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The cross sections for the pionic disintegration of the deuteron in the 6-resonance region are
calculated based on a unitary three-body model. The NA-NN transition potential is constructed
from the ~N P» and P33 scattering amplitudes extrapolated to the off-shell region, and from the
nNN three-body propagator. The idea of the two-potential model for the P&] wave is extended to
the P33 wave. The parameters of the model are deduced from the fits to the mN scattering phase
shifts. It is found that the oft'-shell P&~ and P33 scattering amplitudes behave quite similarly to the
monopole form factor with a cutofT' momentum A=600 MeV/c as obtained earlier in the perturba-
tion model by Gibbs, Gibson, and Stephenson. It is also found that the backward-propagating-
pion component of the n.NN propagator, which is often ignored in three-body calculations, is cru-
cial to reproduce the magnitude of the total cross section. The three-body calculation is compared
to the perturbation calculations. The second-order perturbation gives the results which closely ap-
proximate the full-order three-body calculation.

I. INTRODUCTION

The pionic disintegration of the deuteron has drawn a
great deal of interest as the basic process of pion annihi-
lation in the nucleus. Experimental results for the total
cross sections' show a pronounced broad peak in the vi-
cinity .of the energy of the 6 resonance. This clearly in-
dicates that the absorption of pions at intermediate ener-
gies is governed by the two step process,
ad~ NA ~NN.

Due to the very weak deuteron binding, the first step,
~d~NA, is dominated by the quasifree ~N~A vertex
interaction. Since the magnitude of the ~N~A vertex
interaction in free space is directly related to the on-shell
~N P33 scattering amplitude, there is little theoretical
ambiguity in the calculation of the ~d~NA amplitude.
Differences in theoretical approaches arise from the
different description of the NA~NN transition ampli-
tude; we may classify them into (i) perturbation mod-
els, " (ii) coupled channels models, ' ' and (iii) uni-

tary three-body models. '

In the perturbation models, the NA~NN transition
occurs through the exchange of a pion (and a p meson).
The final state interaction is treated approximately using
low-energy effective nucleon-nucleon interactions extra-
polated up to the 5 resonance region. Goplen, Gibbs,
and Lomon investigated the ~d~NN reaction based on
the perturbation model with one-pion exchange and
showed that the results are very sensitive to the choice
of a cutoff factor at the ~NA vertex. To obtain agree-
ment with the experimental total cross section they
found a small cutoff' momentum A =300 MeV/c [A
refers to the monopole form factor ( l+q /A )

' unless
stated otherwise]. Shortly afterward Gibbs, Gibson, and
Stephenson showed that the DNA cutoff momentum be-

comes considerably larger (A=600 MeV/c) upon addi-
tional insertion of a cutoff at the mNN vertex.

The coupled channels calculation was first performed
by Green and Niskanen. ' The advantage of this ap-
proach is that it enables us to describe the final state NN
interaction more realistically including all the iterations
of the NN and NA states. In the 6 resonance region
NN scattering is known to be highly inelastic. The cou-
pled channels models satisfactorily explain this phenom-
ena based on the coupling of the NA states with the NN
states.

Faddeev's three-body theory was first applied to the
~NN system by Afnan and Thomas. This approach is
often referred to as the unitary three-body model, since
it satisfies the requirement of the two- and three-body
unitarity. Theoretical inputs to the three-body equation
are the two-body mN and NN interactions. Separable
potentials are usually used to reduce the original Fad-
deev equation to the more tractable Faddeev-Lovelace
equation. The latter resembles the coupled channels
equation. However, it should be emphasized that in the
three-body models all the parameters of the two-body in-
teractions (including the cutoff factors) are axed before
hand by the two-body scattering data. This makes a
sharp contrast with the perturbation or coupled channels
models in which the cutoff factors are free parameters to
adjust the magnitude of the NA~NN transition ampli-
tude.

Recent three-body calculations of the ~d~NN reac-
tion have a tendency to underestimate the experimental
cross sections. Lamot, Perrot, Fayard, and Mizutani '

reported that a factor of about 4 is missing in the cross
section compared with experiment. To circumvent this
difhculty, they modified the off-shell ~N P33 and Pii am-
plitudes in an ad hoc way. The connection with ~N
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scattering is thus lost in their approach. At this point
they overstepped the framework of the unitary three-
body model. Afnan and McLeod succeeded in getting
a reasonable cross section at energies well above the 5
resonance, but their prediction underestimates experi-
rnent near the 6 resonance.

