in turn are needed to calculate t'" and t "'. This require-
ment of self-consistency could be overcome in the initial
stage by parametrizing the amplitudes required to calcu-
late t ' '. In the event that we have a spectator pion in the
amplitudes in Fd ', F'~ d, F2d, Md ', and M d ', then the
input amplitudes t ' ", t "' are at an energy
co=(p +m )' lower than that at which t ' ' is calculat-
ed. This, in a sense, removes part of the nonlinearity in
the problem. However, we need to maintain self-
consistency.

Finally, a comparison of the lowest order diagrams that
contribute to t ' ' (see Figs. 4 and 5), with the diagrams in
Fig. 1, (the Born amplitudes) shows that the diagrams
corresponding to Figs. 1(b)—1(e) have their vertices or am-
plitudes one-particle irreducible. On the other hand, the
contribution corresponding to Fig. 1(a) has vertices that
are two-particle reducible. This difterence between Fig.
1(a) and the other diagrams in Fig. 1 has not been taken
into consideration in the past.

f(B (q)= 3, 2
&4~

[(2' )(2m ) ] '

NN 3ji(q~)
X CaB(B'

i

X qV'i B)
m qR

(5.3)

where X and V; the spin and isospin operators, and CB B,
are summarized in Table I. The spin operators in Table I
have matrix elements given in terms of the Clebsch-
Gordan coe%cients as

( —,
'M'

~
cr„~—,'M ) =&3(—,'M, Ip

~

—,'M'),

( —,
'M'

i S„i
—,'M ) = ( —,'M, Ip

i

—',M'),

( —,
'M'

~
og„~—', M) =&15(—,'M, ip

~

—,'M') .

(5.4)

The isospin operators w, T, and w~ are also defined in ex-
actly the same way.

Employing the same procedure, we can determine the
photon-baryon vertex f I ', which is defined in terms of
the baryon states by

m
I f ~B'n'y(k)

= f d x(B'(m) ~X~&r(0)
~
B(n);y~(k))

(2kp)(2') ]'~

—(B'
~

J
~

8) eg} .

ploying the boundary condition that

I'y n&q =q .P

By inserting the MIT bag wave function and Eq. (2.6)
into Eq. (5.2), we can derive

V. THE VERTEX FUNCTIONS AND BORN TERMS

In the last section we showed that three-body unitarity
in conjunction with a partial summation of the multiple
scattering series determines the form of the nonpole Born
terms t' ' and t' ', in terms of one-particle irreducible
form factors and subamplitudes. These, in turn, can be
written in terms of the interaction Hamiltonian Hi as
given in Eq. (2.16). At this stage we as yet have no expli-
cit form for the difterent matrix elements of H in terms of
which HI is written in Eq. (2.16). In this section we
present the matrix elements of H by considering the La-
grangian in Eqs. (2.1)—(2.11). In particular, we need to
get explicit expressions for f' ', f ' ', t' ', and t I '.

To establish the normalization of our basis state, we
write the S matrix for B'~nB in terms of f ' ' as

(B'
~

S
~
B~(q) ) =i(2~)5'(p' —p —q)fB'& (q), (5.1)

where

(5.5)

GE ——1V
1+~3 Go (5.6a)

GM
1+5w3

(5.6b)

TABLE I. The explicit form of the operators X and 'T and
the value of the coefficient Cz& needed in Eq. (5.3), in the case
when B,B' are the N or A.

The explicit forms of Jo and J are given in Table II. In
this table, the electric and magnetic form factors are
defined as

(m ~f~&'&I (q)
~

n, a)
= —(m ~Hq'q'.

~
n, aq)

= f d x(B'(m)
~

J „~(0)
~
B(n);~ (q)) .

B'

(5.2a) N

(5.2b)

The equivalence of Eqs. (5.2a) and (5.2b) can be shown by
applying Gauss' theorem to the axial vector current, by
using the Dirac equation for a massless quark and by em-

B
N

N

CB'B

1

6&v
5

6&Z
5
I
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B' &B'
I
Jo

I
B) &B'i J/8)

N N GN 1 [GZ(p'+ p)+iGMN(~Xk)]
2m~

N
my+ 3mNb, + N

4m~ my

my+ 3mN

4mNmg

Gs [G s(p' +p)+i'((r~X1(}]
2m'

GM =&2T3Gm (5.6c)

GM =GM (5.6d)

+ 3 p
E (5.6e)

GM
+ 3 0

6 M 7 (5.6f)

TABLE II. The explicit expression for the electromagnetic
currents in Eq. (5.5) for the case when the baryon is an N or A.

and

I„(R)=Rp(r " 'jpj], 0) (5.12)

The derivation of the N —N current, i.e. , &N
~

J
~

N),
is given in Ref. 18. The factor of (1+k /4mN) is ap-
proximated to 1 in the present paper because of the nonre-
lativistic treatment of our theory. Derivation of the rest
of the currents shown in Table II, is briefiy given in Ap-
pendix A.

