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A model employing quark dynamics is applied to the rr +pp~pn reaction. Quark effects can
provide a substantial contribution to the total absorption cross section, and qualitatively reproduce
the measured angular distributions.

I. INTRODUCTION

A pion can lose all of its energy and excite various
final states containing no real pion in its interaction with
a nucleus. Such a process is called a pion absorption re-
action. Understanding pion absorption requires knowl-
edge of some of the best kept secrets of nuclear dynam-
ics: the short ranged part of the baryon-baryon interac-
tion. One important question is whether quark degrees
of freedom are required. The dependence on small sepa-
rations arises because pion absorption on a single free
nucleon leading to an on-shell nucleon is forbidden by
the laws of conservation of energy and momentum.
Furthermore, the process as measured at meson facilities
such as The Swiss Institute for Nuclear Research (SIN),
the Clinton P. Anderson Meson Physics Facility,
(LAMPF), and TRIUMF requires a momentum transfer
greater than about 2 fm ' that corresponds to rather
small distances between nucleons. See, for example, the
recent review by Ashery and Schiffer. '

The best studied (both experimentally and theoretical-
ly) of these absorption reactions is w+d=pp at pion en-
ergies in the vicinity of the (3,3) resonance. In that case
a conventional approach employing the diagrams of Fig.
1(a) and higher order terms, e.g. , Fig. 1(b) works reason-
ably well. This is because the pionic coupling to the
(3,3) resonance is strong enough to mask the uncertain-
ties in treating the exchanged virtual meson.

The different process of w absorption on a pair of
bound protons may not occur through the conventional
nuclear dynamical process and, therefore, may be a
reasonable candidate to have a quark model description.
The cross section for this process may be determined
from ~ absorption on He by measuring an outgoing
proton and neutron in coincidence. ' As indicated in
Fig. 1(c), the conservation of angular momentum, parity,
and isospin forbids the formation of an intermediate AN
state by the absorption of a p-wave pion. The initial pp
system is mainly in a So state with isospin T = 1. Thus
the total angular momentum and parity is J"=1+,if the
pion is in a p-wave. Then the final pn state can have
quantum numbers S

&
or D &, so T =0. The AN state

can have only T = 1 or 2, so the formation of an inter-

mediate bN state is not allowed. (In the rr+ absorption
reaction the isospin of the initial state is T =1. Since
the usually dominant term is very much suppressed,
one may be free to search for more exotic explanations).

Let us begin with a review of previous calculations.
These are based on the standard meson-baryon ap-
proach. Several authors have asserted that these compu-
tations supply terms that are too small to explain ~ ab-
sorption on a bound pair of protons. The statement
seems to be correct, if one treats each theoretical idea
separately. For example, Moinester et al. show that
the cross sections computed by Toki and Sarafian' are
too small, but only by about a factor of 2.

Lee and Ohta, apparently using the same basic dy-
namics [Fig.1(a)] and including higher order eff'ects [e.g. ,
Fig. 1(b)] absent in Ref. 5 obtained very small cross sec-
tions. The difference with Ref. 5 arises from the
inffuence of the crossed-pion diagram of Fig. 1(d), in-
cluded by Toki and Sarafian, but absent in Ref. 6. The
intermediate state has two pions, so the selection rule
suppression seen in connection with Fig. 1(c) does not
apply. The importance of terms like Fig. 1(d) has been
raised in connection with the related continuum reaction
pn~ppvr by Hwang and Cao.

Another possibility is to include the influence of nu-
cleon excitations as in Fig. 1(e). As shown in Ref. 8,
this mechanism also leads to almost half of the cross sec-
tion. The angular distribution is flatter than the data.

The recent work of Maxwell and Cheung must also
be mentioned. These authors include terms with inter-
mediate nucleon states, as e.g. , in Fig. 1(f) and obtain
cross sections for pion absorption on the pp pair that are
very much larger than measured ones. This could be be-
cause some nucleon-nucleon final state interactions are
neglected, and the pion-nucleon vertex function is treat-
ed in a static approximation.