In this paper we attempt to resolve these discrepancies
within the framework of the unitary three-body model
and to get a consistent picture of the NA-NN interac-
tion. We have already performed three-body calcula-
tions for NN scattering and have shown that the pre-
dictions for the inelastic cross sections are in good agree-
rnent with the data. As the two step process
NN ~NA ~~NN dominates the inelastic NN scat ter-
ing, it seems to us that our model adequately reproduces
the magnitude of the NN~NA transition amplitude.
We expand our model space by introducing the ~d chan-
nels in order to evaluate the ~d ~NN cross section
based on the unitary three-body model.

Concerning the NA-NN interaction, there are two ma-
jor different dynamical inputs between our model and
other three-body models:

(i) We have introduced a nonresonant ~N P33 interac-
tion in addition to the ~N~ bare A~~N resonant in-
teraction. The off'-shell behavior of the P33 t matrix
differs considerably from that of the standard 6-isobar
model.

(ii) We have included a backward-propagating pion
which is often neglected in the three-body calculation.

We estimate the effects of these inputs on the
~d~NN cross sections in comparison to different mod-
els. We also compare our three-body calculation with
the perturbative calculation in order to estimate the im-
portance of the multiple-scattering contributions.

Here we comment on the p-meson exchange contribu-
tion to the NA-NN interaction. Brack, Riska, and
Weise calculated the ~d ~NN cross section based on a
perturbation model with pion and p-meson exchanges.
They chose a strong p-nucleon tensor coupling constant
which brought about very large cancellation between the
pion- and p-meson-induced NA-NN tensor interactions.
They found that very hard form factors are required to
reproduce the experimental total cross section (A=1200
MeV/c for ~NN and ~NA vertices and A=1800 MeV/c
for pNN and pNK vertices).

Alternatively, Lee used in his coupled channels cal-
culation a weak p-nucleon tensor coupling constant and
showed that the optimum cutoff for the ~NN, ~NA,
pNN, and pNA vertices is A =650 MeV/c. If one
chooses such a small cutoff momentum, the contribution
of the p-meson exchange to the NA-NN interaction be-
comes almost negligible, because it is a short range in-
teraction in its nature. Moreover, Dmitriev, Sushkov,
and Gaarde analyzed the pp~nA++ reaction based on
a perturbation model and showed that the angular distri-
butions of the cross sections are highly sensitive to the
choice of the cutoff' factors. They concluded that the
mNN and m.NA cutoff momentum should be A =630
MeV/c and the p-exchange contribution to the NA-NN
interaction is very small.

The standard unitary three-body model does not in-

elude the p-meson exchange, because we cannot fix the
parameters of the pNN and pNA vertex interactions by
the two-body ~N scattering data. Though there are
some attempts' '' to supplement the p-exchange NA-
NN interaction to the three-body model, the present pa-
per aims to study to what extent we can understand the
~d~NN reaction in the framework of the ~, N, and 6
dynamics.

The organization of this article is as follows. Section
II gives a brief summary of the unitary three-body equa-
tion as well as the parametrization of the two-body NN
and wN interactions used in our calculation. We then
describe the various choices for the dynamical inputs in
Sec. III and give a series of results for the ~+d~pp re-
action. Finally in Sec. IV, we present a summary of this
work.

II. UNITARY THREE-BODY MODEI.

T&d B&~+ y T&~G~B« (2)

T = yB" (5 +G T ~)G~B~ (3)
a, f3

with a, /3, y=N, b, . Here T are the three-body ampli-
tudes, B the one particle exchange Born amplitudes
(driving terms), and G the propagators of the two-body
subsystem in the presence of a spectator. The index d
refers to the ~(NN) channel where the NN subsystem in-
teracts in the S, - D

&
or any other partial waves. In a

similar manner, N corresponds to the (~N)N channel
with ~N interacting in the P

& &
partial wave, and

represents all other (rrN)N channels. Among the above
three equations it suffices to solve only one integral equa-
tion, Eq. (l). Since d channels are decoupled from N
and 6 channels in this equation, we can reduce the num-
ber of effective coupled channels, thus making the nu-
merical calculations much easier.