At this stage we should point out that, as a result of
our analysis of three-body unitarity, the diagrams in Figs.
1(b)—1(e) have dressed vertices, while the diagram in Fig.
1(a) has bare vertices. If we are to calculate pion pho-
toproduction below the threshold for the two pion final

state, then f ' " and f "' are real, and we may neglect their
energy dependence. ' Furthermore, the momentum
dependence of f] ' and f]" are very similar. ' This sug-

gests that we may use Eq. (5.3) for both f' ' and f]'I
However, the coupling constant f„NN is not the same for
the dressed f'" and bare f] ' vertices. Since the physical
coupling constant is related to the residue of the vr —N
amplitude at the nucleon pole, the f NN for f" should be
the physical coupling constant, while that in f ' (f„NN) is

a parameter of the Lagrangian to be adjusted so that the
dressed form factor f"' gives the physical coupling con-
stant. The bare coupling constant f NN is related to the
parameter of the Lagrangian g = (2f )

' by

where ~3 ——~p, T3 ——Tp, and t3 —'TQ p.
In Eq. (5.6), Gg and GM are expressed in terms of the

MIT bag wave function as follows:

0f NN 5 u 1

9 (p —1 2f„ (5.13)

Gg(k )=Ro(jo+j],k)

0 ~
4'

GM(k )= R](joj]'k)
k

= 2mN(]L(t —
—,', k Ip(R)+ ),

where the function R~ is given by

RI(f;k)=N f dr r j](kr)f
0 R

with

(5.7)

(5.8)

(5.9)

with co=2.043. This parameter in turn determines the
strength of both the contact term [Eq. (2.7)] and the
seagull term [Eq. (2.9)]. Thus by adjusting f NN to give
the physical coupling constant f NN, we have determined
the strength of both the contact and the seagull term.
However, here again the partial summation of the multi-
ple scattering series, as carried out in the last section, give
dressing to both the contact and seagull terms. This al-
lows us to take the strength of these terms from experi-
ment other than the ~NN coupling constant. Thus for
m —N scattering it was found that the contact term should
have a strength corresponding to f =93 MeV.

We now turn to the determination of the contact and
the seagull terms. Here again to define our normalization,
we write the S matrix as

co 1

2((p —1) R 3jz~((p)
(5.10)

& B',n
~

S
~

B,vr or y)

pt ——', Rp(rj pj ],0), — (5.1 1)

In Eq. (5.8), p~ is the proton magnetic moment and is

given by

=27ri5 (Pf P; ) & B',7r
~

T
~

B,7T or y )—. (5.14)

For the contact term, we take the matrix element of Eq.
(2.7) between baryon states. This gives

N
&B',np(q')

~

T
~
B,~ (q))=, g e pr[4(p(p'(2')']'" 4~

f ~ &vo[er+]o)(j'oo+j o) ]]ooooCoojojiz pXr]rv B)e"e (5.15)

where p=q +q, and where X, T, and CqB are given in Table II. If this amplitude is to include all the dressing that
arises from exposing three-body unitarity, then the coupling strength is g= ,'f with f =93 MeV. On t—he other hand, if
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(5.16)

we explicitly include the contribution to the renormalization of the contact term from the multiple scattering series, then
f is a parameter.

Turning to the crossed diagram, this can be written in terms of the dressed vertices f ' " as

(8',~)3(q')
~

Tc
~

B,~ (q)}=
w E—(q+ q') —co(q) —cp(q')

where C is an intermediate baryon state. Here, fac and f"CB are given in Eq. (5.3) with f NN being the physical cou-
pling constant.