Given the current uncertainty in applying the conven-
tional meson-baryon picture to the ~ +pp~pn reac-
tion, it seems reasonable to study how quark interactions
can be used to calculate the cross section. That is the
purpose of this paper. A model' '" in which one uses
baryonic (NN, hN, etc. ) degrees of freedom for large
separations (r greater than a parameter ro) and six-quark
bags to represent the short distance (r & ro) wave func-
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FICx. 1. Conventional mechanisms for vr absorption reac-

tions.

tion is employed at energies below that of the (3,3) reso-
nance. Only the short distance quark contributions are
included here, even though a careful calculation includ-
ing all of the different conventional mechanisms of Fig. 1

might reproduce the essential features of the data. The
motivation is that, for pion absorption, the biggest con-
tributions of the terms of Fig. 1 occur for small distances
between the baryons. But it is those very same contribu-
tions that are eliminated and replaced by quark contri-
butions, if one employs the quark-baryon hybrid ap-
proach of Refs. 10—13. Thus it may be that a complete
calculation would lead to quark dominance of this pro-
cess. For this reason it is appropriate to compare our
quark-only results with data at this early stage. Further-
more, as discussed above, there is a large diversity of
opinion regarding the selection of the most important
conventional mechanisms. In any case, it should be
clear that a thorough understanding of the absorption
process can only come about from a more complete in-
vestigation than is presented here. Polarization mea-
surements will also be required. '

It is necessary to mention some of the limitations and
restrictions of the present calculation. First, only s and

p wave pions are included. Hence the present work is
limited to energies below the (3,3) resonance, where d-
wave effects are expected to be small. ' It is also true
that our numerical results are sensitive to the nucleon-
nucleon potential employed to compute six-quark proba-
bilities, and to the choice of nucleon-nucleon phase
shifts, see below. Other causes for concern are the use
of the nonrelativistic quark model, and that the magni-
tudes of the predicted total cross sections depend strong-
ly on ro. The results are that quark effects can account
for a substantial fraction of the observed total cross sec-
tions and qualitatively reproduce the shape of the angu-
lar distributions. The present results and conclusions

update those of a preliminary report. '

The outline of the remainder of this paper is as fol-
lows. The salient features of the model' ' are dis-
cussed briefly in Sec. II. This model is applied to the
computation of the quark contributions to the amplitude
for the ~-pp absorption process in Sec. III. That section
also includes formulae for the angular distributions and
polarization observables. Comparison with data and
predictions are presented in Sec. IV. Section V is
reserved for a few summary remarks.

II. BUILDING THE NUCLEUS FROM NUCLEONS,
MESONS, AND SIX-QUARK BAGS

We examine those nuclear reactions and properties
that are not due to the influence of single nucleons. If a
process requires two nucleons to be close together, the
explicit quark degrees of freedom might be important.
To concentrate on such quark aspects, it is worthwhile
to consider many different processes, since a single reac-
tion would not be expected to provide definitive informa-
tion. Thus one needs a versatile procedure. Further-
more, it is desirable to employ an approach that avoids
the difficulties of constructing the individual nucleons
and their motion in the nuclear shell model potential
completely from quantum chromodynamics (QCD).

We start with the idea that the conventional baryon-
rneson treatment is a good description of the long range
aspects. In particular, consider two nucleons bound in a
nucleus. At large separations one employs QNN(r), the
conventional nucleon-nucleon wave function. Here r is
the distance between the nucleons, which are treated as
having no size. How might the composite nature of the
nucleon modify pNN? Here we apply standard coupled
channel methods. Suppose that the nucleons are sizable
objects of three quarks. At large separations the nu-
cleons do not touch and quarks and gluons are not ex-
changed. Next, imagine that the nucleons overlap. In
that case, effects such as gluon exchanges and the
influence of the quark-quark Pauli principle enter. If the
volume of the overlapping region is small, one may ex-
pect that the system mainly consists of two nucleons, but
with a modified wave function, itjNN ( =pNN for large r).
But when the nucleons are very close, states that are not
products of two nucleon internal wave functions may be
formed. In that case, there is another component of the
full wave function, that is orthogonal to itNN. Call this
new piece the six-quark wave function 46 . Then one
may write

ANN+ @6q

One way to ensure that itrNN and 4&6 are orthogonal is
to let +6 also be a color-singlet product of two three-

6q

quark objects, each of which carries color. With this
definition, Eq. (l) is a useful separation, because opera-
tors that do not depend on color, such as those used in
photon or pion absorption, have no matrix elements that
connect the two components. (The nucleon cannot be
converted to a nonsinglet color component by an opera-
tor containing no color. ) Thus many interference effects
are eliminated.
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Confinement requires that it takes an infinite amount
of energy to separate two "baryons" with opposite color.
Then N6 is concentrated near the origin. The picture
of 4 consisting of an ordinary component and a "hidden
color" component is qualitatively similar to the resonat-
ing group method (RGM) results of Oka and Yakazi'5
for the deuteron. Furthermore, Yamauchi and
Wakamatsu' have presented a detailed calculation
showing that the separation used in Eq. (1) is a well-
defined result of an RGM calculation. The use of the
separation of Eq. (1) is neither necessary or unique. '

Nonetheless, it is well defined and has numerous phe-
nomenological advantages.

