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Effect of neutron-proton mass difference on charge symmetry breaking
in neutron-proton elastic scattering
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The nucleon mass difference contribution to charge symmetry breaking in neutron-proton elastic
scattering is calculated in a relativistic formalism based upon a covariant representation of the NN
amplitude. The charge symmetry breaking amplitude is separated into two terms: a piece which
involves the on-shell charge symmetric T matrix with charge symmetry breaking arising due to
effects in external wave functions, and a term involving off-shell T matrices with charge symmetry
breaking associated with mass difference effects in internal nucleon propagators. We find that
most of the charge symmetry breaking arising from the neutron-proton mass difference comes
from the latter term.

I. INTRODUCTION

Charge symmetry breaking of the nucleon-nucleon in-
teraction, i.e., invariance under isospin transformation of
neutrons to protons (and vice versa), is satisfied to a
large degree. It is broken only by effects due to isospin
violating mass differences and by electromagnetic in-
teractions. In this paper we present a new calculation of
charge symmetry breaking in elastic neutron-proton
scattering due to the neutron-proton mass difference.
This calculation was motivated by a recent experiment
at TRIUMF which has, for the first time, observed the
existence of charge symmetry breaking (CSB) in the
neutron-proton system. ' The experiment measured the
difference in analyzing power

b, A = A„(]9„)—A (0„),
in np scattering. Here A„(p)is the analyzing power for
scattering of a polarized (unpolarized) neutron beam
from an unpolarized (polarized) proton target. For the
kinematics used in the experiment, neutron laboratory
kinetic energy of 477 MeV and 0, =70', the analyzing
power is going through zero, so that a null experiment is
possible. ' The experimental result is

b, A,„p——(37+17+8))& 10

This quantity would be exactly zero, if charge symmetry
were exact.

In the past charge symmetry breaking in the neutron-
proton system has been discussed in terms of non-
charge-symmetric potentials. However, it seems more
natural for the study of nucleon mass difference effects
to focus explicitly on the nucleon propagator and wave
functions. We can do this in a covariant formalism.
Then with a reasonably mild assumption about the two-
nucleon interaction kernel, we can calculate the effect of
the neutron-proton mass difference entirely in terms of
scattering T matrices. The details are given in Sec. II.

Before going into details, let us first consider a con-
venient parametrization of NN data in terms of Pauli

spin operators. The NN elastic scattering matrix can be
represented by

M(p', p)= —,'[(a +b)+(a —b)o ] n cr2 n

+ ( c +d }o., q ]r, q+ ( c —d }o., P o 2 P

+e(o ]+cr2) Il+f (o. ]
—o.~).n],

with

p p+p ~ p —p pxp
Ip+p'I '

lp —I'I '
lx &p' (4)

II. FORMALISM

Let T be the neutron-proton scattering operator in the
covariant representation. The scattering amplitude T is
evaluated between Dirac spinors. We separate from T a
piece To which describes neutron-proton scattering in
the equal mass limit.

T = To+AT, (6)

where To is constructed using the familiar invariants
S, T, V, A, P. Additional invariants arising because of the
neutron-proton mass difference, or off-mass extrapola-
tion would appear in AT. The rationale behind this sep-
aration is that when To is evaluated between neutron
and proton spinors (including the mass difference in the
spinors) it gives the only model independent contribution
to charge symmetry breaking. It is model independent
in the sense that its calculation requires no information

where p and p' are the initial and final momenta in the
center-of-mass system (CMS).

In this parametrization, 63 is given by

4Re(b*f)
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As a consequence, AA is directly related to the charge-
symmetry breaking f amplitude and is a measure for
CSB in np scattering.
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about the interaction potential or kernel but only the
on-shell scattering phase shifts.

The operator AT is model dependent and, in general,
its calculation requires that we make some statement
about the interaction. To motivate our model we start
with the Bethe-Salpeter description of the two-nucleon
system. In the CMS the scattering equation takes the
form

T(p', p)=V(p', p)+ J d k V(p', k)G(k)T(k, p),
or schematically

T= V+ VGT,

T=To+To(G —Go)T . (9)

Now to obtain the leading order (in b,m) contribution it
is sufficient to expand Eq. (9) to first order in (G —Go)
and we can also identify the terms in Tp constructed
from the invariants S, T, V, A, P with Tp. Writing
Tp: Tp +6 Tp where 5Tp contains invariants whose
coefficients vanish when Am =0, we get

T = To+5To+To(G —Go)To

b T =5To+ To(G —Go)To

(loa)

(lob)

To calculate hT we have to make a model and in this
paper we consider an approximation which represents
one extreme of simplification, that is, to drop the terms
5Tp. This gives

T =To+To(G —Go)To

b, T = To(G —Go)To .

