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The electromagnetic vertex for an off-shell nucleon is investigated. To get an idea of the magni-

tude of the off-shell variation, which is usually neglected, a one-pion loop model is used. For sim-

plicity, only the half-off-shell case is considered. Variations up to 10% relative to the on-shell case
are found in the form factors for kinematics occurring in intermediate energy reactions. The rnag-

nitude of the off-shell effects is also investigated within a commonly used recipe for the electron-
bound nucleon cross section and found to be of comparable size.

I. INTRODUCTION

Electron scattering has been one of the most impor-
tant and accurate tools for nuclear structure research.
The main reason is that the electromagnetic interaction
of the electron is well known and can be used for precise
studies of the nuclear structure. The standard theoreti-
cal approach to analyze the data has been to assume that
the current operator for the nucleus is the sum of the
free nucleon operators. In contrast, many recent investi-
gations have focused on the following question: How
well do we actually know the interaction of an electron
with a bound nucleon? A good example are the (e,e'p)
coincidence experiments' in the quasifree knockout re-
gion. The purpose of these measurements is to search
for deviations of the electron-bound nucleon interaction
from that of a free nucleon. A variety of mechanisms
has been proposed which yield such medium
modifications of the electromagnetic interaction, for ex-
ample, relativistic effects on the nucleon spinors due to
scalar and vector meson exchanges or a "swelling" of
the nucleons, typically in the order of 10%. Inter-
pretations of the latter type are thought to be connected
with explanations of the European Muon Collaboration
(EMC) data through changes in the quark distribution of
a bound nucleon. '

A problem in these studies is that a reference point is
needed that allows one to uniquely identify such genuine
medium effects. This cannot be done on the basis of the
free nucleon current: The relation between energy and
momentum for a bound "off-shell" nucleon simply
makes it impossible to relate its electromagnetic current
to that of a free nucleon in a model-independent way.
Nevertheless, several recipes exist, "' and differences
among them can be large. However, one class of re-
cipes, " where current conservation is imposed at the
vertex, yields only small differences in the off-shell be-
havior. All the prescriptions are based on the assump-
tion that the current is characterized by two form fac-
tors which depend only on the four-momentum of the
virtual photon. But in general, the electromagnetic ver-
tex for an off-shell nucleon involves more form factors,

which depend on, in addition to the square of photon
momentum, other scalar variables. To obtain this gen-
eral vertex, one needs a dynamical model that describes
the electromagnetic structure of the nucleon. Con-
straints for realistic models are, for example, the ob-
served electric and magnetic form factors of the free nu-
cleon. A meaningful investigation of possible medium
modifications of individual nucleons such as the recently
discussed "swollen nucleons" cannot be done without
knowing the full electromagnetic vertex of the off-shell
nucleon.

In this paper, we want to study the general structure
of the off-shell vertex in a simple field theoretical model
which is certainly sufhcient for a qualitative discussion.
We believe that the model is also realistic enough to give
the right order of magnitude of effects involved in the
analysis of (e,e') and (e,e'p) experiments.

The general form of the electromagnetic vertex of an
off-shell Dirac particle was already given over twenty
years ago by Bincer, ' who discussed the use of disper-
sion relations to obtain the electromagnetic structure of
a single nucleon. This formalism was subsequently ap-
plied by Drell and Pagels' to compute the anomalous
magnetic moment of electron, muon, and nucleon. The
only application of this approach to a reaction was by
Nyman, ' who calculated the cross section for proton-
proton bremsstrahlung. The poor description of the
data was ascribed by Nyman to assumptions made in the
dispersion approach. Since then, the problem of the
electromagnetic current of an off-shell nucleon in its gen-
eral form has to our knowledge not been addressed
again. We think that, in light of the recent investiga-
tions of the electron-bound nucleon cross section, it is
important to look into this problem in more detail.