The next step is to discuss N6 . Computing this wave
function from QCD is very difficult, so we settle for im-
posing some reasonable constraints. First, take N6 to
consist of six antisymmetrized quarks in a single spheri-
cal bag centered at r =0. The spatial wave function is
taken to be symmetric: the [6] symmetry if Young dia-
grams are employed. The [6] symmetry has only a 10%
probability of being a two-nucleon product state, so us-
ing it is an easy way to implement the orthogonality be-
tween fNN and 4&6~ in an approximate yet reasonably ac-
curate fashion.

Wave functions of arbitrary angular momentum hav-
ing the [6] symmetry may easily be constructed; see Sec.
III. This allows one to implement the necessary con-
straint that the wave function 46 has the same angular
momentum, parity, and isospin as the original nucleon-
nucleon wave function.

The next step is to use probability conservation to re-
strict the overall strength of N6 . In our picture the
conventional wave function gNN is replaced by a smaller
one, PNN, when quarks are included. Thus the probabili-

ty in the NN channel has been decreased. We assume
that the missing probability goes solely into the six-
quark component and write

f I WNN I

'd'» —f I WNN I

'd'» =—P6q (2)

where

P6q = f I C'6q
I

'dI' .

The volume element dV is an integral over the positions
of all of the quarks.

The simplest method to get an estimate of P6 is to as-
sume that QNN(r) =QNN(r) at large distances. Then in-
tegrate in from large r to small r, using the presumably
well-known nucleon-nucleon interaction, and stop at a
separation ro where the conventional dynamics are ex-
pected to break down. If r ~ro, set itNN to zero. This
corresponds to using a sharp cutoff on it NN so that

evident that P6 depends strongly on the value of ro.
The consequences of this are discussed below. Since ro
is an important parameter, it is necessary to examine its
expected range of values. As discussed in Ref. 10, a
range 0.7 fm ~ ro & 1.2 fm seems to be reasonable.

Two distances are needed to describe +6 in our treat-
ment. One is the value of ro which is the NN separation
at which quark eftects enter. But another parameter is
needed to characterize the volume of the six-quark sys-
tem. This is the radius of the six-quark bag, R6. (In a
more complete theory R6 and ro would have a definite
relationship. ) However, there are several arguments'
that indicate R 6 & R3. In any case, the results of the cal-
culation presented here are not sensitive to the value of

III. PION ABSORPTION BY A SIX-QUARK BAG

Quark effects may be included via the process shown
in Fig. 2. A ~ is absorbed by any of the u quarks in
the six-quark bag. Models of systems of confined quarks
must include ~-quark (vr q) intera-ctions if the require-
ments of chiral symmetry are to be met. ' ' Fur-
thermore, the value of the ~-q coupling constant is con-
strained by the observed value of the n-nucleon coupling
constant.

The next step is to describe the calculations of the
transition matrix elements and the observables. A brief
overview is given first. This is followed by a more de-
tailed discussion.

A. Overview

The initial pion has orbital angular momentum 1 =0
or 1. The six-quark target state has the quantum num-
ber 'So so that the quantum numbers possible for the
final proton-neutron (pn) state are S, , Po, D, . Note
that each component has S = 1. This feature arises from
the pseudoscalarity of the pion and the 'So nature of the
pp state.

To proceed one computes the matrix elements of the
pion-quark interaction Hamiltonian„H, between the
initial and final states. Thus, the various six-quark wave
functions, their probabilities, and H„must be specified.
For this calculation it is important to use quark states of
good J . Furthermore, the final proton and neutron are
in a scattering state, so it is vital to be able to separate

0NN(») =~(» —»o)tt NN(r) (4a)

and

P, = f d '» ~(»0 —»)
l t(NN

l

' . (4b) ,
U

In this case the entire NN probability that would have
been at r & ro is given over to the quarks. Another pro-
cedure for determining P6 is discussed in Ref. 10. It is FIG. 2. Pion absorption by a six-quark bag.
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the center of mass variable from the internal coordinates
of the quarks. The easiest way to fulfill these require-
ments is to use the nonrelativistic quark model (NRQM)
to treat the quark dynamics. The harmonic oscillator
potential is employed, so standard techniques' are used
to obtain the correct internal quark position (g, ) and
momentum operators.

