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Nucleon electromagnetic form factors from scattering of polarized muons or electrons
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We investigate a new method of extracting nucleon form factors by using measured asymmetries
of polarized leptons scattered off polarized targets. Systematic errors can be eliminated that way,
unlike the conventional analysis via Rosenbluth plots. The kinematics can be chosen such that the
asymmetry receives contributions selectively from either GM(q ) or G~(q )GM(q'). The latter
combination allows a better determination of GM(q') for small q'. We also discuss lepton mass
effects in do. /dA. While such mass effects reduce the suppression of magnetic contributions to
do. /dQ for small q', they do not in general result in a greater sensitivity of do. /dt's or of the lon-
gitudinal asymmetries to a variation of the magnetic form factor, unless one chooses specific kine-
matics, as is demonstrated here. The transverse asymmetry, however, displays naturally a greater
sensitivity to GM(q ) for the muon as compared to the electron. Such experiments are feasible at
both the electron facilities (Bates, CEBAF, MAMI, and ELSA) and the muon facilities (SIN,
TRIUMF, and LAMPF). Constituent models of the nucleon (quark confinement models) em-
phasize the low —q'- region of the form factors, where data presently are still incomplete. This
has implications for the study of the nuclear response function in quasifree scattering (p, p'p) from
nuclei using polarized muons.

I. INTRODUCTION

Recently nucleon form factors have regained much in-
terest, both theoretical and experimental. Proposals for
future electron scattering facihties [Bates, ' CEBAF (Ref.
2)] have emphasized the study of the neutron charge
form factor Gg (q ). In all of these experiments the lep-
ton beam is an electron beam. At the meson factories,
however, the pion beams produce a polarized muon (p)
beam which —as we will demonstrate below —can be used
to remove persistent uncertainties in our knowledge of
nucleon form factors.

The size of the nucleon [measured by the slope of the
charge form factor Gz(q ) near zero] is -0.85 fm,
known only with a large uncertainty ' compared to oth-
er observables like its mass and magnetic moment. The
corresponding neutron charge form factor is poorly
known away from the rather precise thermal neutron on
atomic electron scattering data [at very low four-
momentum transfer squared —q (Ref. 5)]. The magnet-
ic form factors GQ"(q ) are poorly known for very low

q (due to a kinematical suppression —q for a nearly
massless lepton beam) where the charge form factor
G~(q ) dominates [at high q, GM(q ) dominates the
cross section]. Since the deviation of the magnetic form
factor Gst(q ) from its value at q =0 describes both the
charge and spin distribution inside the nucleon, the cor-
responding magnetic rms radius as compared to the
charge rms radius is of interest for the understanding of
the microscopic spin structure of the nucleon. Neither
sign of Gz(q ) nor GM(q ) can be determined by using

the standard technique of analysis via Rosenbluth
plots. '4

The standard dipole fit for Gg(q ) and Gg(q ) pro-
vides an impressive overall description for 0( —q 5 10
(GeV/c) . However, the deviations from this purely
phenomenological fit show up for both small and very
high q . ' The proton rms charge radius obtained from
the dipole fit is (r ) '~ =0.81 fm, whereas the data
prefer a somewhat larger radius for the proton; further-
more, the dipole fit does not describe data well around

—q =(0.3 —0.4) (GeV/c)

For the modeling of the hadrons in terms of their con-
stituents (quarks and gluons) it is important to under-
stand experimentally the charge form factor Gg(q ) in
this region. It has been demonstrated that in chiral
quark models the region —q =0.3 (GeV/c) is the tran-
sition from probing the nucleon as a quasiparticle (a
quark core with a surrounding pion cloud) to probing
just the quark core. Beyond —q =0.4 (GeV/c ) the
lepton beam does not probe the pion cloud any more.
This is the region where perturbative quantum chromo-
dynamics (QCD) starts to become applicable and the
power law behavior 1/q for GE st (q ) emerges
(without, however, explaining the magic number 1/&2
CseV /c in the dipole fit).

We will show that using a muon instead of an electron
beam has two advantages: (i) a highly polarized p, beam
(both longitudinal and transverse polarization are possi-
ble) allows measuring the asymmetry for scattering from
a polarized target, and (ii) one circumvents the kinemati-
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cal q suppression of the magnetic form factor GQ(q )

contribution to the cross section for small —q; this is a
distinctive feature of the muon due to its non-negligible
rest mass.

In the following we present the differential cross sec-
tion for the scattering of massive, polarized leptons from
polarized protons; this is a generalization of the well-
known Rosenbluth formula. The most general case
where all polarizations of leptons and protons are ob-
served will not be considered here (see, for example, Ref.
8). We will sum over the spin polarization of the outgo
&ng lepton and proton; this is presently the only feasible
experimental situation.

