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Viewing the liquid-gas phase transition by measuring proton correlations
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A formalism is developed for predicting two-particle correlations in terms of the final single-
particle phase-space distributions which can be calculated from theoretical models. The ability to
determine the phase-space distributions from experiment is discussed. It is shown that evapora-
tion which characterizes the liquid phase and expansion which characterizes the gaseous phase
have clear experimental signatures. An abrupt change in the behavior of the experimentally in-

ferred lifetime is predicted near the threshold for the liquid-gas phase transition.

I. INTRODUCTION

Although modern heavy ion colliders easily reach the
energy where the thermalized fireball is hot enough to
leave the liquid phase of nuclear matter, there have been
no unambiguous experimental signatures of the phase
transition from single-particle spectra. If it were possi-
ble to view a motion picture of the collision for various
beam energies it would be clear when the phase transi-
tion had taken place. A gas, by definition, will expand
to fill the volume in which it is contained while a liquid
will evaporate particles into the gaseous phase which
then fills the volume. In a collision where the bombard-
ment energy is below that needed to create a gas, the
thermalized region will shrink and evaporate particles
characterized by a decaying temperature. Whereas if the
gaseous phase is initially created the thermalized region
will expand due to the inner pressure, and if the system
is hot enough it may even be described with hydro-
dynamics and result in collective expansion. This criti-
cal energy, corresponding to point "a" in the equation of
state' in Fig. 1, labels the minimum density for which
the pressure can be zero without being in the region of
instability, BP/BV) 0. At slightly higher energies the
system can not be at zero pressure and will expand and
cool, perhaps passing through the mixed phase and frag-
menting into gaseous and liquid components.

Experimentally inferring the lifetime for the emission
of particles for any given center of mass energy would
give the essential features for distinguishing which pic-
ture of the collision is accurate. (Throughout this paper
the collision is viewed in the center of mass frame and
all momenta are described in that frame. } An evapora-
tive emission is characterized by very long lifetimes,
thousands of fm/c. The lifetimes are longest for the
slowest particles, since the temperature falls very slowly
once the source becomes cold. A gas should expand
and disperse in only a fraction of the time, perhaps less
than 100 fm/c after maximum compression occurs.
Proton correlation measurements provide a viable

method to extract these lifetimes.
Particles which are otherwise randomly emitted will

interfere with each other due to final state interactions
or exchange effects. The interference will be stronger for
spatially smaller sources and is quantified through
measuring the two-particle correlation function. The
correlation function C(p, p&) is the ratio of the proba-
bility of detecting two particles with momenta p and p&
in the same event to the product of the probabilities of
detecting them in different events. It is unity for ran-
dom emission:

P(p. pt )
C(p, p )=

P (p )& (pit)

In Sec. II we develop a formalism where the correla-
tion function is uniquely determined by the final phase-
space distribution of the collision f (p, r). The spatial
shape of f (p, r) for a specific momentum p gives in-

teresting information about the lifetime. For instance, a
long lived source will stretch the final distribution
f (p, r) along the direction of p. The phase-space distri-
bution is readily extracted from a plethora of theoretical
models: Boitzmann-Uehling-Uhlenbeck (BUU), cas-
cade, thermodynamic, fireball, time dependent
Hartree-Fock, or evaporative. We show that measuring
the correlation function for different values of the total
momentum of the two-particle pair and for different
directions of the relative momentum is vital when at-
tempting to extract information about the lifetimes or
collective motion from experiment.

The relevant features of this formalism are the follow-
ing. (I) The correlation function is shown to depend on
all the features of f (p, r) but the lifetime is not uniquely
determined. (2) Other correlations such as those caused
by different impact parameters or rotational motion can
be included. (3) The correlation function can be evalu-
ated for two particles of different mass.