For the two-body NN interactions, we retain all the S
and P partial waves, and D& partial waves. We use the
separable representation of the Paris potential
parametrized by Haidenbauer and Plessas. Their non-
relativistic amplitudes are translated into relativistic
ones by the use of the standard method of relativiza-
tion. ' We have tried both of the rank 1 and rank 4
models for the S&- D& interaction, but no significant
difference has been detected. We choose the rank 1

model for simplicity.
For the ~N interactions in the P

~ ] and P33 partial
waves, we take the two-potential models developed in
our previous paper. The interaction Hamiltonian V is
the sum of the resonant interaction Uz and the back-
ground interaction U~,

As mentioned in Sec. I, the Faddeev-Lovelace equa-
tion for the ~NN system was first derived by Afnan and
Thomas. It was then developed by Avishai and Mizu-
tani, Blankleider and Afnan, ' and Rinat and Star-
kand' to include the nonpole part of the ~N P» in-
teraction. We slightly rearrange this equation as

T.f'= y B"+ yB'G'B'& (S„+G~'T"), (l)
y d
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V=U~+U (4)

where E and mp are the ~N total energy and the mass of
the bare particle, respectively. The physical origin of
the background interaction is most probably the crossed
two-pion process, but we prefer to treat it as a purely
phenomenological potential,

va —lux&~2 &v~
I

The transition amplitude is immediately obtained by
solving the ~N scattering equation,

2

r(E)= g I
v, &r,, (E)&ui

I
(7)

with

[r(E) '],) ——k;5; o;, (E—), .

cr,/(E)= &v,
I
Go(E)

I u, & .

The parameters were fitted to reproduce the P» and
P33 phase shifts up to T =400 MeV (in the P,

&
partial

wave, the parameter search was done under the two con-
straints on the physical nucleon mass mz and the physi-
cal m.NN coupling constant f ). Phase shifts were not
enough to fix all the parameters uniquely. We therefore
constructed three parametrizations 3, B, and C, for each
of the P» and P33 interactions. The three models are
characterized by the range of the resonant interaction
U, . Model 3 refers to the dipole form factor
(1+q /A ) with A=1000 MeV/c (A/&2-700
MeV/c if interpreted as a monopole form factor). The
range is very close to the size of the proton. Model B
has the monopole form factor with A=1200 MeV/c.
Such a short range form factor is found, for example, in
the m+p model of Brack, Riska, and Weise. Model C
for the P33 channel corresponds to the conventional 6-
isobar model which lacks for the background interac-
tion Uz. It predicted too small NN~m. NN cross sec-
tions since the cutoff momentum at the ~NA vertex is
very small (A/&2 —366 MeV/c; A for the dipole form
factor). We do not use model C in the present calcula-
tion. The consequence of the soft ~NA form factor will
be investigated in Sec. III C.

The ~N interactions in the small partial waves, S»,

Assuming the existence of a bare particle, the resonant
interaction is parametrized as

2mp

E —m
(10)

where u(q) is the form factor. mL, m, and m' are the
third components of the relative (L), spin (S=—,

' ), and
total (J) angular momentum, while p, p, and p' are
those of the pion, nucleon, and total isospin (I), respec-
tively.

The loop integral cr(E) is explicitly written as

m~q u (q)
o (E)= f dq Go(q;E),2(2') co E

where

E:(q2+m 2 )1/2
q

and

co =(q +m )'

and m z and m are the physical nucleon and pion
masses, respectively. For the ~N propagator Gp, we
choose the Blankenbecler-Sugar type,

2(Eq+co )

G()(q; E)=
E —(E +.~ ) +i@

(12)

The form factor u (q) is parametrized as follows:

u(q)=
N

n =1

2
A„ N=1 or 2.

A„+q
(13)

For the repulsive S», P,3, and P3& waves we set A, =m
while for the attractive S» wave we take A, to be energy
dependent, k = (E —m 0 ) /2m 0, in order to reproduce
the resonancelike feature at high energies. The above
parameters are searched to fit the observed phase shifts
for energies T (400 MeV. We present the results of
the least square fitting in Table I.