(1 la)

(1 lb)

This approximation represents the best that we can do
without having to make specific use of the interaction
kernel. The operator AT is model dependent in that one
still needs an off-shell extrapolation of Tp to evaluate
Eqs. (11).

III. CALCULATION

Using the notation of Tjon and Wallace the invariant
(Dirac) representation of the NN scattering operator has
the form

where G is the two-nucleon propagator, that is, the
product of one-nucleon Feynman propagators which ob-
viously depend on nucleon masses. The operator V is
the two-particle irreducible kernel. We will assume that
the difference between neutron and proton masses can be
neglected in the kernel. This is exactly true for the
lowest order kernel corresponding to single boson ex-
changes with momentum independent couplings and we
assume that it is a good approximation for the full ker-
nel. Then we define another scattering operator Tp by
the equation

Tp = V+ VGpTp

where Gp is the two-nucleon propagator for equal nu-
cleon masses (b,m =m„—m =0). The two scattering
operators T and Tp are related by

F —F ](1)$(2)+F y( ) ~( )+F o( )OI ~(
S vip T pv

(1) (2) +F (1) (1) (2) P(2)
p75 V5 A Y5 Yp V5 (12)

in the absence of charge symmetry breaking effects. We
can then make the identification

1 m 2

F= Tp
2p [2n(s)' ]

where s =4(p +m ). Taking matrix elements of Eq.
(12) with nucleon Dirac spinors,

1/2

(13)

u(p, o, )= E+m
2m

1

CT P
E+m

(14)

it is straightforward to obtain the Pauli amplitudes of
Eq. (3). The relationship between invariant amplitudes
(Fs,Fv, Fr,F„,Fp) and charge-symmetric Pauli ampli-
tudes (a, b, c,d, e) is given in Appendix A.

The charge symmetry breaking amplitude [f in Eq.
(3)] is obtained by evaluating the right-hand side of Eq.
(11) between nucleon Dirac spinors and keeping the
terms (in Pauli form) proportional to b,m. The calcula-
tion of the second term in Eq. (1 la) requires an off-
mass-shell amplitude Tp. As a simple model of the off-
shell behavior we use Horowitz's relativistic analog of
the Love-Franey model. In this model the invariant am-
plitudes are parametrized with the functional form of
one-meson-exchange amplitudes. The (complex) meson
couplings and form factors are adjusted to fit empirical
NN phase shifts on mass shell. The principal contribu-
tions to the total amplitude are in the pseudoscalar, sca-
lar, and vector terms corresponding to ~, o. , and ~ ex-
change in Horowitz's parametrization. The advantage
of using the amplitude of Ref. 4 is that the second term
of Eq. (1 la) then takes the form of a Feynman box dia-
gram which greatly simplifies its computation.

The first term in Eq. (1 la) is a charge symmetry To
operator, so that the resulting CSB contribution will
originate from the nucleon mass difference in the Dirac
spinors. Both charge symmetric and CSB Pauli ampli-
tudes are calculated in Appendix A. These amplitudes
and the corresponding contribution to 6 A are given by
the on-shell relativistic amplitudes. The result for the
CSB amplitude f ' " [from the first term of Eq. (1 la)] is

f =fs(Fs Fv+2Fr+F~ ) . (15)

The pseudoscalar amplitude FP does not contribute tof"'. f'" is therefore dominantly determined by the sca-
lar and vector amplitude. Note that these two ampli-
tudes appear with a negative relative sign in Eq. (15).
The cancellation between the scalar and vector ampli-
tude, which is observed for the charge symmetric Pauli
amplitudes, does not hold for f'". Nonetheless it turns
out that the CSB contribution from f I'' is small. At the
energy and scattering angle of the TRIUMF experiment,
Horowitz's parametrization for T„b——400 MeV gives

f ' "= ( —9. 1,3.0) && 10 ' fm

which gives 6 A ' "=0.76 & 10
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(+1 P? ]+le) (IC2 ??? 2+?E

where

CO )
—

COp

6 Ko—
Q) ~+C02 2

2
( o?? + o?2 ) —s —? E

(16)