In Sec. III we present the essential features of f (p, r)
for several theoretical scenarios. These have quite
different features which could be seen through correla-
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FIG. 1. The pressure is plotted against density for four isen-
tropes taken from Ref. 1. Collisions with energies less than
that of point "a" can find a stable value of the density such as
point "b" at which to equilibrate with the vacuum and slowly
evaporate nucleons. Collisions with a greater energy must con-
tinually expand since they must maintain a positive pressure.

P(P Pp)= X ~'tib
I
a (P )ap(Pp)ap(Pp)a (P )

l
'9b ~

b

P(p )=y(7)b ~a (p )a (p )~gb) .
b

(2a)

(2b)

The sum over b represents the averaging over impact pa-
rameters. We attempt to write the most general X-body
state

~ gb ) has a superposition of several wave packets
described by g, (r, t),

I
gb)= g fd rpg;(rp, t, )%'(rp, t, )

I

(3)

The probabilities used in Eq. (1) to determine the
correlation function can be written in terms of creation
and destruction operators as

tion measurements. Finally, we discuss the change in
the behavior of the phase-space distributions near the
threshold of the liquid-gas phase transition.

II. RESOLVING POWER
OF THE CORRELATION FUNCTION

In the derivation of the correlation function we at-
tempt to write the most general quantum mechanical
state

~
g) and then calculate the probability P (p, pp) of

detecting two particles a and P with momenta p and

pp. For incoherent emission P(p, pp) is then written
in terms of the two-particle Wigner function
f (p, r;pp, rp). The two-particle function can be written
as an average over impact parameters of the product of
the one-particle functions; it therefore contains correla-
tions due to varying impact parameters. For instance,
detecting one particle biases towards those events with a
higher multiplicity. There is also a correlation around
the axis of rotation if a significant fraction of the energy
is in rotational form.

We assume that the particles interact only pairwise after
both particles have been created in their final state. This
defines the formation of the final state. We picture the
wave packets as being created when the reaction has
di6'used to the point that the particles no longer interact
except with another particle with very similar momen-
tum. When the relative momentum p -p& is so large
that several particles are commonly emitted within that
range, we cannot predict the correlation function from
simple two-body considerations. The relation between
the creation operators at large times and those at times
during which the particles are significantly interacting is

ap(pp)a (p )= f d r d rp@(p, pp', r, rp)

X'P(r, t)%'(rp, t) .

Here 4(p, pp, r, rp) is the outgoing scattering wave
function for particles with momentum p and p&. Using
Eqs. (3) and (4) one obtains an expression for the proba-
bilities.

P(p, pp)= f d r'd rpd r d r 4p'(p, p rp', r )Np(p, p 'rp, r )pg q,*(r,t, ~ )q*(rp, t,~)g (rp, t;~ )g;(r. , t;j~ )

b, i,j
= f d r'd rpd r d rp@"(p, pp', r', rp)@(p, pp', r, rp)

~ f d p'd ppexp[ —ip' (r —r' ) ipp (rp rp)] g—fb i, p'—,
b, i,j

(r +r' ) (rp+rp)
~b J PPt~

V
t»

Here t, ~ is the latter of the two creation times, and the Wigner function fb(i, p', r, t, ~
) is defined as

fb(i, p, r, t~ ):—f d x e'~'"g,*(r. +x/2, t, ~ )g, (r —x/2, t, ~
) . (6)

The Wigner function represents the phase-space distribution of the emitted particles from a particle wave packet. If
the total and relative momenta replace the individual momenta and the position of the center of mass and the relative
coordinate replace the individual coordinates, the wave function can be factored into the relative wave function times
the wave function of the center of mass. The two-particle probability can be expressed as

P(K, k)= f d k'd r d 5r d Rp'(k, r+5r/2)p(k, r —5r/2) g fb(i j,K, R, k', r, t, )e~ (7)
b, i,j
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where K=p +p&, R=(m r +m&r&)/(m +m&), r=r
—r&, and k=(m p&

—m&p )/(m +m&). The relative
wave function is P and the two-particle Wigner function
fb(t,j,K, R, k', r, t, ~

) is the product of the single-particle
Wigner functions.