The seagull diagram [Fig. 1(e)] which corresponds to the projection of Xqq„z, as given in Eq. (2.9), onto the baryon
states, is given by

2

(8', m (q)
~

'r
~
B,y(k)}=,2e ts3CBs B' f d'x[(j) —jp)(X.e) —2j)(e.r)(X r)]Tp 8 e' "

3[4cpkp(2') ]' 4~
(5.17)

Here again, C is the intermediate baryon state, while ko is
the energy of the photon.

To complete our results for the Born term as given in
Fig. 1, we need to obtain the expressions for the diagrams
in Figs. 1(c) and 1(d). These are given by

(8',~ (q)
~

T
~

B,y(k) }

5eF (k ) Ca Be (t)23q )e.
3[4~kp(2~) ]' ~p(k —q)+[cp(q) —kp]

())x
„

fBB~p(k —q2'(k —q
(5.19)

where the + sign corresponds to Fig. 1(c) and the
—sign corresponds to Fig. 1(d). Here again f"' has the
dressed mNN coupling constant as shown in the last sec-
tion. For Fig. 1(c},F must be replaced by f '," as given
in Eq. (4.22) since the ttny vertex is dressed due to n vr-
interaction. On the other hand, for Fig. 1(d), F„is taken
to be the bare coupling f ', ' which is in L z. Here, the
dressing is of higher order in the electromagnetic cou-
pling, and is neglected. We should note here that f (,')t in

On the other hand, the crossed diagram for pion pho-
toproduction [Fig. 1(b)] is given by

t' (1) (k) t (1)'t

(8', vr (q)
~

T
~

B,y(k)) =
W —E(q+ k) —cp(q) —kp

(5.18)

I

Eq. (5.19) [for Fig. 1(c)] is real if the center-of-mass ener-

gy is below the threshold for two-pion production.

VI. ANGULAR MOMENTUM DECOMPOSITION

To reduce the dimensionality of our integrals, and in-
tegral equations developed in Secs. III and IV, we need to
decompose our amplitudes in one of three ways. (i) In
terms of partial waves with orbital angular momentum L,
spin 5, and total angular momentum J. (ii) Using helicity
states as a basis for the expansion of the amplitude. (iii)
An expansion in terms of the multipoles in the elec-
tromagnetic coupling. For ~-N scattering at low to medi-
um energies, the partial wave expansion is the most com-
mon approach. On the other hand, for pion photoproduc-
tion, the analyses are performed in terms of either mul-
tipole or helicity states. ' Since in the present investiga-
tion we need to consider both w-N scattering and pion
photoproduction at low to medium energies, we will use
partial wave expansion in terms of the states with definite
L, S, and J. These in turn can be transformed to mul-
tipole states.

To calculate the amplitude for pion photoproduction,
we need to use either Eqs. (3.12} and (3.13) or Eqs. (3.7),
(3.8), and (3.9). In both cases we need to expand the am-
plitudes t'"), t "', f'"', and f '"' in terms of partial waves.
Since the two-body channels involved are the

~

~8} and

~

yB) channels, we need to expand these in terms of the
states with definite total angular momentum and isospin.
For the

~

vrB } channel we have

f
q;tm„~m,sm, ) = 'g YL* (q)(LmL sm,

f
Jmj)(tm, rm,

f
Tmz)f q;(tr)T, (L. s)JmJ ),

LmL
Jmj
Tm y.

(6.1)

where t, ~, and s are the isospins of the pion and baryon and the spin of the baryon, respectively. Here m„m„andm,
are the corresponding projection operators. For the

~
yB) channel, the corresponding expansion is

~
k;k;sm, ) = g Yt~, (k)(lm) li,

~
LmL )(Lmr sm,

~
Jmj )

~

k;[(11)Ls]JmJ},
imp

LmL
Jmj

(6.2)
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where k is the polarization of the photon, and L is the to-
tal angular momentum of the photon. Since isospin is not
conserved in electromagnetic transition we have not in-
cluded explicitly the isospin quantum numbers in the y-B
channel. However, charge conservation requires that the
z component of isospin be conserved, and in this channel
this corresponds to the z component of the isospin of the
baryon.