In Sec. II, we discuss the electromagnetic vertex of an
off-shell nucleon and describe the one-pion loop model
which we use for our calculations. Results for the form
factors and examples of their dependence on the kine-
matic variables are given in Sec. III; in the framework of
the model we also examine the modifications of the off-
shell electron-nucleon cross section obtained from a
commonly used recipe. A summary and conclusions are
presented in Sec. IV.
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II. THE ELECTROMAGNETIC VERTEX

A. General formalism

We start with the most general form for the photon-
nucleon vertex. Using the form of Bincer' (but the no-
tation of Bjorken and Drell' ), we have

I = g (y.p')J(y„A~& +io q'A~z" +q„AJ&" )(y.p)
j, k =0, 1

(a) (b) (c)

The kinematics are defined in Fig. 1. The 12 functions
depend on the three scalar variables at the vertex,

e.g. , q, and W' =p', and W—:p . (We omit isospin
labels. ) To keep the discussion simple, we will focus
here only on particular linear combinations of these 3,
that occur in the case when the final nucleon is on shell,

u (p', s')(p'. y —M ) =0,
(2)

p' =M
In that case, the half-oft-shell vertex operator can be
written as

FIG. 1. Types of Feynman diagrams for the photon-nucleon
vertex to order g .

u (p', s')I „=eu (p', s')
l CT l C7

y+I+'+
2M

q'f2+'+q„f3', + y+I '+
2M

q"f2 '+q„f, ' & (3)

where f,' —'=f,' —llq, W, M). We define W&0. The projection operators A+ are defined as

A+ =(+p y+ W)/2W,
and satisfy

A++A =1,
A+ ——A+ .

(4a)

(4b)

(4c)

In the on-shell case, W =M, these operators are the usual projections on the free positive and negative energy states.
This type of half-off-shell vertex, Eq. (3), occurs, for example, in the (e,e'N) reaction when the initial nucleon is taken
as bound (off shell) and the knocked-out nucleon is assumed to be in a plane wave (on-shell) state. Such an assump-
tion is made in several of the theoretical treatments of nucleon knockout and inclusive electron scattering. " We use it
here only to keep the discussion brief. For the main points we want to illustrate, this simpler version, Eq. (3), is
sufficient.

We can further reduce the number of invariant functions by using the Ward-Takahashi identity, i.e., by requiring
gauge invariance,

(p' —p )„IP„„(p',p ) =S' (p') ' —S' (p )

Here I"";„ is the irreducible photon-nucleon vertex and SF' the full nucleon propagator. For the half-off-shell case
above, we can relate the irreducible vertex to the (reducible) vertex in Eq. (3) by

u(p', ')I "(p',p)=u(p', s')I „„(p',p)S'(p)S '(p),
with SF(p) the bare propagator. From Eq. (3) we obtain a separate relation for the functions multiplying the projec-
tion operators A+,

2
' —'=e (+j

+W —M

where eN is the nucleon charge in units of
~

e
~

.
Using Eqs. (4) and (7), we can write Eq. (3) as

u(p', s') „=eu(p', s') y„eN+ f3+'+~ q'f 2+ +q„f32M

+ Vp eN W' M f ' '2M'f '+"f' '

W+M
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The usual form factors, F, and F2, that occur in the on-shell vertex for a free nucleon,

0pvu(p', s')I „u(p, s)=eu(p', s') y„F, (q )+i " q'F2(q ) u(p, s),
2M (9)

are related to the quantities in Eq. (8) through

F, (q )=eN+q f3 '(q, W, M)aw W=M
(10)

In the situation where the final nucleon is on shell, we are dealing with four invariant functions, which are depending
on q and W. This is in contrast to the free case, Eq. {9),where two functions occur which depend only on q .

We would like to stress that questions concerning the off-shell behavior of the electromagnetic vertex of the nucleon
already play a role in Compton scattering on a free nucleon. Since the intermediate nucleon is necessarily off' shell, a
vertex of the type in Eq. (3) is involved. For example, the vertex for emitting a real photon k' is

lO ltd vu(p', s')I „=eu(p', s') y„eN — " k "f2+'(0, W, M) A++ y„eN — " k "f
q '(0, W, M) A (12)

For this vertex, one needs a model to extend the form factor F2(q ), Eq. (11), off' the mass shell to f I2+'(0, W, M).
Furthermore, the form factor f iz ', which only occurs in the propagation of the A components of the intermediate
nucleon, must be known. Therefore, Compton scattering provides a test for dynamical models of the nucleon's elec-
tromagnetic structure that goes beyond testing on-shell nucleon properties.