The initial six-quark wave function
~ So)6q is then a

product of Gaussians involving g; g; times a spin-
isospin wave function that sets the quantum numbers to
T = 1, 'So while ensuring a color singlet six-quark
configuration. The final S, state is constructed in the
same manner, but with S~T. The final six-quark I'o

state is generated from the equation

6

I
'Po &6, = & ~, r,

I

'So &6,

where A is a normaIization constant that sets
6 ( Po

~
Po ) 6 to unity. One may think of the Po state

as arising from promoting any of the six quarks from an
S-state harmonic oscillator wave function to a P-state
wave function, without affecting their center of mass.
The D

&
state is obtained by using a tensor operator act-

ing on the six-quark
~

Sr )6 state:

I

&2~l~s
I I~&&" I'zM(«)

I Sr'. &6

iwj, M

oo

P6& = "o q dq jr(qro)Fpt(+3q )

where F, is the ratio of the nuclear to nucleon charge
form factors.

The six-quark "probabilities" for the scattering states
are defined explicitly below. It is sufFicient here to state
that these are obtained from pn scattering wave func-
tions using recent potentials ' constrained by phase
shifts and mixing parameters at the experimentally
relevant pn kinetic laboratory energies (-425 MeV).
The Bonn potential we use is an older version of the
coordinate space one boson exchange potential (OBER)
(R. Machleidt, private communication) which gives a
better description of the pn system at Ei,b=425 MeV.
The parameters of this potential differ only slightly from
the published version and are presented in Table I.

TABLE I. Meson parameters used in the Bonn coordinate
space {OBER)potential.

(g'/4rr)(f. !g )

ma
(MeV)

A
(MeV)

Important D-state contributions also arise from
S

&
D ] mixing via the pn tensor force acting at large

separations.
The probability for the two bound protons to be closer

than ro (set equal to P6 here) can be obtained direct-
ly' ' from elastic electron scattering data (for values of
ro that are not too small '). The main assumption is
that the three-nucleon spatial wave function is sym-
metric. The result is

The final point in this overview is the form of H
Since nonrelativistic quark wave functions are employed
we must use a nonrelativistic version of the usual relativ-
istic or pseudovector coupling. Since our use of the
NRQM is motivated by the desire to maintain Galilean
invariance, we use the so-called Gaiilei invariant (GI)
form ' of the ~-quark vertex function; see below. This
is a reasonable treatment provided the ratio of lower to
upper components of the quark's 4-spinors is similar to
that of free quarks. In the NRQM [and the (MIT) bag
model] the quarks are treated essentially as free particles
at short distances. Thus using the CxI form should be an
adequate starting point. However, no proof has been
presented here, and it seems that this issue requires fur-
ther study. We shall see beIow that including the term
proportional to the quark's momentum is an important
feature in obtaining a trend of the anisotropy for the ob-
served angular distribution. In addition, lowest order
relativistic corrections are known to improve the com-
puted properties of NRQM wave functions.

B. Details of the calculation

The transition matrix element Tj, for the rr (pp)~pn
process is defined as

Tf, ——' '(Pf ~H ~g, ) .

To continue, each of the three quantities on the right-
hand side must be specified.

Only the quark contributions are included here, so
~

rj'j, ) and
~ gf )' ' refer to the six-quark bag corn-

ponents of the initial bound pp wave function and final
pn scattering wave function with incoming wave bound-
ary conditions. Thus,

14.6
3
8.0568
3.7064

20
0.95 (6.1)

138.03
548.8
550
983
782.6
769

1300
1500
1750
1500
1500
1300

~ q, )=
~

'S, )„V'P„,
where

~

'So ) 6 is the spatially symmetric six-quark
configuration of spin zero and unit isospin. It is normal-
ized to unity. The six-quark probability is defined in Eq.
(7).