If we now label the m-B states with quantum numbers
(LJT) by a,P, y, . . . , (and the corresponding y-B chan-
nels with quantum numbers (1LJ) by a,P, y, . . . , ), then
we can carry out a partial wave decomposition of the
equations in Sec. III to get one dimensional equations.
For the m.-B scattering amplitude, we have '

general. ' The one-particle irreducible ~BB form factor
is, after partial wave expansion, given by

f'-"(q) =f-"'(q)+ g f dq "q"f',"(q")

Xgr(q")t r" (q",q ) . (6.5)

t '
p(q, k) =t "p(q, k)+f'" (q)dBf p"(k), (6.6)

Thus, given the two-particle irreducible amplitudes we
can calculate the ~-B amplitude.

Turning to pion photoproduction, we can carry out the
partial wave expansion in analogy with the ~-8 case to
obtain

t5(q', q) =t'-'g(q' q)+f""(q')dBfp" (q) (6.3) where

Since dB is a diagonal matrix of dimension 2&(2 for B=N
and 5, then fp '(q) is a column matrix of dimension 2.
The one-particle irreducible amplitude t "p' satisfies the set
of coupled equations

t)(q, q') =t'g(q, q')

+g f dq "q" t' r'(q', q")gr(q")t ~)(q",q'),
o

(6.4)

where we have assumed that g =d~d is diagonal. This
in fact is the case if B=N, A. However, if one includes
the Roper as a three quark state, then g is not diagonal, in

I

(q, tm, ;rm„sm,
~

t '"'
~
k, X;r'm'„s'm,')

t "p~(q, k) =t ' p'(q, k)

+g f "
dq "q" t~'~(q, q")gr(q")t 'p(q", k)

o

(6.7)

and

fp"(k) =f p '(k)

+g f dq "q"fr' (q")gr(q")t ' p(q", k) . (6.8)
o

To get the relation between the full and partial wave
amplitudes, we make use of Eqs. (6.1) and (6.2) to write

(6.9)
L'mL
Jmj

YLm (q)Yt~, (k)(LmLsm,
~

Jmj)(L'mt's'm, '
~
Jmq)(lmt 1k.

~

L'mL)g(tm, rm,
~

Tm,')t p(q, k) .
LmL T
Im(

Here, the requirement of parity conservation leads to the
fact that L = l or (+2 (see Ref. 32).

Finally, the determination of both the baryon propaga-
tor d B and the ~B propagator gz required in Eqs.
(6.6)—(6.8) has been given in detail by Pearce and Afnan '

in their analysis of ~-N scattering.

VII. CONCLUSION

In this paper, we have presented the first and complete
off-shell multichannel unitary theory of pion photopro-
duction from a single baryon B, where B is N, 5, or N*.
The inclusion of strange baryons is possible by extending
the SU(2) flavor to SU(3), as was done for m.-N scatter-
ing. In the present formulation we have coupled the

~

B),
~
rrB),

~
yB),

~
y~B), and

~

~vrB) channels, but
no direct couplings between

~

B ) and
~

rrrrB ) and
~
ymB). This restriction on the coupling is required to

render a set of equations that are computationally viable.
In the above formulation we have achieved a unification
of the renormalization of the nucleon with pion elastic
scattering and photoproduction while maintaining two-
and three-body unitarity. The new feature of our result is

that the Born amplitude for pion photoproduction can be
divided into the following two parts. (i) A baryon pole
part [Fig. 1(a)] which has an s-channel pole. The EBB
and yBB vertices in this contribution are those in the La-
grangian and have bare coupling constants. (ii) The non-
pole contribution [Figs. 1(b)—1(e)] has the u-channel
baryon pole and a t-channel meson pole. More impor-
tant, is the fact that all diagrams that contribute to the
nonpole Born term have their vertices and amplitudes
one-particle irreducible [except for the yrrrr vertex in Fig.
1(d) which is two particle irreducible], i.e. , the vertices are
renormalized to the extent that the coupling constants are
not those in the Lagrangian, but are the physically ob-
served coupling constants. In effect, we have shown that
the vertices in Fig. 1(a) are the bare vertices, while those
in Figs. 1(b)—1(e) have the dressed vertices. This result
was achieved by going beyond two-body unitarity and ex-
posing three-body unitarity as we did in Sec. IV.

Although the analysis was done for a special Lagrang-
ian given in Eqs. (2.1)—(2.10), the results of Secs. III and
IV are general to the extent that we need not specify the
form of the Lagrangian as in Eqs. (2.6)—(2.10). Thus, if at
any future date, we were able to derive a Lagrangian of
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the form given in Eqs. (2.1) and (2.5) from QCD, then the
analysis of Secs. III and IV would still hold. However,
the results of Sec. V would need to be appropriately
modified.