This is the most general of formalisms, but there
remains an arbitrariness as to the precise time at which
particles are created. The exact form of fb(p, r) for indi-

vidual wave packets is not determined by any standard
theoretical model.

The formalism can be significantly simplified by mak-

ing the semiclassical approximation that the dependence
of fb(i,j,K, R, k', r, t, ~

) on k' is slow. The dependence of
P*P on 6r is roughly proportional to e'" ' (and is in-

dependent of k for the exchange part of P*P). If the two
particle Wigner function fb(i,j,K, R, k', r, t, , ) does not
depend strongly on k', then the integration over 6r will
allow f (k') to be approximated as f (k) [or f (k=O) for
the exchange part]. Furthermore, if the relative momen-
tum k is small we consider f (k=O) only and Eq. (7) can
be written as

P(K, k)= f d r d R P*(k,r)P(k, r)

X g fb(i,j,K, R, k'=O, r, t,,~ ) .
b, i,j

The two-particle function f d Rf (k=0) is time indepen-

dent since the relative momentum is zero. This allows
the different Wigner functions to be evaluated at the
same time which can be assumed to be infinite so that all
particles would have been emitted. The indices i,j,b can
then be suppressed to give

C(K, k)= f d r P*(k, r)P(k, r)Fx-(r),
(9)

f d Rf (K,R, k=O, r, t ~ oo )

F~(r) =
f d r d r&f (p, r, t )f (p&, r&, ta co )

Equation (9) is identical to that of Koonin9 except that
the integration over time has been incorporated into
Fx. (r). For a specific total momentum K, the correla-
tion function can only be measured for the three corn-
ponents of the relative momentum k, and will only de-
pend on the three dimensional probability for having
two particles (with exactly the same velocity and with
total momentum K) separated by a distance r.

The size and shape of FK(r) uniquely determines the
correlation function for a particle pair with total
momentum K. It is independent of the position of the
center of mass of the probability packet and is indepen-
dent of the details of when the particles were created
with respect to one another. An elongated source where
the particles were created simultaneously or a long-lived
compact one could in principle give rise to identical
probability packets. However, a long-lived source will
always yield an elongated distribution Fx (r) (where the
long dimension is always in the direction of K) while a
spatially stretched source might not always be stretched
along the direction of the particles velocity. It is there-
fore preferable to measure the correlation function and

thereby determine Fx. (r) for several different directions
of K in order to confidently ascertain the lifetime.

Although Fx (r) does uniquely determine the correla-
tion function C(K, k) there remains the question of
whether Fx.(r) can be uniquely determined from measur-
ing C ( K, k). Certainly, for noninteracting and nonident-
ical particles where P*(k,r)P(k, r) =1, the function
Fx(r) cannot be determined. For identical but nonin-
teracting particles, the exchange part of P*(k, r)P(k, r)
which is e '"' leads to a very complete determination of
F~(r) from C(K, k):

Fx(r)=+ f d k e '"'[C(K,k) —1] . (10)

For nonidentical particles which interact through the
Coulomb force there is a strong effect on the correlation
function. However, for sources much smaller than the
Bohr radius the correlation is independent of the size or
shape of the source. The Bohr radius for protons is 58
fm, five to ten times larger than a typical nuclear source.
Coulomb induced correlations therefore give little infor-
mation about nuclear collisions.

The amount of information that can be extracted from
correlations induced by short-range interactions from
nonidentical particles depends very much on the details
of the interaction and the phase-space distributions.
Calculating Eq. (9) for various shapes of Fz(r) is the
best way of analyzing and resolving power of the corre-
lation function. If the source size is much larger than
the range of the potential, the only information that can
be obtained is Fx(r=O) which can be considered as the
inverse volume of the system, while details of the shape
are not available. ' The most attractive set of particles
for correlation measurements are those whose correla-
tions induced by Fermi-Dirac or Bose-Einstein statistics
are not overly obscured by effects from the potential.