The final pn state is a bit more complicated since one
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(10)

where only the required S =1 terms are shown. The
quantities v and p are the third component of the Pauli
spin and the unit vector in the direction of the pn rela-
tive momentum (proton minus neutron momentum).

Since we take I =0, 1 only three final-state partial
waves are possible, and it is worthwhile to list these ex-
plicitly. The different channels are designated by a, b, c.
The corresponding pn channel wave functions are

a, b, c&

( u(y +O]]M Wa +21]M
pr

i6b
. e

4b ] ub +1]OO
pr
i6p

4c (u f3+01]M P 21]M )
pr

satisfying asymptotically (r ~ oo )

u (r)~cosa sin(pr +6 ),
(r)~ —sine sin(pr —m+6 ),

u &( r) ~—sine sin(pr +6f]),

w]q(r) ~cosa sin(pr —rr+6f3),

ub (r) ~sin(pr qr I2+ 6—
b )

(1 la)

(1 lb)

(1 lc)

(12a)

(12b)

{12c)

where 5& is the PQ phase shift, e is the mixing parame-
ter for J"=1+, and 6, 6& are the eigen-phase-shifts.
For a real pn potential, the radial wave functions u

&, and ub are al1 real.
The six-quark probabilities are defined above as re-

must include the different partial waves and maintain the
requirements of rotational invariance. The simplest way
to proceed is to start with the partial wave decomposi-
tion of the standard pn wave function:

(r
I
pn zp) =4' g ] ']]]'g ]Jar(r)

LL 'JMM'

X YLM (p)gt. Jl. (r)(LM'Iv

placing short-distance probability in the pn sector by an
equal amount in the six-quark sector. Then the different
probabilities are given by

"o
P &(u)= dr u &(r),

p 0

I ()

dr w~& r
p 0

ro

, J dr ub(r)
p Q

P p(w)=

(13a)

(13b)

(13c)

I
b) =ie '+Pb

I Po)bq,

I

c & =e 'I&Pp(u)
I
's]M )bq —&Pp(w)

I
'D]M)b, I

(14b)

(14c)
The various six-quark wave functions are defined above
in Eqs. (5) and (6) of Sec. III A. In using only two
separate six-quark states

I
S,M ) b and

I
D,M ) b,

mixed as prescribed in (14a) and (14c), we ignore the
effects of the quark-quark tensor force, which is con-
sidered insignificant. ' Thus, the tensor mixing displayed
in Eqs. (14) arises from the pn tensor forces at distances
greater than r0.

The values of the six-quark probabilities at lab energy
425 MeV, calculated via Eq. (13) for the coordinate
space Bonn OBER, are shown in Table II (Ref. 29) for
values of r0 in the range 0.6—1. 1 fm. For a given value
of ro, the largest six-quark probability is P (u), as ex-
pected, and the next in magnitude is P&(u) (both relating
to S] components) as long as ro & 1 fm; for rr & 1 fm,
the I'0 six-quark probability I'b is the second in magni-
tude. The D, probabilities P (w) and P&(w) remain
relatively small. Note that Table II gives probabilities,
but to compute angular distributions amplitudes are re-
quired. Thus the question of phases comes up. %'e are

for the real pn forces used here. Using these definitions
one may write the six-quark wave functions correspond-
ing to the channel wave functions (11) for the fina state
as

lv'P. (u)
I
'S]~ &bq

—v'P. (w)
I
'D, M &,q l,

(14a)

TABLE II. Six-quark probabilities from the Bonn OBER at a lab energy of 425 MeV. P6 in fm
and ro in fm.

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

P (L4)

0.0052
0.0075
0.0103
0.0137
0.0177
0.0221
0.0269
0.0319
0.0368
0.0416
0.0459

P (w)

1 ~ 19X 10
2. 19X 10—'
3.77 x 10-'
6. 13x 10—'
9.45 x 10—4

1.39x 10—'
1.96X 10-'
2.65 X 10
3.49 X 10—'
4.45 X 10—'
5.50X 10—'

Pp(u j

1.85 x 10--'
2. 65 x10-
3.65 x 10-'
4.90X 10—'
6.34x10 -'

8.02 x 10--'
9.86 x 10-'

0.0118
0.0139
0.0159
0.0180

P&(m)

1. 13x 10—'
3.49X 10—'
9.50X 10—'
2. 34X10—'
5.27X 10
1.09x 10
2. 14X 10
3.92 X 10—'
6. 83 x 10-4
1.13X10—'
1.80x10 '