As noted above, the CSB contribution from the first
term of Eq. (11a) does not require the off-shell behavior
of the T operator. Therefore, instead of using
Horowitz's representation, we can calculate the required
relativistic amplitudes directly from a phase-shift
analysis. When we calculate the invariant amplitudes
from Amdt's program SAID, we get

f ' =( —7.9, 3.3)X10 ' fm

and 6 A "'=2.0&& 10
Note that the above results for hA "' are different, al-

though the corresponding values for f'' are more or
less comparable. This refIects a strong cancellation in
the evaluation of Eq. (5). [At the given energy and
scattering angle, b=(0. 024, 0. 083i) fm . ] In the calcula-
tion of Re(b f) the product of the real parts almost can-
cels the product of the imaginary parts. Note that Imf
and thus higher-order Born contributions to To are cru-
cial for this cancellation. This makes the resulting value
of AA '" rather sensitive to the choice of on-shell ampli-
tude. However, by comparison with the experimental
value of AA [Eq. (2)), we can see that 6/I '", which de-
scribes CSB due to external propagation, is negligible.

Now let us consider the second term of Eq. (11a). In
this case the CSB contributions come from the nucleon
mass difference in the propagator. Due to the form of
Horowitz's representation (which describes To as a sum
of effective complex one-boson-exchange diagrams), this
calculation requires the evaluation of two-boson-
exchange box amplitudes. As stated above, these contri-
butions involve the off-shell behavior of To and are ex-
pected to be model dependent.

We calculate the corresponding CSB amplitude,
denoted f ' ', by evaluating the various box diagrams in-
volving pseudoscalar, scalar and vector particle ex-
change and keeping the terms of order Am /m.

The calculation of the four-dimensional loop integra-
tion was facilitated by the use of the Blankenbecler-
Sugar reduction

TABLE I. 10 AA for various box diagrams.

P, P
P,S
P, V

S,S
S, V

V, V

Total

Ti b=477 MeV
9, =70

3.05
—10.8

12.9
3.6

—0.006
0.29

8.5

Ti b = 350 MeV
0, = 72'

1.2
—1 1.7

15.8
2.3
0.06
1.6

9.3

Tiab = 188 MeV
0, =96

—2.5
—0.3

4.3
—0.4

0.4
—0.5

1.3

difference effects in the relativistic two-nucleon propaga-
tor. The largest contribution to AA comes from the
"box diagrams" involving pseudoscalar-scalar and
pseudoscalar-vector parts of To(G —Go ) To. However,
the contribution to 6 A from these appear with opposite
signs.

In Table II we have added to AA the contributions
from electromagnetic interactions and p-~ mixing.
These numerical values are from Ref. 8. Our total
charge symmetry breaking is somewhat smaller than the
presently available experimental result at 477 MeV.

In Fig. 1 we have plotted the angular distribution of
hA at 477 MeV for the charge symmetry breaking am-
plitude f calculated in the plane wave one pion exchange
approximation. The charge symmetric amplitudes were
obtained from the SAID program (this is also true for all
other calculations in this paper). We see that at small
center of mass angles AA is negative. It has a maximum
near 70, where it has a value —14& 10 ' and is zero at
90'. For larger angles it is large and positive and has a
peak value of +43&(10 at 130'. This backward peak
is clearly due to the exchange nature of the process as
the OPE contribution to AA comes from u-channel dia-
gram.

In Fig. 2 is shown the angular distribution of 6 A
from the full calculations. Notice two important points
in comparison to OPE contribution, i.e. , Fig. 1. Firstly,
the large and positive contribution at large angles has
been greatly reduced in full calculations. Second, AA at
smaller angles has changed sign and has become posi-
tive. The comparison of Fig. 2 with Fig. 1 reveals the
quantitative effects we expect in a calculation with dis-
tortions. The effect of distortions (which is our full cal-

(K, —K, )
&o=(J?:?o rC2o) K—

(17)

TABLE II. 10 6 A. The separate contributions of elec-
tromagnetic, proton-neutron mass difference (calculated using
Horowitz's parametrization), and p-co interactions are given.