Aaron, Teplitz, Amado, and Young pointed out that
the standard three-body model has a problem of lacking
the pion propagation in the backward direction. The
pion exchange propagator G z& appears in the driving
term B ~as

&p'
I

& ~( ~)
I p &

&u
I
q&&p'I G NN(II')

I
p&&q'I u & (14)

S3&, Pi3, and P3&, are parametrized as rank 1 separable
potentials. In momentum space

I
v & is expressed as

& q I

v & =v(q) & 1p —,'p
I
Ip' & &LmL —,'m

I
Jm '

& YL (q),

TABLE I. Parameters for the small mN partial waves.

S
7.9413

10.5108
—4.449 39

A„(MeV/c)

564.268
1513.18
301.949

mo (MeV)

1474.97

1.815 45
2.790 67

649.076
860.901
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where W is the total energy, p and p' are the initial and
final momenta of the spectator nucleon, and q and q' are
the ~N relative momenta written in terms of p, p', and
W. C ~ is the constant factor which accounts for an-
tisymrnetrization. G NN is the sum of the forward and
backward propagators,

&p
1

G NN( W)
l p & =G'.NN(p' p W)+G.NN(p' p W»

(15)

where

10

model A

-&0- ———model B—- —model A

tb 30-

20-

10-

F

(F) Ep +Ep +cc)p+ pG.NN(p p W)=
co + [W —(Ep+Ep +co + . ) +i@] 0

0 500 1000 0
TL(MeV)

500 &000

(16)

For G NN we take one half of the static pion propagator,

G~NN(p', p; W)=-
2cop+ p~

This term ensures that G„~N has the correct static limit
and yet it does not violate the three body unitarity.

FIG. 1. Energy dependence of the NN scattering phase
shifts for the 'D2 and 'F3 channels. The solid and dashed
curves give the predictions of models 3 and B, respectively.
The dash-dot curves represent the results of our previous cal-
culations (model 3), which include only P33 and Pll partial
waves. The data are from the analysis of Ref. 37.

III. RESULTS

With the above two-body NN and ~N t matrices as
inputs, our three-body model reproduces the ~d~NN
cross sections fairly well around the peak of the 6 reso-
nance. However, the calculated cross sections turn out
to be too large at lower energies (T & 50 MeV). In this
region, the total cross sections are seriously deteriorated
by the pion S wave rescattering process. As is seen in
Table I, our cutoff factor for the S3& partial wave con-
tains a very high momentum component (A& ——1513
MeV/c), which leads to the enhancement of the total
cross sections. We will discuss this problem in Sec.
III D. At the first stage of our calculations, we do not
include the ~N S waves.

A. Three-body calculations

We present in Fig. 2 the results for the m+d~pp total
cross sections. The shape and magnitude of the cross
section in the resonance region are fairly well repro-
duced. It is not surprising that the predictions fall
below the data at very low energies as we have neglected
the ~N S wave interactions. Compared with model A,
model B provides better results in the resonance region.
However, this might be fortuitous, since model B overes-
timates the 'D2 inelasticity around the peak energy of
the 7r+d~ pp reaction ( TL —600 MeV), while it underes-
timates the F3.

The differential cross section d o. /d Q for the
m. +d~pp reaction and the analyzing power A o for the
pp~m+d reaction are shown in Figs. 3(a) and (b). The
calculated differential cross sections agree reasonably
well with experiment at energies below the 6 resonance,

We have expanded the model of the previous paper by
including the S, P, and D

&
NN interactions and the P, 3

and P3, ~N interactions. The essential ingredient of this
extension is the inclusion of the nd channel. Mizutani
et ai. and van Faassen and Tjon' have reported that
the effect of the ~d coupling is conspicuous in the NN
scattering inelasticities near the pion production thresh-
old. As is seen in Fig. 1, the model which includes only
P33 and P» partial waves (the original version) underes-
timates the 'D2 inelasticity at Tz &700 MeV. The ex-
tended model almost completely fills this discrepancy.
On the contrary, the ~d coupling does not increase the
F3 inelasticity so much as the 'D

2 ~ This reflects the
'Dz dominance of the ~d~~NN reaction, which is es-
tablished by the experimental partial wave analyses.