We hope to use the present formulation to investigate a
number of unresolved problems. (i) The threshold ampli-
tude for pion photoproduction has been studied almost
exclusively in the covariant tree (Born) approximation.
Here gauge invariance determines the charged pion pho-
toproduction, while the partial conserved axial vector
current (PCAC) governs the neutral pion photoproduction
amplitude. In fact, the nonzero threshold amplitude for
neutral pion photoproduction comes only from the an-
tiparticle contribution, since the Kroll-Ruderman term
is absent. However, there remains the question whether
higher multiple scattering terms can produce the correct
sign and magnitude for this amplitude, even when the an-
tiparticle contribution is ignored, as in the present formu-
lation. Recently, Hoodbhoy showed that the photon-
Skyrmion interaction reproduces the right magnitude for
the neutral pion photoproduction amplitude at threshold.
In the Skyrme-Witton model, however, the quark degrees
of freedom are integrated. Thus, the physical content of
Hoodbhoy's calculation is not yet clear. It is a very in-
teresting and challenging problem to determine the mech-
anism of threshold pion photoproduction. (ii) If the ~NN
vertex f ' ' is parametrized by the monopole type of form
factor, then the range of this form factor is about 0.7—0.8
GeV both in the Cloudy Bag Model, ' and in the chiral
potential model. On the other hand, one-boson-
exchange models ' of N-N scattering demand a range of
1.1 —2.0 GeV for the ~NN vertex.

We expect that the analysis of pion photoproduction,
based on the present formulation, will give a measure of
the range of the mNN vertex. (iii) There is a large
discrepancy between theory and experiment, "' ' in the
value of the E2 amplitude. We expect that our present
theory will put some constraint on the prediction of the
E2 amplitudes. (iv) Since our formulation incorporates
both two- and three-body unitarity, we can use the theory
above the threshold for two pion production. This will al-
low us to investigate the recently observed structure in the
region of the Roper resonance in pion photoproduction.

Finally, by taking advantage of the oft:shell amplitude,
which the present theory provides, we should be able to
study the reactions yd~~d, yd~pn, and pp~ppy. . .

in a consistent manner. A unified theory of these reac-
tions will be reported elsewhere.

U (p, s) =0

2m'
1 S.p~~P mg

Dg

(A2)

U (p, s) =
2m'

1/2
1

(7 p
Dg

(5 t)k+ ( .p)p
k

mgDg

(A3)

where Dg =my+(mg+p )'i .
If we keep terms up to order p/mq in Eqs. (A2) and

(A3), in the same manner used to approximate (1
+p /4m~) by 1 in (N

~ J„~N) (see Sec. V), then the
above expression becomes

U (p, s) = (A4)
mg

and

U "(p,s) = (St)k~

2m~

(A5)

By inserting (A4) and (A5) into (A 1) and by neglecting
the second rank tensor terms, we find

(~~Jp x)= my +3m~
P, S.(p'Xp)X,

2mhmN

(A6)

and

(b
/

JaN)=
2

my+ 3m~
y m~

P, SX p — p' X, .
2mN m~

(A7)

The evaluation of the vertex function f ' ' from Eq. (5.3)
gives us, however, (b

a
Jp

a
N) =0. This is due to the fact

that Jp, derived from Eq. (2.8), is spin independent, and
thus ( b,

~ g Q Jp
a

N ) =0. We therefore take
(b,

i
Jp

~

N) =0 in Table II. It should also be noted here
that (6

~

Jp
~

N) =0 if we take the static limit for U". In
general, the 6-6 current can be expressed as

The time and space components of the Rarita-Schwinger
wave function can be written as '

' 1/2
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( b, (p')
~
J„i

b, (p) ) = U ~(p', s') Op„(p',p) U (p, s) . (A8)

APPENDIX A

If we take the simplest form gz y& for O~„ then (A8)
becomes, with the help of (A4) and (A5),

Here we present the isobar electromagnetic currents.
The main contribution to the 6-N currents comes
from

(&(p')
~ J„~N(p)) = U'(p')[g. y(mh+mN)

+p„y„]@AU(p). (Al)

(b,
~

Jp
a
b)=g, g, =5.. .

(p'+ p)+ — x (p' —p)2m' 3

(A9)

(A 10)
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