(K2+ 2 )?/2 + ( 2+ 2 )?/2~( 2+ 2 )?/2

Detailed expressions giving the f amplitude for various
box diagrams are presented in Appendix B. Using pa-
rameters of Horowitz, the results for (the CSB quantity)

are given in Table I for the kinematical
configurations of present and planned experiments.

Compared with AA"' as given above, we see that
large contributions to AA can arise from nucleon mass

Tlab

0,

Electromagnetic
Proton-neutron
mass difference

Total
Experiment

477 MeV
70'

6
10.5

5+1.2

21.5+ 1.2
37+ 17+8

350 MeV
72'

3
8. 1

1.6+0.6

12.7+0.6

188 MeV
96'

10
—2.6

—2.3+0.8

5 ~ 1+0.8
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FICs. 1. Contribution to [10 b, A (9)] from plane wave
one-pion exchange.
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IV. CONCLUSIONS

We have presented a new calculation of charge sym-
metry breaking effects in neutron-proton scattering due
to the neutron-proton mass difference. The calculation
uses a covariant formulation which allows one to focus

60

40

&Co 20
O

culation) is to reduce the amplitude at high momentum
transfer and enhance it in regions of lower momentum
transfer. The structure in the angular distribution of
Fig. 1 gets washed out when the charge symmetry break-
ing amplitudes acquires a complex phase.

For the kinematics of the TRIUMF experiment the
contribution to 62 from proton-neutron mass difference
is of the order of 10&10 . This is smaller than the
previous calculations ' based on a distorted-wave forma-
tion. In these calculations distortions play an important
role in making AA large and positive. Although our nu-
merical results show the qualitative features of distortion
we have not been able to reproduce the same degree of
enhancement of AA at small angles. An obvious place
to look for this discrepancy is in the simple off-shell ex-
trapolation of the T matrix that has been used here.

explicitly on the mass difference effect in nucleon propa-
gation. The calculation is carried out in terms of T ma-
trices, without recourse to a potential, although a model
is required for the off-shell behavior.

We find a small charge symmetry breaking effect in
the analyzing power due to nucleon mass differences
with most of the effect coming from differences in exter-
nal wave functions and in propagation in intermediate
states. The smallness of our calculated effect is due to
cancellations between different parts of the charge sym-
metric T matrices. The final numbers are quite sensitive
to the exact value of the T matrix but the fact that
strong cancellations occur seems to be model indepen-
dent. We have not investigated the sensitivity of this
calculation to the particular choice of the
Blankenbecler-Sugar reduction to evaluate the box dia-
grams nor to the choice of the off-shell T matrix. This
would be an interesting question for further study.
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M = —,'[(a +b)+(a b)o, o 2—.n+(.c +d)o, q o z.q

+(c —d)o, P o.
z P+e(a, +o.2) n

+f (o. , —o 2).n],
where different units vectors are defined in the main text.
Equating the matrix elements of M taken between Pauli
spinors to the Dirac spinor matrix elements of the co-
variant operator F [defined in Eq. (10)], we have

up(p', s', )u„(—p', s ~ )Fu (p, s, )u „(—p, s~ )

=1', X, MX, X, (A2)

Here subscript p (n) on the Dirac spinors stands for pro-
ton (neutron). From Eq. (A2) we can write the a, b, c, d,
e, and f amplitudes in terms of Fs Fv Fr, Fp and F„
amplitudes. We get

a+6
2

=~sFs +~vFv +aTFT+ apFp+Q g Fq

a —b

2 =PsFs+PvFv+PTFr+PpFp+Pg Fg

c +d
2

=~sFs+XvFv+y TFT+ppFp+p g Fg

APPENDIX A

In the notation of Gersten, the NN scattering opera-
tor is written as [see Eq. (3)]

—20
30 60 90

8
120 150 180

(A3)
c —d

2 s s+ v s+ 6vFv+ 6T F~+ 6pFp+5~F

FICz. 2. Total contribution to 10 AA (0) from charge depen-
dent NN T matrix. Dash line is the contribution from To.
Dash-dot line is the contribution from To(G —G)To. Solid line
is the ful) contribution.