P6

3. 14x 10-"
5.70X10 4

9.86x 10-"
1.64x 10—'
2.62x 10
5.43X10 '
6.02 x 10-'
8.67X 10—'

0.0121
0.0164
0.0217
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guided by Eq. (12) and take therefore V'P ( u )

[V P~(u)] to be positive (negative}. [V P &( t&1} is posi-
tive. ] Thus the phases of the six-quark wave function
are determined by those of exterior wave functions at
r =ro. This seems to be consistent with existing NRQM
calculations. ' '

To compute TI, of Eq. (8) we need only specify H ~.
We write

Reference 31
Reference 32

&b('~o)

—20.0
—22.5

—28
—28

e('s, —'D, )

19.4
11.0

TABLE III. pn phase shifts and mixing parameter at 425
MeV (lab) used in this work (the BB convention is adopted); in
deg.

6
H = —,'V4rr g r, 'o; k — (P, +P, e

i =1

(15)

8 = 1 kb 1 —18 1

5 k2b2 m
q

u(k), (19b)

where k is the pion momentum in the m (pp) center of
mass frame and &o = ( k +m „)' ~ . The indices i desig-
nate quark numbers, with P, (P; ) the ith quark momen-
tum operator acting to the right (left), and r, ' —the iso-
spin lowering operator for quark i —defined by

'=(r ir—)/&2 in terms of the Pauli isospin ma-
trices. The factor 315 is included so that the ~NN cou-
pling constant (f =0.080) is reproduced in the NRQM.
The quark mass m is 338 MeV.

The computation of TI, is now completely specified.
First, use the partial wave sum (10) with the appropriate
channel wave functions of Eq. (11) replacing
i PL 1JM(r)QL JL (r) to obtain the six-quark final state in
terms of the six-quark channel wave functions of Eq.
(14). Then compute the matrix elements of H between
the initial six-quark state

I
So & 6 and the different

channel wave functions (14). The dynamics and matrix
elements are essentially the same as in an earlier double
charge exchange calculation.

The observables are obtained using standard tech-
niques, so only the results are presented here. There are
three partial-wave T's, T, b „corresponding to the final

Si Pp D
& pn scattering states, respectively. These

are given by

C= — —(kb) 1 —6
9%2 k b2 m

u(k), (19c)

with

u(k)= exp( —,', b k )—,
4~ k

(20)

the Gaussian form factor arising from the single-quark
harmonic oscillator wave functions with size parameter
b (b =0.7 fm). The phase shifts and mixing parameter
are obtained at a pn laboratory kinetic energy of 425
MeV. One can use a single set as the pion energy varies
between 37 and 83 MeV, since the pn energy changes
only by 46 MeV and the pn observables vary very slowly
at -425 MeV. The values are taken from Refs. 31 and
32 and are given in Table III. For the a,P states the
Blat t-Biedenharn convention is used. The main
difference between the two parameter sets is in the ten-
sor mixing parameter e(1+). In Sec. IV below we dis-
cuss the sensitivity of the pion absorption calculation to
such a difference.

The cross section is obtained by squaring TI, , sum-
ming over final spins (denoted below by an overbar),
multiplying by the final phase space factor, and dividing
by the incident flux. We find, for the center-of-mass
(c.m. ) angular distribution of the observed proton,

ib i5p .T =(e coseA' —e sineC')V P6
ihb

Tb ——e V PbBV P6q,
i5 . ,

ibad

T, =(e sineA' —e coseC')V P6

where

A ' =V P ( u ) A —V P ( 1L1 )C,
O'= V'P&(u) A —V'Pia(u1)C,

(16a)

(16b)

(16c)

(17a)

(17b)

do. 1 pM
dQ 16 2 k

where M is the nucleon mass and

(21)

I Ti; '=[3(
I
T. I'+

I
T, I')+

I
Tb I']

—2V3 Re[Tb(T, —&2T, )*]cos19

+ 3 [ I
T,

I

—2V 2 Re( T, T,' ) ](—', cos 0—
—,
' ),
(22)

and A, B,C are given by the following six-quark matrix
elements:

AY*, (k)= „&'s, IH„, I

's, &„,
BYoo(k)= 6q&'Po IH., I

'So &6,

C Y*,M (f ) =,q & D IM I H., I

'so & 6,

(18a)

(18b)

(18c)

A = — —u(k),2
v'3 (19a)

where the initial state is T =1 and the final states have
isospin T = [ 1 —( —1 ) ]l2. A straightforward but tedi-
ous evaluation yields

are given by

Ao =,
k

[3(
I
T.