The discrepancy of the F3 inelasticity around
Tz =800 MeV is not remedied by the coupling to the ~d
channel. Many other model calculations ' ' ' ' also
failed to reproduce su%cient inelasticity in this wave.
This is one of the important problems yet to be solved.

E10—

Model A

———Model B

No trN S waves

50 100
I

150 200
T„(MeV)

250
I

300 350

FIG. 2. Energy dependence of the total cross section for
~+d~pp. Models 3 and B do not include the S wave ~N in-
teractions. The data are from the compilation of Ref. 42.
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l)t 8O ~eV

145 MeV
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but become too forward peaked at higher energies. Af-
nan and McLeod claim that the S and P wave NN in-
teractions in the ~(NN) channel considerably improve
the shape of the angular distribution. Contrary to their

1 ld not get the curvature of the differentia
all the Scross sections correct, though we have included a t e

and P wave NN interactions. As concerns 3 &, the ca-
culated curves lie high above the experimental points.
The features virtually coincide with the results obtained
by Lamot et a.L I. ' The quantities related to the polariza-
tion are ig y senh hl sensitive to fine details of theoretica
models. There was an attempt to understand Ayp by t e
introduction of short range interaction. Such a direction
may be also relevant to our model.

B. Perturbative calculations

In Fi . 4 the results for the first- and second-ordern ig. e
perturbative calculations are displayed along wi
three-body (full-order) calculation. In these calculations
we have used model A. For the second-order process,
we retain only the P33 rescattering term [diagram (b)].

The direct absorption process [diagram (a)] is strongly
suppressed by kinematics, because the nucleons weakly
bound in the deuteron cannot easily absorb the real pion.
The P33 rescattering dominates the total cross section,
but the interference with the direct absorption gives a
non-neg igi e con1 bl tribution. The interference term in-
creases the total cross section and shifts the peak posi-
tion to lower energy. The gross features of the cross sec-
tion are repro uce yd d b the second-order perturbation
(d t bsorption plus P3, rescattering). The hig er-irec a

-20 Joorder contributions decrease the peak value by — o

d move the peak to further lower energy.an move
In these calculations we have used the o -s 33ff-shell P

and P&& amp i u esP 1 t d s determined by the ~N scattering
data. s men ioned . A ntioned in Sec. I, in the perturbation mo e s

b thethe ~NA and m NN form factors are fixed y e

0.4

0-2

0.4

pe

/
/

(a)
-N

(b)

02

0
-10 -05 0

cos e
0.5 10

FIG. 3. (a) Angular distributions of the ~+d ~pp
differential cross sections at T =80, 145, andand 210 MeV. The
data are from e s.R f 43 —45. (b) Angular distributions of the
analyzing power yo or . iesfor the pp~m+d reaction. The energies
in the figure correspond to the pion kinetic energies for t e in-

verse reaction vr ~pp.+d The data are from Refs. 46 and 47.

50 100 1 50 200 25p 3pp

T„(MeV)
350

FIG. 4. Comparison of the perturbative and the full-order
calculations for the ~+d~pp total cross section. All four
curves refer to model A. The data are the same as in Fig. 2.



2500 H. TANABE AND K. OHTA 36

~+d ~pp total cross sections. Gibbs, Gibson, and
Stephenson found that the monopole form factor with
4=600 MeV/c is optimum to obtain the agreement with
the data.

As we use the two-potential model for P33 and P»
scatterings, the off-shell behavior of the t matrices are
determined by the complicated interplay between the
resonant and background interactions. We therefore
compare our model with the perturbation model in the
form of the half-off-shell function

L

1.0 =

0.5

(a) Pj& E = mN, k = -rn„~ &-(rn /2m~)
mode( A

———rnodeI B

f ( k )
R ( q, k ) k
R(k k) q

(18)

where R is the reaction matrix and k is the on-shell
momentum. In the perturbation model, the half-off-shell
function is reduced to the ratio of the off-shell and on-
shell form factors,

o)
0 500

q (MeV/c)
1500

A kf (q, k)=
+2+q 2

(19)

(perturbation model).
As is seen in Figs. 5(a) and (b), the half-off-shell func-

tions show a striking resemblance among models 3 and
8 and the perturbation model of Gibbs, Gibson, and
Stephenson. It is remarkable that the half-off-shell func-
tion derived from the analyses of the ~N scattering data
can be simulated by the form factor found in the pertur-
bation model. From the figure we also see that the hard-
er form factor (A=1200 MeV/c) in the perturbation
model is incompatible with our model of ~N scatterings.