Proton-proton correlations are significantly inAuenced
by all three of the above effects. In 1978 Koonin calcu-
lated the correlation function for a Gaussian shaped
source of size R=3 fm and a lifetime v~=11.31 fm.
This yields the same correlation function as an instan-
taneous elongated source with a longitudinal size of 12
fm, along the direction of the total momentum, and a
transverse size of 3 fm. The correlation functions in Fig.
2 are derived from the final phase-space distribution:

f (p, r)=exp —[(x/3 fm) +(y/3 fin) +(z/12 fm) ] .

There is a significant difference in the correlation func-
tions for different directions of the relative momentum,
signifying that the elongation could be determined. The
correlation appears much stronger when k is parallel to
the long dimension of the source. When k is along the
short dimension, the anticorrelation due to the Fermi
nature of the protons more strongly cancels the positive
correlation due to the attractive potential. A careful
analysis must be performed to determine the amount of
data necessary to measure these correlation functions
with sufhcient accuracy. The cut for different orienta-
tions of the relative momentum has been performed pre-
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FIG. 2. The correlation function is shown for a Gaussian
source where the transverse dimensions are 3 fm and the longi-
tudinal dimension is 12 fm. The correlation is plotted for the
relative momentum k being both parallel (k~) and perpendicu-
lar (k, ) to the longitudinal direction. This demonstrates the
resolution of correlation measurements for measuring the
elongation of the final shape of the Wigner distributions.

viously for more energetic collisions, 1.8 GeV Ar on
KC1. This is far above the threshold for creating a gas
and no elongation was observed. "

III. PREDICTIONS FOR VARIOUS MODELS

The variance of the phase-space distribution only con-
tains a fraction of the information of the entire distribu-
tion, but the essential physical characteristics of elonga-
tion and overall volume are represented. This is a good
meeting point for theory and experiment. It is probably
unreasonable that any more information about the de-
tails of the shape of f (p, r) could be extracted from ex-
periment. When data is fitted to a particular form of
f (p, r), such as a Gaussian, the size as determined from
fitting to Eq. (12) is probably independent of the particu-
lar form chosen. The essential physical information is
contained in x (p), y (p), and z (p).

The evaporative model is reasonable for temperatures
where nuclear matter is in the liquid state. Particles are

In this section we discuss phase-space distributions
calculated from three diA'erent theoretical models, an
evaporative calculation, ' a spherically symmetric ex-
ploding ball, and a BUU calculation. The evaporative
model should be realistic below the liquid-gas phase
transition and the expanding ball might be realistic for
highly energetic collisions. The BUU calculation is ap-
propriate just above the phase transition. This compar-
ison could point to interferometric signals of the critical
temperature. From each model we extract the longitudi-
nal (with respect to the particles momentum) and trans-
verse size of f (p, r) for several momenta. The dimen-
sions x (p),y (p), and z (p) are defined by

f d r d r'(x r' —x r) f(p, r')f (p, r)
x(p) = (12)

d rd r' pr pr'
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FIG. 3. Transverse and longitudinal sizes of the final
Wigner distributions for specific momenta due to a spherically
symmetric evaporative source (To ——10 MeV) are shown as a
function of energy. The momenta and corresponding energy
are measured in the center of mass of the collision. Transverse
and longitudinal refer to the direction of the specific momen-
tum.

emitted independently according to their probability to
escape the nuclear potential well. Since the source will
cool and shrink while particles are evaporated, less ener-
getic particles will more likely be emitted in the late
stages when the source is cool. More energetic particles
will escape early since they have a higher velocity, giving
them more attempts to escape, and a greater energy to
overcome barriers more easily. The temperature also
falls very rapidly at the beginning of the reaction but
very slowly later on. The most energetic particles escape
within 50 fm/c while the less energetic ones are emitted
over times that can be in the thousands of fm/c. The
spread in the time r= ((t —t') ) ' also falls rapidly
with increasing energy. This leads to very elongated
final phase-space distributions for these lower-energy
particles where v (E)r(E) is much larger than the size of
the emitting region.