B. A simple model

To evaluate the form factors f ', we use a w—ell-known field theoretical model. It consists of a pion and nucleon
field coupled through the pseudoscalar interaction

L ~NN ——lg Q] 5

with

(13)

=14.3 .4'
We couple the electromagnetic field in the (isospin-dependent) minimal way, which ensures gauge invariance. This
model is known to be renormalizable. As in earlier applications, ' we calculate the electromagnetic vertex up to order
eg . Feynman diagrams of this order are shown in Fig. 1. Diagram (e) is known not to contribute. ' The terms
represented by diagrams (a) and (d) only contribute for the proton vertex. The diagrams we have to evaluate are two
irreducible vertex corrections, (b) and (c), and a nucleon self-energy needed for (d). The one-loop integrals in these di-
agrams are divergent and we have to renormalize. We use the dimensional regularization method and have to evalu-
ate the following expressions for the vertex corrections:

u(p')I „(p',p n)= (2nMO) "u(p') f d k " " '
z 2 y(2') (k —2k p'+i c)(k —p +i c)[(k —q ) —

~M +i c]
—2eg 4 k kpu(p')I „'(p', p, n)= (2~M0)" "u(p') f d„k 2, 2 2 ~ 2 . 1' 7„'Y(2~) (k —2k p'+ic)(k —p +ic)[(p —k) M+i c]—

(14a)

k
J " 2 2 2 ~ 2 2(k —2k p'+i c)(k —p +i c )[(p k) —M +i c—]

Xy y„(M —@pe~) . . (14b)

The self-energy is given by

S—n
k

iX(p n)—= (2vrMO) " d k
~ y(2~) "

(k —M +ic)[(k p) @+ic]— —

M
dnk

{k —M +ic)[(k —p) —i' +ic]2 2
(15)
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s v

and for a proton

(16a)

Mo is an arbitrary reference mass needed to ensure that
the expressions are of the right dimensions when n&4.
Of course, the final result does not depend on this mass.
We use the standard Feynman identities to combine the
propagators appearing in Eqs. (14) and (15). The result-
ing denominator for each diagram is then free of poles
for spacelike photons and p = 8 (M, which ensures
that the pion remains virtual (off shell).

The isospin structure of the vertex is such that the
contributions from the diagrams for the irreducible ver-
tex are for a neutron

scribed by a plane wave. This expression is given in Eq.
(8). For simplicity, we only present examples for a pro-
ton.

We start with the form factors f, ', which are con-
strained to go to 1 as q ~0. Figure 2 shows f,+', as a
function of Q = —q and for several off-shell situations
of the initial nucleon, characterized by 8 &M. As a
reference curve, we also show the free form factor F,
predicted by the model. The Q dependence is not
changed significantly as one goes off shell. For a given

Q the magnitude of the form factor increases as one
goes further off shell. At Q =10 fm, the increase
from 8'=M to 8'=700 MeV is about 8%. Since for a
bound nucleon

P P P 7 P (16b) 8' =(M E~) ——p

The divergences for the neutron case, Eq. (16a), cancel
as is necessary. For the proton this cancellation does
not occur and the charge is renormalized. Finally, the
divergent part of the self-energy is canceled by a mass
counterterm. As in all applications, we adopt the choice
that the renormalized charge and mass parameters have
the physical values. The two-dimensional integrals over
the Feynman parameters are evaluated numerically. As
mentioned above, the model is gauge invariant. There-
fore, it is a check of the whole calculation that one
indeed obtains only four linearly independent functions
for the vertex as in Eq. (8). Another test is that the form
factors, f i (q, JY,M), vanish for q =0 for the neutron.