e =esFs+evFv+eTFT+epFp+egF~

f =fsFs+f vFv+frFr+fpFp+f ~ Fw

The coefficients of expansion are
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as=
4m m„

v
——

4m m„

p cosO
(Ep ™p)—(E ™)

p cosO
(E +m„)+ E +m„

p coso(E„+m„)—(E„+m„)
p cosO(E„+m„)+ +2p (1+cosg, )(E„+m„)

aT ——

ap ——0,

4m„m„
p s1 Ocm

2 2p (1—cosg, )+ (E +m )(E„+m„)

1 1 4 2
p sing,

4m pm„(Ep+m )(E„+m„)
1 1 4 2

p sin0,4m~m„(E„+m )(E„+m„)

1 p4sin20,

4m~m„(E +m )(E„+m„)+2p (1—cosg, )

1PT=
4m m„

E„+m„E+mp
2 2p (1+cosg, )+(E +m )(E„+m„)+— + p cosg,E

p +m
p

E„+m
p4cos4e,

(E +m )(E„+m„)

/3p
——0,

1

4m m„ (E +m„)(E„+m„)—E„+m„Ep+mp p4cos2O,
+ p cosO,

E~+m~ E„+m„'(E +m )(E„+m„~

They continue as

ys=o

yv=0

1
yT=

4m m„
E„+m„E+m 1

2 2p'(1+cosg, )+(E +m~)(E„+m„)+ + p + pE +m E„+m„E+m )(E„+m„)
1

2p (1 —cosg, ),
4m m„

&s =o

1

4m m„ (E +m )(E„+m„)—E„+m„
E +m

E +m p+ p +E„+m„(E+m„)(E„+m„)

5~= — 2p (1 —cosg, ),
4m m„

I

6T= 2 (E +m )(E„+m„)—
4m, m„

6p ——0,

E„+m„E+m p
E +m E„+m„(E+m )(E„+m„)+ p +

4m m„
And, continuing,

E„+m„E+m p
2p (1+cosg, )+(E +m )(E„+m„)+ + p +E +m E„+m„
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1 i p cosO
es= (E +m )—

4m m„2 P P (Ep+mp)
p sinO, p cosO, p sinO,

(E„+m„) " " (E„+m„)(E„+mp)
' + (E„+m„)—

1 i p cosO, p sinO,
(E +m )+

4m m„2 P P (E +m ) (E +m„)
p cosO, p sinO,

1eT=
4m m„

E„+m„E+m
2i —2p sinO, —— + p sinO,

2 E
p +m

p
E +m

1
0 s0

ep ——0,

1 i
4m m„2

E„+m„E„++ "
p sinO,E +m E„+m„

1
2 0 0

4m„m„
E„+m„

2 E+m
E +m
E„+m„ p sinO,

fv= fs-
fT=2fs

f~=o

f~ fs . —

APPENDIX B

Using the Blankenbecler-Sugar reduction' for the two-nucleon propagator, the f-amplitude for two-boson-
exchange box diagrams can be written as

i m (K+m ), fd'&, 2 IMM(PKP)
4p&s (2~)' p —K —ic

(Bl)

with m =(m +m„)/2 the average nucleon mass. Below are given the integrand factors for diff'erent contributions,

gM gM FM (P —K)FM (p' —K)
IM~M (p, K, p )=

2 2 2 2 (+1 r2) ' 'RM M (P, K, p') .
[(p —K) +m, ][p' —K) +m2]

(B2)

2
P P p s1110c.m.1— (p —K)Xq n- (p —K) p.(E+m)' (E+m)

E+mR
7T TT 4 2

2
P'P p sinO,

1+ (p —K) Xq.n+ (p —K) p(E+m) (E+m)

Here I& 2
——~, g, o., co, m, 2 is the corresponding meson mass, IM the isospin of the indicated meson, and ~, 2 are nu-

cleon isospin matrices. F~ is a form factor and g~ the coupling constants. Furthermore, we have
1, 2 1, 2

(E ( p2 +m 2
)

1 /2 g~ [(+ 2 +m 2
)

1 /2
(~ 2 +m 2

)
1 /2 ] )

T

R pp ———R

R p+ ——R+p ——0.
Tr jr TT

Apart from isospin the expressions for m can be applied for g,
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. Ace 2 . . E+MR =i p sinO, ~i
2m c.m.