1.0

0.5

C. Nh-NN interaction

We have seen that the second-order perturbation cal-
culation gives the results which closely approximate the
full-order three-body calculation. In this subsection all
the calculations are done up to second order. The
higher-order contributions are neglected in order to clar-
ify the role of the NA-NN interaction.

First we examine the effect of the backward-pion
propagation [Eq. (17)]. As is seen in Fig. 6, excluding
the backward propagator reduces the peak value of the
total cross section about 60% (compare the solid curve
with the long-dashed curve). Though many of the
three-body calculations neglect the contribution of the
backward-going pion, this term is indispensable in ob-
taining meaningful results for the ~d~NN cross sec-
tion.

Next we study the effects of the off-shell P» and P33
matrices. Figure 6 contains the perturbative calculations
with the same inputs as Lamot et al. ' (the dot-dashed
curve), Afnan and McLeod (the short-dashed curve),
and Blankleider and Afnan' (the dotted curve). All of
the above three models do not include the backward-
propagating pion. We do not show here the results of
the Weizmann Institute' or the Osaka University
group, ' because their models contain the p-meson ex-
change and it is beyond the scope of this article.

The corresponding P» and P33 half-off-shell functions
are shown in Figs. 7(a) and (b). As regards the P. .. the

0
0 500 1000 1500

q(MeV/c)
FIG. 5. Half-off-shell functions for the Pll and P33 partial

waves.

curves of model 3, Mizutani B, and Afnan-McLeod
P6 lie close to each other, whereas the three models
differ largely in the P33 partial wave. Lamot et al.
resort to the conventional 6-isobar model which, as ob-
served in Sec. II, yields a very soft ~NA form factor
(A —300 MeV/c). The use of this form factor strongly
suppresses the NA~NN transition and brings about the
reduction of the ~+d~pp cross section. The calcula-
tion underestimates experiment by a factor of about 4
and is consistent with the results of Lamot et al.

Afnan and McLeod utilize the P33 model of Thomas.
In his model a simple separable parametrization is used
without assuming the existence of a bare A. The form
factor in this model has to be multiplied by a
factor +2', because the normalization factor of the
pion +2' is effectively absorbed into the form factor.
As is seen in Fig. 7(b), the form factor contains a com-
ponent of very short range which is responsible for the
enhancement of the ~+d~pp total cross section. This
effect partially compensates for the lack of the
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E10—

], 0

Pll E = tnN. " =-mtt2(1-(mtt/2mN)2) ~~ j
— model A

———Mizutani B

0. 5

0
0

I

50
I

100
I

150 200
T„(MeV)

I

250 300 350 0
0 O q(MeV/c) 1500

FIG. 6. Model dependence of the second-order perturbative
calculation for the vr+d~pp total cross section. Both the solid
and long-dashed curves adopt model A, but the latter excludes
the contribution of the backward-propagating pion. All the
other three calculations do not include the effect of the
backward-pion propagation. The dash-dot, short-dashed, and
dotted curves refer to the models of Lamot et al. (Ref. 21), Af-
nan and McLeod (Ref. 20), and Blankleider and Afnan (Ref.
16), respectively. 1. 0

P33 E =1232 MeY, k = 227 MeV/c

model A

backward-propagating pion. The three-body calcula-
tions of Afnan and McLeod were successful in reproduc-
ing the experimental cross section at T =256 MeV but
failed at T = 140 MeV. The features qualitatively agree
with our second-order perturbative calculation. It may
be difficult to seek the dynamical origin of such a com-
plicated form factor, as the observed magnetic form fac-
tor of 6 shows a smooth dependence on the momentum
transfer.