II. NUCLEON ELECTROMAGNETIC
FORM FACTORS

Given the conserved nucleon current J„(x), the
relevant form factors are written in the form

where u (p, S) are the nucleon spinors, p and p' are ingo-
ing and outgoing nucleon four-momenta with
p =p' =M, the square of the nucleon mass, S and S'
are the corresponding polarization four-vectors, and
q =(p' —p) is the four-momentum transfer. It is con-P P
venient to introduce the Sachs form factors,

G~(q')=F, (q') —gF, (q'), G M(q')=F, (q')+F, (q'),
where q= —q /4M )0. Since the derivation of the
Rosenbluth formula is standard, we indicate only where
the polarization and lepton mass enter. To lowest order
in the fine structure constant a, knowing the polariza-
tion of the incoming lepton beam alone does not produce
any asymmetry. We consider therefore both a polarized
lepton beam and a polarized target (proton). Let
k =(E,k) and k'=(E', k') be the four-momenta of the
incoming and outgoing leptons; s and s' are the corre-
sponding polarization four-vectors. The lepton and had-
ron tensors are

(N(p', &')
~
J„(0)

~
N(p, &))

F2(q )=u(p', S'), (q )y„+ Io„q u (p, S),2M
(1)

and

k" +m „g+m I+'VAl" =Tr
2m 2m 2

P'+M
P

GM (q') GE(q')—
(p'+p»„

p+M I+y'p G (q') —G~(q')
'Vv M(q )

2M ( 1 )
(P +P)~

where m is the lepton mass, s =(A, /m)(
~

k ~, Ek) and
A, —:k-s=+1 for longitudinal polarization, and s =(O, n)
with k n =0 for transverse polarization, with
k=k/

~

k
~

. In the rest system of the incoming proton
we have 5 =(O, S) and p =(M, O). In the calculations
presented below, a Cartesian coordinate system is chosen
such that z=k, y=k&k ', and x=y Xz.

A. Differential cross sections

is the "no structure" cross section, with

m1—
E2

1/2

1—
E & 2

q 2= 4EE' sin2—
2

m1—
E2

1/2

1—
2

and 0 is the scattering angle between k and k', and

d0
dQ

After standard manipulations we obtain the
differential cross section for the scattering of massive
leptons from protons, '

' ns
d0
dQ and

+2m2 —2EE' & 1—
1/2

m m1— 1—
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where
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For m =0 we have —q /4EE'=sin (8/2), d—:1, and
(do. /dQ)"'R reduces to the well-known Rosenbluth for-
mula. For m =0 the 0 dependent term (for fixed q )
2gGM(q )tan (0/2) serves to disentangle Gz(q ) and
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FIG. 1. Cross sections calculated from Eq. (2) as a function
of laboratory angle, for —q =0.01 and 0.1 (GeV/c) . The
bands (horizontal lines for the electron; vertical lines for the

muon) show the effect of a +10% change in the magnitude of
GM(q ). The lower boundary corresponds to the 10% reduced

GM(q').

GM(q ). This term is very small in the interesting region
of small q, leading to large errors for GM(q ) close to
q =0. According to our Eq. (4) a muon beam would
lead to much less suppression of the G~ term for small
—q, due to (2r) —m /M ) instead of 2g. For a muon
( m „/M) =0.0127 is non-negligible, whereas for the
electron (m, /M) =3X10 is totally negligible. Thus
the magnetic form factor for small —q =0 could in
principle be better determined with a muon beam. Cross
sections calculated from Eq. (2) are shown as a function
of laboratory scattering angle for different q in Fig. 1.
The muon cross section is always higher than that of the
electron, refiecting the fact that, for the same momen-
turn transfer, the muon has a lower kinetic energy. All
of the calculations shown in the figures use the dipole
form factor for the proton, where

FIG. 2. Cross sections as a function of —q for different
scattering angles Oi, b ——30', 90', and 150'. The bands show the
effect of a +10%%uo change in GM(q'); otherwise as in Fig. 1.

GM (q ) =2. 79G~ (q ~)

Figure 1 also shows the effect of a +10% change in the
magnitude of GM(q ) for —q =0.01 and 0. 1 (GeV/c) .
The effect for such a change in Gz(q ) is generally larger
(not shown here).

In Fig. 2 the cross sections are shown as a function of
—q for different scattering angles 0=30, 90, and 150'.
The muon cross section is larger than the electron cross
section and displays roughly the same sensitivity as the
electron to the variation of Gz(q ) (not shown here).
The variation of GM(q ) is shown here only for 0=150';
at smaller angles the variation shows a much smaller
effect. From this variation it is seen that the electron
cross section is more sensitive than the muon cross sec-
tion, in particular for low —q .