To assess how "realistic" this model is, we compare
some properties of the predicted on-shell form factors,
defined in Eqs. (10) and (11), with the experimental
values. For any gauge invariant model the "Dirac"
form factor, Fi(q ), at q =0 is determined by the nu-
cleon charge, i.e., Fii(0) =1 and F", (0)=0. For the rms
radius, obtained from the slope of F, (q ) near the pho-
ton point q =0, we obtain (r )'~ =0.55 fm, while the

P
2observed value is 0.8 fm. The Pauli form factor, Fz(q ),

yields at q =0 the anomalous magnetic moment of the
nucleon. For the proton, we obtain Ft(0)=a~=0. 51
compared to an experimental value of Kp 1 79 The
predicted rms radius for F( is (r„)'~ =0.58 fm, while
the data yield 0.85 fm. The anomalous magnetic mo-
ment of the neutron obtained from the model is
~„=—3.7, while the experimental value is ~„=—1.91.

Clearly, this simple model only provides a qualitative
description ' of the observed nucleon properties. This is
sufficient for the purpose of our paper where we only
focus on relative off-shell effects within the model. We
expect that the order of magnitude of the effects we ob-
tain below will be the same in a more realistic model.

one can go off shell by increasing the separation energy,
E&, or the initial momentum p. The curve 8'=700
MeV corresponds to already a rather extreme situation:
For a binding of 60 MeV, the initial nucleon momentum
is 532 MeV/c, about twice the Fermi momentum. Fig-
ure 3 shows f'i ', which is of about the same order of
magnitude over the range of four-momenta considered
here. The off'-shell variation of f i

' is much stronger
than for f'i+'. In both cases, we see that by going off
shell the slope of the form factor decreases, correspond-
ing to a smaller rms radius.

Figures 4 and 5 show the form factors f z
—). When

going off shell to W=700 MeV, the form factor f'z+ in-

creases by about 10%,' in contrast, f z
' decreases by

30%. While f'i was subject to the gauge constraint

f i
'(0, W, M) = 1, there is no such condition for

f (z
—' (0, 8;M ). We therefore already see an off-shell

effect of f z~' at the photon point. The off-shell variation
for f z

' at q =0 is much larger than that of f (z+).

The form factors f, ), which are absent in the on-
shell case, are of a similar magnitude as the f, +' form

0.8—

0.7—
III. RESULTS

A. The oft'-shell vertex 0.6
I I

10 12 Q (fm )

We now discuss results for the electromagnetic vertex
of a nucleon where the initial nucleon is bound and the
final nucleon is on shell. This situation is encountered in
(e,e'p) calculations, where the knocked out nucleon is de-

FIG. 2. The form factor fI~'(q, W, M) defined in Eq. (7) as
a function of Q = —q . Solid curve, W=M; dashed, W=800
MeV; dot-dashed, W =700 MeV.
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FIG. 3. The form factor f, (q', W, M), defined in Eq. (7).

Labeling as in Fig. 2.
I I I I I I I I I I I

2 4 6 8 10 12 Q (fm )

factors. How much the f + ' and f will contribute to
a physical amplitude if the initial nucleon is off shell de-
pends, of course, on the dynamics of the system, i.e., the
A+ and A components of the initial nucleon wave
function.

A linear combination of the Dirac and Pauli form fac-
tors, F, and Fz, that is used most commonly are the
electric and magnetic Sachs form factors GE and GM, re-
spectively. We extend their definition also to the half-
off-shell case,

2

G —'(q W M)=f '(q W M)—+ f —'(q W;M),

(17a)

G~ '(q, W, M—) =f I&

—'(q, W, M)+ f2+ '(q, W, M) . (1—7b)

In several recent experiments, there were attempts to
extract the deviation of these form factors for a bound
nucleon from the free form factors due to medium

0.6

0.3

0.2
I I I I I I I I I I I I

2 4 6 8 10 12 g(fmj
FIG. 4. The form factor f,+'(q, W, M), defined in Eq. (3).

Labeling as in Fig. 2.