Blankleider and Afnan also use the P33 model of Tho-
mas, but there is another factor in their input which
enhances the ~+d~pp cross section. We can see in Fig.
7(a) that the P» half-off-shell function of Blankleider
and Afnan is quite distinct from the other three. We
suppose this is due to the fact that they did not fit the
mNN coupling constant as well as the P» phase shifts at
high energies (T ~250 MeV). For the same reason as
stated before, we have multiplied their form factor by
+2ro~. This factor emphasizes the slow damping of the
form factor in the high momentum region which was al-
ready apparent in their original article (see Fig. 7 of Ref.
16). The three-body calculation of Blankleider and Af-
nan almost completely reproduces the experimental total
cross section and roughly coincides with our perturba-
tive calculation. It appears that if we append the effect
of the backward propagating pion, we will overshoot ex-

,periment.

D. Influence of the mN S waves

Figure 8 shows the results of the three-body calcula-
tions which assess the contributions of the mN S wave.
The model with the S wave overestimates experiment at

0 5

0
0

I t

q(MeV/c)

FIG. 7. Model dependence of the half-off-shell function for
the P, &

and P33 partial waves. The P~& half-off-shell function
of Blankleider-Afnan 808 is normalized to one at q =0 as we
have multiplied their form factor by +2'~.

low energies. We note that a similar observation was
made by Vogelzang, Bakker, and Boersma. " The cause
of the discrepancy is traced back to the anomalous be-
havior of the S3, form factor which we present in Fig. 9
compared with the results obtained by other
groups. ' ' ' We see that all the form factors have a
large bump at q-400 MeV/c. It seems that this bump
contributes to increasing the magnitude of the S» wave
rescattering amplitude.

We have tried to reduce this bump by exploiting a
different parametrization for the S» partial wave, but it
has given no significant improvement. In our opinion,
the problem resides in the separable approximation for
the S wave interactions. As the S wave scatterings are
strongly affected by the short range interaction, we
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FIG. 8. EA'ect of the S wave ~N interactions. The solid
(dashed) curve excludes (includes) the contributions of the ~N
S waves. The data are the same as in Fig, 2.
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should employ more sophisticated parametrization for
these waves.

IV. SUMMARY
0

0
q ()v) eV/c)

We have investigated the NA-NN interaction through
the calculation of the ~d ~NN reaction. We have re-
stricted the NA-NN interaction to the one-pion ex-
change sector. The strength of the pion exchange poten-
tial is controlled by the off-shell amplitudes of the ~N
P33 and P» partial waves and the propagator G „~~.

The contribution of the backward pion propagator
G'zz is found to be very large. If we leave out this
term, the cross section decreases about 60%. One of the
reasons why the traditional three-body models underesti-
mate the experimental cross section is thus explained by
their neglect of the backward-propagating pion.

The off-shell extrapolation of the ~N scattering ampli-
tudes depends on the underlying ~N dynamics one as-
sumes. Lamot et al. employed the standard 6-isobar
model for P33 scattering. As a result, they obtained a
long ranged ~Nb, form factor (A —300 MeV/c), which
leads to the strong suppression of the NA~NN transi-
tion and hence to the reduction of the ~d~NN cross
section.

We have remedied this unfavorable feature by intro-
ducing a nonresonant P33 interaction in addition to the
6 resonant interaction. Combined with the effect of the
backward-propagating pion, we get the cross section in
satisfactory agreement with experiment.

We have also seen that the P33 and P» half-off-shell
functions determined from the ~N scattering data are

FIG. 9. S» form factors normalized to one at q=0. The
form factor of Thomas is multiplied by +2co .

very similar to the form factor found in the perturbation
model (A=600 MeV/c). The above results imply that
the perturbation model, in which the cutoff'was assumed
independently of ~N scattering, acquires a justification
in the three-body model. In this regards it is important
to notice that the higher-order contribution to the total
cross section is proved to be small.

To conclude, we have constructed, in the framework
of the unitary three-body model, the NA-NN transition
potential from the ~NN and ~NA vertex interactions
deduced from the analyses of the two-body zN scatter-
ing data. Based on this model, we have obtained a
unified picture for the aN scattering and the ~d~NN
reaction.
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