I

'+
I
T,

I

')+
I

T~
I

']

A, = — 2&3 Re[ T1, (T, —V 2T, )*],

A2= 3[
I
T,

I

—2&2R (T,eT,*)] .

(24a)

(24b)

(24c)

so the Legendre-polynomial coefficients, AI, for the an-
gular distribution

=X AL PL (cos6),dO
(23)
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P(0)= do
dA

(25)

One can also compute spin observables. The vector
polarization P(8) perpendicular to the reaction plane is
defined as

200

I 60—

~ I20-

63 MeV

where do. +/dA is the cross section for the emitted pro-
ton to have spin up or spin down along k~p. It is a
reasonably straightforward matter to obtain'

2 Itn( fg" )sin8

If I

'+ Ig I

'+2«(fg*)cos~ (26) 0
0 45 90

(d eg)
135 I SP

where

f= —v'2T„—3v 3T,cosO,

g =v'6T, v'3T—, .
(27)

FIG. 4. Angular distribution at 63 MeV. Solid curve, phase
shift set of Ref. 32; short-dashed curve, phase shift set of Ref.
31; long-dashed curve, 6 =5&——e=O.

This completes the discussion of the technical details.
Next, we present the results.

IV. COMPARISONS WITH DATA AND PREDICTIONS

At this stage we are able to compare our model with
observations. Angular distribution data are available at
63 and 83 MeV. An experiment at 37 MeV has been
performed, but is not yet analyzed. Another energy, 120
MeV, is under consideration for a future experiment.
Thus the calculation will span the range from about 37
to 120 MeV. The higher energy is small enough so that
the effects of d-wave pions should not be too important.

A. Total cross sections

The first step is to determine whether it is reasonable
to expect that quark effects provide amplitudes large
enough to be relevant. To do this, start by considering
the total 0.T or angle integrated cross sections,
0 T =4' A p. Results for pion lab kinetic energies be-
tween 35 and 120 MeV are shown in Fig. 3. The data
are from Ref. 4. Indeed, the computed values are siz-
able. Note also that the magnitudes of the cross sections

2.0

depend strongly on the value of rp. This is expected
from the behavior of P6 exhibited in Table I and in Ref.
13 (for the bound state). The results of Fig. 3 are in-
dependent of the phase shift set. ' The use of
Lomon's potential gives also similar results, but r p
must be greater than 1.05 fm since P6 essentially van-6q
ishes otherwise.

One may be heartened by the result that the quark
effects are not negligible, and that the model is able to
reproduce the total cross section. On the other hand,
the significant uncertainty in the magnitude of the com-
puted total cross section shows that a more precise treat-
ment of quark effects will ultimately be needed. The
value rp=0. 85 fm leads to agreement with the data and
is the only one used in the following computations.

B. Angular distributions

The next step is to consider the angular distributions.
The data for energies around 63 MeV have had a strong
impact since the work of Moinester et al. , and Fig. 4
shows the calculated distributions compared to observa-
tions. A first glance shows that qualitative agreement
with the data is achieved. The general shape and char-

I.2—
E

rp= 0.90 fm

rp = 0.85fm
0.8—

r = 080fm

0 4

200

L
cD

I20—

83 MeV

0
40

l

60 80
T (MeV)

IOO I 20

FIG. 3. Total cross sections as a function of energy and ro.
Values of P6 are taken from Ref. 13 and computed from Ref.
23.

0 I

45 90
8, (deg)

I 55

FIG. 5. Angular distribution at 83 MeV.
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TABLE IV. Legendre coefficients of do. /d B. See Eqs. (23) and (24). AL are given in pb/sr. (a) 63
Mev. (b) 83 MeV.

(a)

Source

Aniol et al. '
Amdt phase shifts
Bugg phase shifts'

55+3
55
55

—45+7
—20
—18

89+7
46
24

(b)

'Reference 4.
Reference 32.

'Reference 31.