B. Longitudinal polarization (A. =+1)

2

G (q)=
0.71 GeV /

—2
dO

dO,

dO

dA

ns
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~E'
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or, equivalently, q-S=O, i.e., the target polarization is
perpendicular to the photon three-momentum q. In this
case (m =0) we find

Note that (S A~~) vanishes identically for S perpendicu-
lar to the scattering plane, independent of the lepton
mass. Also note that the vector multiplying GM is or-
thogonal to that multiplying Gz GM. Thus the two
terms can be easily separated by choosing a suitable tar-
get polarization. The asymmetry due to the presence of
A~~, in Eq. (5a) has been discussed in the limit m =0 in
the literature. "

Let P be the polarization degree of the lepton beam,
i.e., P =Pz —PL, then the asymmetry is given by

da (A. =+1,S) d—cr(A=+1, —S)
der(A, =+1,S)+do.(k=+1, —S)

and it is determined by A~~~, Eq. (5). Of course the same
equation obtains for a constant target polarization with
A. changing from + 1 to —1.' The asymmetry is sensi-
tive to the sign of GzGM, ' whereas the Rosenbluth for-
mula R of Eq. (4) does not allow one to determine the
sign of Gz or GM. It is indeed possible to choose the
orientation of the target polarization such that only the
GzG~ term in A~~, Eq. (5b), contributes to the asym-
metry. For m =0 this is achieved for a specific orienta-
tion of the polarization S relative to the lepton momenta
k, k', namely

k.s =k '.S
k

1/2
O k'=cos
2 k

1/2

1+(k —k') /4kk'sin—2O
2

where k =
i

k /, k'=
[

k'
/

.
Similarly, it is possible to arrange beam orientation

and target polari~atio~ such that the 6~GM term in A~~,

Eq. (5), vanishes and only the G~ term determines the
asymmetry. For the case of m =0, this can be achieved
for

A A A A
k S=k' S

M1+ 1/2
E . O E+M E'
M 2 M E
E'

For m &0, the Gz GM term vanishes if

M
E

k S=k'-S
M
E I

with

m

M
2

M
b

(10)

or, equivalently, q S=
~ q ~, i.e., the target polarization

must be parallel to the photon three-momentum. In this
case (m =0)

E+E' 2O 2 2(1+q )S. A~~
= — &rj(1+g )tan —G~(q

(1+g)S.A~~
———2&g(l+q)tan —G~(q')G~(q') .

2

For m &0, the Gz GM term can be selected in the asym-
metry by requiring that
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in this case (m&0) would imply
[instead of Eq. (10))
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where again k =
~

k
~

and k'=
~

k
~

. For m~0 the kine-
matics have to be chosen such that Eq. (10) holds; then
the asymmetry is only sensitive to G~~(q 2).

C. Transverse polarization (k-n =0)

Note that for m &0 the condition q.S=0 would imply
[instead of Eq. (9)],

do do
dA dA

' ns

(R +S.A~),
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where 0.0
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Note that A~-m vanishes for m ~0, as expected.
Since A~ has a component -n it does not vanish for S
perpendicular to the scattering plane.

For transverse lepton polarization the GM term in Eq.
(12) vanishes if either k'. n=0 or S.q—=0. This can be
achieved for S k=S.k'=0 and S n&0, i.e., for target
polarization perpendicular to the scattering plane. In
this case a nonzero lepton mass m will give a contribu-
tion to the asymmetry
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III. DISCUSSION
—0.2

ngitudinal Asymmetry
-q -0 1 GeV

Calculations were made for various polarization
configurations using the equations presented in Secs. II B
and IIC above. The asymmetry calculation~ presented
below assume beam polarizations and target polariza-
tions of 100%.

Two examples for longitudinal asymmetries for elec-
trons and muons are presented in Fig. 3. In Figs. 3(a)
and 3(b) the target polarization is such that only the GM
term of Eq. (5) exists. For this specific kinematics the
muon asymmetry is more sensitive than the electron
asymmetry to both Gz (not shown) and GM for 0 ~ 50 .