Figure 3 shows both the longitudinal and transverse
spread as defined in Eq. (12) for protons emitted from an
evaporative source where the initial temperature was 10
MeV and the initial charge was 30. We extracted the
emission probabilities from a calculation that started at
T= 18 MeV, but we ignored emission from the early
stages when T& 10 MeV and the existence of a liquid
phase is questionable. The spatial dimensions are plot-
ted against the energy of the emitted protons. The eva-
porative model gives the emission probabilities and
source sizes as a function of time. This is sufficient for
calculating the final phase-space distributions. In addi-
tion to the longitudinal size xl and the transverse size
xT, the average radial size R =(xT xL )' is also shown
which corresponds to the total volume. The crucial sig-
nal for evaporative cooling is the strong elongation that
rapidly diminishes for more energetic particles.

The opposite of the evaporative model is a simultane-
ous dissolution of a thermodynamically equilibrated
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the fragments rapidity will vary greatly from event to
event it would make such an experiment unreasonable.
The transverse size also falls with energy due to the
transparency.

Experiments have already been able to infer a source
size as a function of the energy. ' ' The source sizes
extracted from 60 MeV/nucleon argon on gold collisions
fall with increasing energy as shown in Table I. Both
the expanding sphere model and the evaporative model
exhibit this behavior despite the fact that they represent
opposite extremes in viewing the collision. This em-
phasizes the necessity of inferring the elongation by
measuring the correlation function for specific directions
of the relative momentum.

IV. SUMMARY

We explained that a motion picture of the collision
would certainly reveal whether the initial thermalized
fireball was in the liquid or the gas phase by whether the
constituents were evaporated individually or collectively
after an expansion of the thermalized region. In Sec. II
we demonstrated that the correlation functions depends
only on the final phase space distribution, providing a
snapshot of the end of the reaction. This contains the
necessary physical information. The nucleons of a given
velocity from an evaporative source will be stretched out
along the direction of that velocity due to the long life-
time of a cooling and shrinking emitter. Figure 2
demonstrates that the elongation can be determined
from correlation measurements. But, to see this shape,
experiments must be able to measure the correlation
functions C(K, k) for a variety of directions of the rela-
tive momentum k. The other necessary signal for an
evaporative source is the fall in longitudinal size with
respect to increasing momentum K/2 of the emitted par-
ticles. Elongation signals a long lived source. Decreas-
ing elongation with increasing momentum signals a cool-
ing one. This requires greater statistics than what has
been available from previous experiments, but we believe
that the information is worth the effort.

The gaseous phase is not so clearly signaled. BUU
calculations above the energetic threshold for creating a

TABLE I. Source sizes extracted from two-particle correla-
tion measurements (Ref. 13) averaged over all directions of the
relative momentum are shown for different energies in the
center of mass of the collision ( Ar + ' 'Au; E/A =60 MeV).

Pair

P+P
E, +E, (MeV)

25-75
75-125

125-175
175-225

R (fm)

6.0 (+0.5, —1.0)
6.0+0.5

5.5+0.4
4.6+0.3

d+d 25-75
75-125

125-175
175-225
225-275

10.0+3.0
7.0+2.0
6.0+2.0
5.0+ 1.0
4.0+ 1.0

t+ t 36-100
100-180
180—260

7.5+1.5
6.0+ 1.5
6.0+ 1.5

p+a 52-125
125-200
200-300

7.5 (+0.5, —1.0)
6.7+0.4
5.9+0.3

d+a 55-100
100-200
200-300
300-400

5.7+0.2
4.8+0.2
4.3+0.2
4.4+0.2
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gas yield fundamentally different predictions for the final
phase-space distributions and therefore the inter-
ferometry. We should also emphasize that even if anoth-
er theoretical scenario is appropriate for describing the
collision, the unique predictions for the correlation func-
tions will stringently test the theory.
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