Aniol et ai. '
Amdt phase shifts
Bugg phase shifts'

73+5
65
65

—58+9
—22
—19

123+12
54
28

aeter of the observations are reproduced using six-quark
probabilities obtained with ro=0. 85 fm. The solid curve
is obtained with the Amdt phase shifts and the short-
dashed line is obtained with the phase shifts of Ref. 31.
The computed angular distributions are mainly sensitive
to the value of the S, - D, mixing parameter e. For
comparison, we present (long-dashed curve) an angular
distribution with 5 =5&

——e =0. This gives the best
agreement. In the following we present and discuss only
the results for the Amdt set; however, the above uncer-
tainty should be kept in mind. If the Amdt phases are
employed the salient features that the minimum occurs
at an angle less than 90 and that the cross section is
larger at 180' than in the forward direction are repro-
duced. These attributes are summarized by the comput-
ed values of Ho=55, 3, = —20, and Az ——46 Iub/sr [see
Eqs. (23) and (24)] which are not too far from the experi-
mental ones of Aniol et al. : AO=55+3 A

~
= —45+7,

and A2 ——89+7 pb/sr. The calculated magnitudes of A
&

and A z are a bit too small to obtain excellent agreement.
Similar results are obtained for the angular distribution
at 83 MeV as shown in Fig. 5 ~ The coefficients of the
Legendre expansion are summarized in Table IV.

The computed total cross sections depend very much
on the value of ro, as noted in Fig. 3. However, the
shape of the angular distribution is not at all sensitive to
that parameter. Once the different curves are normal-
ized to give the same result at 180', there is no notice-
able difference.

It is amusing to study the origin of the negative sign
of A &. This term causes an asymmetry of the angular
distribution about 90' and therefore indicates the pres-
ence of terms absent in the usually examined reaction
rr+ d ~p p An .examination of Eqs. (16b), (19b), and
(24b) shows that the sign of A

&
is determined by the

dominant recoil term proportional to cu. The inAuence
of this recoil term is displayed in Fig. 6, in which the
cross section obtained by neglecting the co/m term of
Eq. (15) is shown as a short-dashed line. In that case the
angular distribution is essentially symmetric about 90.
It is reasonable to expect that including similar recoil
terms (or using a more complete relativistic treatment) in
conventional (baryon-meson) approaches will be impor-
tant in reproducing the substantially negative value of
A, that is observed experimentally. Note also that the
form of the recoil term (proportional to the quark
momentum) is model dependent. Equation (15) is de-
rived in treatments which regard the pion as an elemen-
tary object. Another treatment, the Po model, takes
the pion to be a qq pair. The resulting pion-quark in-
teraction can be expressed in the form of Eq. (15), but
with co/m replaced by unity. The resulting angular
distribution is the long-dashed curve of Fig. 6. The
minimum occurs at an even more forward position and
the fore-aft asymmetry is increased. (Thus using the Po
model improves the agreement with the data if a slightly
smaller value of ro is used. )

Incident pion kinetic energies of 37 and 120 MeV are

160—

~ 120

+ 800
b

60

83 MeV 200

160-

Vl

a 120-

c: eo-
b

40—

120 MeV~

0
0 18045 90 135

(deg)
FIG. 6. Influence of the recoil term on do. /dQ. Solid

curve, with recoil; short-dashed curve, without recoil, co~0;
long-dashed curve, co/m~ is set to 1.

0
0

l

45
I

90
8, (deg)

I

135 180

FIG. 7. Differential cross sections at 37 and 120 MeV.
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of interest to ongoing and possible future experiments in-
volving cross sections and polarizations. The predicted
angular distributions are shown in Fig. 7. Note that the
(Amdt) NN phases of Table III appropriate for 63 MeV
pions are used here.

V. SUMMARY

that the substantially negative value of 3, (coefficient of
asymmetry in the angular distribution) is obtained by in-
cluding the term in the pion-quark interaction that de-
pends on the quark momentum. This suggests that cor-
responding nucleon momentum terms should be included
in conventional approaches if these are to reproduce the
value of 3, .

The application of the quark model of Refs. 10—13 to
the calculation of observables for the ~ +pp~pn pro-
cess leads to qualitative agreement with the trends of the
data measured at pion kinetic energies of 63 and 83
MeV.

The correspondence of our model calculation with the
data implies that quark effects may provide a substantial
contribution to the complete amplitude. However, our
explanation cannot yet be claimed to be unique or com-
plete because of the various restrictions and limitations
mentioned in the Introduction. The model may be ruled
out by future measurements of angular distributions at
other energies or by polarization measurements.

One interesting technical feature of the computation is
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