In all other cases the electron asymmetry is more sensi-
tive than the muon asymmetry to both Gz and GM.
Longitudinal asymmetries for target polarization in the z
direction (i.e., along the beam direction) are very similar
to the curves shown in Figs. 3(a) and 3(b) (although, gen-
erally, they have slightly more negative asymmetries).
In Figs. 3(c) and 3(d) the target polarization is chosen
such that only the GzGM term of Eq. (5) exists. The
general shape of the curves changes with a minimum be-
tween 0&,b

——100 and 150, and a vanishing asymmetry at
the backward angle 0=180' [see Fig. 3(c)]. The electron
displays significantly more asymmetry than the muon at
low ( —q ), with the larger asymmetry occurring at large
angles. In each case the electron asymmetry is more
sensitive than the muon asymmetry to both Gz (not
shown) and GM at large angles [see Figs. 3(c) and 3(d)].
Longitudinal asymmetries for target polarizations in the
x direction are very similar to the curves shown in Figs.
3(c) and 3(d) (although, generally with less negative
asymmetries).
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FIG. 3. (a) Longitudinal asymmetry as a function of Ol», for

—q =0. 1 (G-eV/c) . Target polarization and beam axis are
oriented such that the GEGM term in Eq. (5) vanishes identical-
ly; see text. The beam is assumed to be 100% polarized. The
bands correspond to a 10% variation of G~(q'), with the upper

boundary corresponding to the 10%%uo reduced GM(q ) in the
cross section. (b) Longitudinal asymmetry as a function of
—q, for O„b=150', otherwise as in (a). (c),(d) Target polariza-
tion and beam axis are oriented such that the GM term in Eq.
(5) vanishes; otherwise as in (a),(b).
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0.0
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there is a crossover in the 10% curves indicating that
such a change in GM results in a change of the shape of
the q dependence.
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) )~
Q 8 '1'ransvcrse Asymmetry 0.10:

—1.0
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—0.8
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—q (GeV /c )

FIG. 4. (a) Transverse asymmetry as a function of O~,b for
—q =0.02, 0.06, and 0.1 (GeV/c) . The target polarization is
perpendicular to the scattering plane. Otherwise as in Fig.
3(a). (b) As in (a) but now as a function of —q' for O„b ——120'
and 150'. For —q (0.10 (GeV/c) the upper boundary of the
bands corresponds to the 10% reduced G~(q ) in der/dA. In
the region of —q'=0. 10 to 0.15 (GeV/c) there is a crossover
in the +10% curves; see text.

Transverse asymmetries are shown in Fig. 4. In these
calculations, the lepton polarization and the target po-
larization are in the y direction (i.e., out of the scattering
plane). The electron asymmetry is essentially zero be-
cause of its small rest mass. In Fig. 4(a), the transverse
asymmetry is displayed as a function of scattering angle
for —q =0.02 and 0.06 (GeV/c) . Also shown are cal-
culations with G~ changed by +10% (results with Gz
changed by +10% are very similar and are, therefore,
not shown here). There are significant changes at large
angles except for —q =0. 1 (GeV/c) . The reason for
this can be seen in Fig. 4(b) where the transverse asym-
metry is shown as a function of q for scattering angles
of 120' and 150'. In the region of 0.10 to 0.15 (GeV/c),

IV. CONCLUSION

We propose a new method of extracting nucleon form
factors by using measured asymmetries of polarized lep-
tons. Such asymmetries turn out to be sizable, and they
arise from differences in the differential cross sections
do. /dO for polarized lepton scattering from a polarized
target. Expected differential cross sections for the ener-
gy range E ~ 200 MeV are measurable [ ~ 1/10 pb/sr for
—q 50. 1 (GeV/c) at backward angles] at existing fa-
cilities. Systematic errors can be eliminated to a large
extent in the asymmetries, which is not so easy for the
conventional analysis via Rosenbluth plots. Moreover,
the kinematics can be chosen such that the asymmetry
receives contributions selectively from either GM(q ) or
Gz(q )G~(q ). The latter combination allows a better
determination of G~(q') for small q . We have also dis-
cussed lepton mass effects in do. /dQ. While such mass
effects reduce the suppression of magnetic contributions
to do. /d 0 for small q, they do not in general result in a
greater sensitivity of d o. /d 0 or of the longitudinal
asymmetries to a variation of the magnetic form factor
[unless one chooses specific kinematics as in Figs. 3(a)
and 3(b)]. The transverse asymmetry, however, displays
naturally a greater sensitivity to G~(q ) for the muon as
compared to the electron. Such experiments are feasible
at both the electron facilities (Bates, CEBAF, MAMI,
ELSA) and the muon facilities (SIN, TRIUMF, and
LAMPF). Such experiments with muon beams also pro-
vide another test of the p-e universality hypothesis.
Constituent models of the nucleon (quark confinement
models) emphasize the low-q region of the form factors,
where data presently are still incomplete. Finally, we
note an extension of these ideas to quasifree scattering
(p, p'p) from nuclei using polarized muons. Without us-
ing polarized targets one can compare the transverse and
longitudinal components by measuring p'p correlations
out of the p'-beam plane and thus study a nuclear
response function unavailable to electrons.
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