4m 2

Am

2

AQ7+

2
P'P P SlnOc. m.

z (p —K)Xq n- (p —K) P .
(E ym) (E ym)

2

P P p sinO,
1+ (p —K)Xq n+ (p —K).P

(E+m) (E ~m)

EpmR
7T 0 4m 2

E+m
~ =I

4m

R 0
——R O

——0,
R p =R p=R o p

'TT CO CO7T 7r 77

E+mR
4m

Am

2

2

P P p sinO,
1~ (p —K)XP n~ (p —K).q .

(E +m) (E ~m)
2

P P p sinO,lt
z (p —K)Xq n+ (p —K) P .

(E ~m) (E +m)

p sinO,
1+ (p'+K)XP. n+ ' ' (p'+K). q .

(E ~m) (E ~m)

p sinO,
1+ (p'+K)Xq. n+ (p'+K). P .

(E +m) (E +m)

2
P'P P Sln Oc. m.

1 — (p —K) X q.n- (p —K) P —2KXp n
(E ym) (E +m)

[p p'(p —K)Xp.n+p (p —K)Xq.n —p sinO, (p —K).q] .
(E 4-m)

+ 1—AQ7

2

2
P'P p slnOc. m.

(p —K) Xp.n- '

(p —K) q+2KXp n
(E ym) (E +m)

+ ~
[p.p'(p —K)Xp.n+p (p —K)Xq.n —p sinO, (p —K).q](E gm)

E+m
~ =l

co7T 4m 2

Am p p'
2 (E ~m)'

p sinO,
(p'+K)Xq. n—,(p'+K) p —2KXp'. n

(E ~m)'

[p.p'(p'+K)Xp. n+p (p'+K)Xq. n+p sinO, (p'+K). q] .
(E 4-m)

P'P p sinO,2

(p'+K)Xp. n — (p'+K). q —2KXp' n
(E ~m) (E ~m)

[p.p'(p'+K)Xp n+p (p'+K)Xq. n+p sinO, (p'~K) p]-
(E ~m)

E+mR „=—i p sinO, +i
2m '

4m

2
Am P'P p sin Oc. m.1~, (p —K)XP n~ (p —K).q2 (E gm) (E ym)

2

K~pn-
(E ~m)

2
P P P Sln t9c.m.

(p —K)XP.n—,(p —K).q(E ~m) (E +m)
2

+2 1—,KXp.n
(E ~m)
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A = —i p sinO, +i E+m
2m ' 4m ~

2
P P sinc. m.1+, (p' —K) X P n+ '

(p —K).q(E+m) (E +m)
2—2 1+

~
KXp'~-

(E+m)
2

P'P s'nc. m.(p' —K)XP n- (p' —K)-q
(E+m) (E+m)

+2 1—
2

K&&p'. n-
(E+m)

E+m
6MB 4

2(hm —bee)KXq n+ (p KXq n+p sin8, K P)+ (p KXq n)
(E +m) (E+m)

R. Abegg et al. , Phys. Rev. Lett. 56, 2571 (1986); R. Abegg
et al. , Proceedings of the Sixth International Symposium on
Polarization Phenomena in Nuclear Physics, Osaka, 1985,
edited by M. Kondo et al. [J. Phys. Soc. Jpn. Snppl. 55, 251
(19811].

~A. Gersten, Phys. Rev. C 18, 2252 (1978).
J. A. Tjon and S. J. %'allace, Phys. Rev. C 32, 267 (1985).

4C. J. Horowitz, Phys. Rev. C 31, 1340 (1985).
5Horowitz gives separate parametrizations for different ener-

gies, namely T&,b ——135, 200, and 400 MeV. Our calculations

at T|,b ——350 and 477 MeV use the 400 MeV fit, while at 188
MeV we use the 200 MeV fit.

R. A. Amdt and D. Roper, sAlD, Virginia Polytechnic Insti-
tute and State University Scattering Analysis Interactive
Dial-in Program and Data Base.

7R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
SG. A. Miller, A. W. Thomas, and A. G. Williams, Phys. Rev.

Lett. 56, 2567 {1986).
9L. Ge and J. P. Svenne, Phys. Rev. C 33, 417 (1986); 34, 756

(1986).