FIG. 5. The form factor

fthm

~(q', W, M), defined in Eq. (3).
Labeling as in Fig. 2.

modifications. Figure 6 shows our results for the off-
shell to on-shell ratio for Gz+' and GM+'. Except in the
vicinity of Q =0, the ratios increase for increasing Q
over the range considered here. However, the curve
with 8'=900 MeV, which is the least off shell, can be
seen to start to decrease again. Figure 6 shows that the
increase of the ratio is larger for GM than for Gz. In an
(e,e'p) experiment' investigating the bound proton elec-
tromagnetic interaction, the ratio G~ /GE was investi-
gated for Q up to 6.5 fm . This ratio is shown in Fig.
7 for our model. The off-shell variation is rather small
and amounts to not more than 3% over the Q range
considered; this is smaller than the variation in the form
factors separately. It is much less than the size of the
medium eff'ects (22%) reported in Ref. 1.

B. Cross sections

To calculate a cross section (or an amplitude) for an
electromagnetic nuclear reaction, we must besides the
vertex also know both initial and final nuclear wave
functions. These wave functions determine how far a
nucleon is off shell or, for example, how important the
A components of the vertex are. The many-body dy-
namics which yields the wave functions also will give
rise to medium modifications of the electromagnetic in-
teraction beyond the single nucleon off-shell effects dis-
cussed here. Such a complete treatment, which depends
on details of the nuclear dynamics, is beyond the scope
of this paper. We therefore conclude this section by
looking only at off-shell effects in the electron-bound nu-
cleon cross section obtained from a commonly used re-
cipe. This is the prescription of De Forest, " who evalu-
ates electromagnetic vertex operators between free nu-
cleon spinors (determined by the three-momentum). For
an initially bound nucleon, this necessarily leads to a
violation of current conservation. The recipe to restore
current conservation is to use a longitudinal current ma-
trix element obtained via the continuity equation rather
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G, (0,W, M)
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FIG. 8. The relative oA-shell cross section defined in the
text for scattering of 320 MeV electrons at q ~

=2.3 fm
The angle between q and p is y. Solid curve, o.„z,' dashed,
without form factors f;;dot-dashed, full calculation.

1.10 (b)

1.08—

1.06—

1.04—

1.02—

I I I I I I I I I I

2 4 6 8 10 12

FIG. 6. (a) The ratio Gz+'(q, W, M)/Gz+'(q, M, M) as a
function of Q = —q . Solid curve, W=900 MeV; dashed, 800
MeV; dot-dashed, W =700 Me V. (b) The ratio
GM+'(q, W, M )/GM+'(q, M, M). Labeling as in (a).

G„

(+)

GE

1.54

1.52

1.50

1.48

1.46

I I I I I I I I I I I I

2 4 6 8 10 12

FIG. 7. The ratio G,~+'(q, W, M)/G~(q, W, M) as a func-
tion of Q = —q . Solid curve, W=M; dashed, W'=800 MeV;
dot-dashed, W=700 MeV.

than calculating it from the operator with the free spi-
nors. With these matrix elements the cross section for a
nucleon, tr„(cc denotes current conservation), is then
calculated in the standard way. While this popular re-
cipe contains no further input from nuclear dynamics,
we use it here with our vertex operator to test its sensi-
tivity to off'-shell variations.

We have calculated the same kinematical situations
considered in Ref. 11, but discuss only one typical exam-
ple. Figure 8 shows the cross sections for a nucleon
with initial momentum p and for a given separation en-
ergy, Ez ——60 MeV. The final nucleon is treated as free,
has a momentum of

~

p'
~

=2.3 fm ', and is assumed to
be in the electron scattering plane. Varying

~ p ~

away
from

~ p =0 corresponds to going further off shell.
Our reference curve is the cross section based on the free
current in Eq. (9). It corresponds to the cross section
o.„2 of de Forest, but with the free form factors F, and
Fz obtained from our model. All curves in the figure
are normalized such that o„2——l at

~ p =0. The cross
section resulting from the full vertex I „, Eq. (8), is

larger. This is not surprising in view of the behavior of
the form factors discussed above. The relative increase
is smallest for

~ p ~

=0 (about 2%) and increases to 8%
at

~ p ~

=3 fm '. Figure 8 also shows that the contribu-
tion from the form factors f, is not negligible for
y & —40', even though free spinors are used. (Note that
for W =M one has A u =0.) However, if one uses the
free operator structure of Eq. (9), but with the form fac-
tors f 't+' and f 'z+' instead of F, and F2, one reproduces
the result of the full calculation within 3%. This sug-
gests that —for the kinematics considered here —one
might neglect the A part and use A+~ l in Eq. (8)
when working with this recipe.

IV. SUMMARY AND CONCLUSION

For interpretation of the electromagnetic reactions on
nuclei and in some cases also on free nucleons (e.g. ,
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Compton scattering and pion photoproduction) one must
know the photon off-shell nucleon vertex. To obtain this
off-shell operator, including the form factors, it is neces-
sary to have a microscopic dynamical model for the
structure of the nucleon. We have for our qualitative
study of the vertex chosen a renormalizable one pion
loop model with pseudoscalar coupling. While this only
yields rough agreement with the on-shell nucleon observ-
ables, we believe that this model is sufficient to study
sizes of the off-shell variations. To keep the discussion
simple, we only consider the case where one of the nu-
cleons is on shell. This is an assumption often made in,
e.g. , calculations of quasifree electron scattering. The
requirement of gauge invariance then further reduces the
number of independent vertex functions to four, in con-
trast to the on-shell case when there are only two.
Furthermore, these half-off-shell form factors depend on,
in addition to Q, another scalar variable, W, the invari-
ant mass of the off-shell nucleon. (This is in contrast to,
for example, the "swollen nucleon" radius, which is a
fixed property of a nucleon in a given nucleus. )

The order of magnitude of the form factors f,I+',
i =1,2, which in the on-shell limit go to the Dirac and
Pauli form factors, and the form factors f ', i =1,2, is
comparable. For all four form factors, the Q depen-
dence is not changed significantly as one goes off shell.
However, the variation as one goes from on-shell
( W =M) to off-shell situations that occur in intermedi-
ate energy nuclear reactions can be considerable. For
example, for W=700 MeV and Q = 10 fm, one form
factor varies up to 30%. In almost all cases considered,
going off shell increased the magnitude of the form fac-
tors. We have also examined the off-shell behavior of
the ratio of form factors GM /GE, which has been stud-
ied recently with the (e,e'p) reaction. We found this ra-
tio to be rather insensitive to off-shell effects. This indi-
cates that in this case such effects are not likely to be re-
sponsible for the reported medium modification of the
virtual photon-proton coupling in nuclei.

As an application of our half-off-shell form factors, we
calculated the e-N cross section for a bound nucleon in
the framework of a commonly used recipe, which makes
simplifying assumptions about the nucleon wave func-
tions and current structure. For our kinematics, we
found that when our off-shell effects are included in this
prescription, the cross section increases by up to S%%uo.

We would like to stress again that the above recipe does
not involve any nuclear dynamics. To get a better esti-
mate of how large the off-shell effects in a nuclear reac-
tion really are, one has to use correct (relativistic) nu-
clear wave functions. The usually neglected contribution
of the f,' ', i =1,2, form factors in the vertex depends
crucially on the wave function. If one goes b'eyond the
one-nucleon treatment, the nuclear many-body dynamics
will not only yield the nuclear wave functions and
many-body electromagnetic currents, but also consistent-
ly determine the photon-bound nucleon vertex.

We believe that our discussion in the simple one-pion
loop model has indicated the order of magnitude of the
off-shell effects. For a nucleon sufficiently far off shell,
the size of these effects can be considerable, for example,
comparable to the more exotic medium modifications of
the nucleon form factors used to explain recent (e,e') and
(e,e'p) data. Therefore they should in general be incor-
porated in precise studies of electromagnetic reactions
where a nucleon off its mass shell is involved.
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